Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 180, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613672

RESUMO

Aberrant remodeling of uterine spiral arteries (SPA) is strongly associated with the pathogenesis of early-onset preeclampsia (EOPE). However, the complexities of SPA transformation remain inadequately understood. We conducted a single-cell RNA sequencing analysis of whole placental tissues derived from patients with EOPE and their corresponding controls, identified DAB2 as a key gene of interest and explored the mechanism underlying the communication between Extravillous trophoblast cells (EVTs) and decidual vascular smooth muscle cells (dVSMC) through cell models and a placenta-decidua coculture (PDC) model in vitro. DAB2 enhanced the motility and viability of HTR-8/SVneo cells. After exposure to conditioned medium (CM) from HTR-8/SVneoshNC cells, hVSMCs exhibited a rounded morphology, indicative of dedifferentiation, while CM-HTR-8/SVneoshDAB2 cells displayed a spindle-like morphology. Furthermore, the PDC model demonstrated that CM-HTR-8/SVneoshDAB2 was less conducive to vascular remodeling. Further in-depth mechanistic investigations revealed that C-X-C motif chemokine ligand 8 (CXCL8, also known as IL8) is a pivotal regulator governing the dedifferentiation of dVSMC. DAB2 expression in EVTs is critical for orchestrating the phenotypic transition and motility of dVSMC. These processes may be intricately linked to the CXCL8/PI3K/AKT pathway, underscoring its central role in intricate SPA remodeling.


Assuntos
Amarelo de Eosina-(YS)/análogos & derivados , Interleucina-8 , Fosfatidiletanolaminas , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Interleucina-8/genética , Fosfatidilinositol 3-Quinases , Pré-Eclâmpsia/genética , Placenta , Artérias , Meios de Cultivo Condicionados , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
2.
J Allergy Clin Immunol ; 154(3): 698-706, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38823490

RESUMO

BACKGROUND: In the recent years, there was an important improvement in the understanding of the pathogenesis of hereditary angioedema (HAE). Notwithstanding, in a large portion of patients with unknown mutation (HAE-UNK) the genetic cause remains to be identified. OBJECTIVES: To identify new genetic targets associated with HAE, a large Argentine family with HAE-UNK spanning 3 generations was studied. METHODS: Whole exome sequencing was performed on affected family members to identify potential genetic variants associated with HAE-UNK. In silico analyses and experimental studies were applied to assess the role of the identified gene variant. RESULTS: A missense variant (p.D239N) in DAB2IP was identified. The variant occurred in the C2-domain, the region interacting with vascular endothelial growth factor receptor 2 (VEGFR2). It was found to be rare, and predicted to have a detrimental effect on the functionality of DAB2IP. Protein structure modeling predicted changes in the mutant p.D239N protein structure, impacting protein stability. The p.D239N variant affected the subcellular localization of VEGFR2. Cells transfected with the DAB2IP-239N transcript exhibited an intracellular distribution, and VEGFR2 remained associated with the cell membrane. The altered localization pattern indicated reduced colocalization of the mutant protein with VEGFR2, suggesting a diminished ability of VEGFR2 binding. CONCLUSIONS: The study identified a novel missense variant (p.D239N) in DAB2IP in a family with HAE-UNK and highlighted the role of dysregulated VEGF-mediated signaling in altered endothelial permeability. DAB2IP loss-of-function pathogenic variants lead to the impairment of the endothelial VEGF/VEGFR2 ligand system and represent a new pathophysiologic cause of HAE-UNK.


Assuntos
Angioedemas Hereditários , Mutação de Sentido Incorreto , Linhagem , Transdução de Sinais , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Angioedemas Hereditários/genética , Angioedemas Hereditários/metabolismo , Sequenciamento do Exoma , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Pharmacol Res ; 209: 107432, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313081

RESUMO

Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN) and accumulation of intracellular α-synuclein (ɑ-syn) aggregates known as Lewy bodies and Lewy neurites. Levels of polyunsaturated fatty acids (PUFAs) have previously been shown to be reduced in the SN of PD patients. G protein-coupled receptor 40 (GPR40) serves as a receptor for PUFAs, playing a role in neurodevelopment and neurogenesis. Additionally, GPR40 has been implicated in several neuropathological conditions, such as apoptosis and inflammation, suggesting its potential as a therapeutic target in PD. In this study, we investigated the neuroprotective effects of the GPR40 agonist, TUG469 in PD models. Our results demonstrated that TUG469 reduces the neurotoxicity induced by 6-OHDA in SH-SY5Y cells. In 6-OHDA-induced PD model mice, TUG469 treatment improved motor impairment, preserved dopaminergic fibers and cell bodies in the striatum (ST) or SN, and attenuated 6-OHDA-induced microgliosis and astrogliosis in the brain. Furthermore, in a PD model involving the injection of mouse ɑ-syn fibrils into the brain (mPFFs-PD model), TUG469 treatment reduced the levels of pSer129 ɑ-syn, and decreased microgliosis and astrogliosis. Our investigation also revealed that TUG469 modulates inflammasome activation, apoptosis, and autophagy in the 6-OHDA-PD model, as evidenced by the results of RNA-seq and western blotting analyses. In summary, our findings highlight the neuroprotective effects of GPR40 agonists on dopaminergic neurons and their potential as therapeutic agents for PD. These results underscore the importance of targeting GPR40 in PD treatment, particularly in mitigating neuroinflammation and preserving neuronal integrity.

4.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822973

RESUMO

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Neoplasias , Transdução de Sinais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Animais , Transição Epitelial-Mesenquimal/genética , Progressão da Doença , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Apoptose/genética
5.
Cereb Cortex ; 33(7): 3866-3881, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35989311

RESUMO

Protein quality control (PQC) is essential for maintaining protein homeostasis and guarding the accuracy of neurodevelopment. Previously, we found that a conserved EBAX-type CRL regulates the protein quality of SAX-3/ROBO guidance receptors in Caenorhabditis elegans. Here, we report that ZSWIM8, the mammalian homolog of EBAX-1, is essential for developmental stability of mammalian brains. Conditional deletion of Zswim8 in the embryonic nervous system causes global cellular stress, partial perinatal lethality and defective migration of neural progenitor cells. CRISPR-mediated knockout of ZSWIM8 impairs spine formation and synaptogenesis in hippocampal neurons. Mechanistic studies reveal that ZSWIM8 controls protein quality of Disabled 1 (Dab1), a key signal molecule for brain development, thus protecting the signaling strength of Dab1. As a ubiquitin ligase enriched with intrinsically disordered regions (IDRs), ZSWIM8 specifically recognizes IDRs of Dab1 through a "disorder targets misorder" mechanism and eliminates misfolded Dab1 that cannot be properly phosphorylated. Adult survivors of ZSWIM8 CKO show permanent hippocampal abnormality and display severely impaired learning and memory behaviors. Altogether, our results demonstrate that ZSWIM8-mediated PQC is critical for the stability of mammalian brain development.


Assuntos
Proteína Reelina , Ubiquitina , Animais , Feminino , Gravidez , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Ligases , Mamíferos/metabolismo , Serina Endopeptidases/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo
6.
Biochem Genet ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970722

RESUMO

BACKGROUND: Increasing evidence had proved that some circular RNA (circRNA) exerted critical roles in tumors progression by functioning as "microRNAs (miRNAs) sponges" to regulate their targeted genes. METHODS: circFAM114A2 and miR-647 expression was measured in CRC tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR), and the prognostic value of circFAM114A2 evaluated by Kaplan-Meier survival curve. Subsequently, wounding healing and transwell assays were performed to assess cell proliferation, migration, and invasion. RNA pull-down and dual-luciferase reporter assays were used to confirm the interactions between circFAM114A2, miR-647, and DAB2IP. RESULTS: CircFAM114A2 was notably downregulated in CRC tissues and cells, and low circFAM114A2 expression indicated the poor prognosis of CRC patients. Next, overexpression of circFAM114A2 suppressed CRC cells proliferation, migration, and invasion in vitro and impede CRC tumor growth in vivo. Mechanically, circFAM114A2 competitively bound to miR-647 and upregulated its target gene DAB2IP expression in CRC cells. CONCLUSION: Our results indicated that circFAM114A2/miR-647/DAP2IP axis played an important role in CRC progression, suggesting that circFAM114A2 might be a novel therapeutic target in patients with CRC.

7.
Funct Integr Genomics ; 23(4): 326, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880458

RESUMO

Renal cell carcinoma (RCC) is the most lethal of the urologic malignancies. We previously discovered that DAB2IP, a novel Ras GTPase-activating protein, was frequently epigenetically silenced in RCC, and DAB2IP loss was correlated with the overall survival of RCC patients. In this study, we determined the biological functions of DAB2IP in clear cell RCC (ccRCC) and its potential mechanisms of action. Correlations between DAB2IP expression level and ccRCC tumor size and patient survival were analyzed, and the results showed that ccRCC patients with high DAB2IP mRNA level exhibited smaller tumor size and better survival than the patients with low DAB2IP. Compared to control, DAB2IP knockdown significantly increased cell proliferation, promoted cell cycle progression in G1/S phase, and decreased p27 expression. Mechanism studies demonstrated that loss of DAB2IP promoted p27 protein phosphorylation, cytosolic sequestration, and subsequently ubiquitination-mediated degradation in ccRCC cells. Further studies confirmed that the proline-rich domain in C terminal (CPR) of DAB2IP suppressed AKT phosphorylation and p27 phosphorylation on S10. Hence, DAB2IP is essential for p27 protein stabilization in ccRCC, which is at less partly mediated by PI3K/AKT signaling pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
8.
Biochem Biophys Res Commun ; 664: 117-127, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146559

RESUMO

Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Reelin, an extracellular matrix protein, and its effector protein Disabled1 (DAB1) have been linked to cellular events and retinal development. However, whether and how Reelin/DAB1 signaling causes DR remains to be investigated. In our study, significantly increased expression of Reelin, very low density lipoprotein receptor (VLDLR), ApoE receptor 2 (ApoER2) and phosphorylated DAB1 in retinas of streptozotocin (STZ)-induced DR mouse model was observed, along with enhanced expression of proinflammatory factors. Similar results are confirmed in high glucose (HG)-treated human retinal pigment epithelium cell line ARPE-19. Surprisingly, dysregulated tripartite motif-containing 40 (TRIM40), an E3 ubiquitin ligase, is found to be involved in DR progression by bioinformatic analysis. We observe a negative correlation between TRIM40 and p-DAB1 protein expression levels under HG conditions. Importantly, we find that TRIM40 over-expression markedly ameliorates HG-induced p-DAB1, PI3K, p-protein B kinase (AKT) and inflammatory response in HG-treated cells, but dose not affect Reelin expression. Of note, Co-IP and double immunofluorescence identify an interaction between TRIM40 and DAB1. Furthermore, we show that TRIM40 enhances K48-linked polyubiquitination of DAB1, thereby promoting DAB1 degradation. Finally, promoting TRIM40 expression by intravenous injection of the constructed adeno-associated virus (AAV-TRIM40) markedly ameliorates DR phenotypes in STZ-treated mice, as indicated by the decreased blood glucose and glycosylated hemoglobin (HbAlc) levels, and increased hemoglobin contents. Additionally, diabetes-related elevation of acellular capillaries was also meliorated in mice over-expressing TRIM40. The electroretinogram (ERG) deficits were strongly rescued in mice receiving AAV-TRIM40 injection. Moreover, AAV-TRIM40 attenuates the inflammation and p-DAB1 expression in retinal tissues of STZ-treated mice. Collectively, our findings disclose a mechanism through which TRIM40 limits DAB1 stability under physiological conditions and reveals TRIM40 as a potential therapeutic target for the intervention of Reelin/DAB1 signaling, contributing to DR treatment.


Assuntos
Retinopatia Diabética , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Inflamação , Proteínas do Tecido Nervoso/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais
9.
J Neurosci Res ; 101(8): 1345-1359, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031448

RESUMO

Classical dynamins (DNMs) are GTPase proteins engaged in endocytosis, a fundamental process for cargo internalization from the plasma membrane. In mammals, three DNM genes are present with different expression patterns. DNM1 is expressed at high levels in neurons, where it takes place in the recycling of synaptic vesicles; DNM2 is ubiquitously expressed, while DNM3 is found in the brain and in the testis. Due to the conservation of genes in comparison to mammals, we took advantage of a zebrafish model for functional characterization of dnm1a, ortholog of mammalian DNM1. Our data strongly demonstrated that dnm1a has a nervous tissue-specific expression pattern and plays a role in the formation of both axon and synapse. This is the first in vivo study that collects evidence about the effects of dnm1a loss of function in zebrafish, thus providing a new excellent model to be used in different scientific fields.


Assuntos
Tecido Nervoso , Peixe-Zebra , Animais , Masculino , Axônios , Neurônios/metabolismo , Sinapses/metabolismo , Mamíferos
10.
BMC Biol ; 20(1): 198, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071487

RESUMO

BACKGROUND: Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS: We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS: These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Corpos Pedunculados , Receptores Citoplasmáticos e Nucleares , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Corpos Pedunculados/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo
11.
Int J Neurosci ; : 1-15, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060511

RESUMO

INTRODUCTION: Granule cell dispersion (GCD) is pathognomonic of hippocampal sclerosis seen in the mesial temporal lobe epilepsy (MTLE). Current animal studies indicate deficiency of Reelin is associated with abnormal granule cell migration leading to GCD. The present study aimed to evaluate complete Reelin signalling pathway to assess whether Reelin deficiency is related to MTLE. MATERIALS AND METHODS: Hippocampal sclerosis was confirmed by H and E stain. To explore the amount and cellular location of the Reelin cascade molecules, the hippocampal tissues from MTLE surgery and controls (n = 15 each) were studied using Immuno-histochemistry (IHC). Additionally, confocal imaging was used to validate the IHC findings by co-localization of different proteins. Quantification of IHC images was performed using histo-score and confocal images by Image J software. RESULTS: Immune expression of active Reelin was significantly reduced in patients. Reelin receptors were deranged, apolipoprotein E receptor 2 was increased while very low-density lipoprotein receptor was reduced. Disabled-1, a downstream molecule was significantly reduced in MTLE. Its ultimate target, cofilin was thus disinhibited and expressed more in MTLE. Reelin cleaving protease, matrix metalloprotease-9 (MMP-9) and MMP-9 inhibitor, tissue inhibitor of matrix protease-1, showed reduced expression in extracellular matrix. Semi-quantification of immunohistochemistry was done using Histo (H) score. H score of Reelin in diseased patients was 15 against 125 for control patients. These results were validated by confocal fluorescence microscopy. CONCLUSIONS: Reelin signalling cascade was deranged in chronic MTLE. Pharmacological manipulation of Reelin cascade can be done at various levels and it may provide novel treatment options for MTLE.

12.
Toxicol Ind Health ; 39(2): 104-114, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36617730

RESUMO

Aluminum (Al) is a common neurotoxic element that can exacerbate intracellular ß-amyloid (Aß) deposition. Reelin is a highly conserved extracellular glycoprotein that is involved in intracellular Aß deposition. However, the action of Reelin on aluminum-induced Aß deposition is not fully understood. Here, we investigated the effects of the Reelin-Dab1 signaling pathway on Aß deposition in aluminum maltol (Al(mal)3) exposure in rat pheochromocytoma-derived cells (PC12). Our results showed that Al(mal)3 exposure decreased activity of PC12, increased expression of Aß42, and decreased expression of Aß40. Moreover, Al(mal)3 exposure in PC12 induced Reelin-Dab1 signaling pathway-associated proteins changed, decreased expression of Reelin and Dab1, and increased expression of pdab1. Moreover, the expression of Reelin, Dab1, and Aß40 was found to be elevated in PC12 exposed to Al(mal)3 and corticosterone compared to those exposed to Al(mal)3. Also, the expression of Reelin, Dab1, and Aß40 was found to be depressed in PC12 exposed to Al(mal)3 and streptozotocin compared with cells exposed to Al(mal)3 alone. These results suggested that Al(mal)3 inhibits the expression of the Reelin-Dab1 signaling pathway, promoting Aß deposition. Thus, our findings provided important evidence to better understand how the Reelin-Dab1 signaling pathway may be a potential mechanism of Aß deposition induced by aluminum.


Assuntos
Alumínio , Proteínas da Matriz Extracelular , Animais , Ratos , Alumínio/toxicidade , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais , Peptídeos beta-Amiloides/metabolismo
13.
J Biol Chem ; 296: 100232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33372034

RESUMO

Myosin VI ensembles on endocytic cargo facilitate directed transport through a dense cortical actin network. Myosin VI is recruited to clathrin-coated endosomes via the cargo adaptor Dab2. Canonically, it has been assumed that the interactions between a motor and its cargo adaptor are stable. However, it has been demonstrated that the force generated by multiple stably attached motors disrupts local cytoskeletal architecture, potentially compromising transport. In this study, we demonstrate that dynamic multimerization of myosin VI-Dab2 complexes facilitates cargo processivity without significant reorganization of cortical actin networks. Specifically, we find that Dab2 myosin interacting region (MIR) binds myosin VI with a moderate affinity (184 nM) and single-molecule kinetic measurements demonstrate a high rate of turnover (1 s-1) of the Dab2 MIR-myosin VI interaction. Single-molecule motility shows that saturating Dab2-MIR concentration (2 µM) promotes myosin VI homodimerization and processivity with run lengths comparable with constitutive myosin VI dimers. Cargo-mimetic DNA origami scaffolds patterned with Dab2 MIR-myosin VI complexes are weakly processive, displaying sparse motility on single actin filaments and "stop-and-go" motion on a cellular actin network. On a minimal actin cortex assembled on lipid bilayers, unregulated processive movement by either constitutive myosin V or VI dimers results in actin remodeling and foci formation. In contrast, Dab2 MIR-myosin VI interactions preserve the integrity of a minimal cortical actin network. Taken together, our study demonstrates the importance of dynamic motor-cargo association in enabling cargo transportation without disrupting cytoskeletal organization.


Assuntos
Citoesqueleto de Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Reguladoras de Apoptose/química , Complexos Multiproteicos/química , Cadeias Pesadas de Miosina/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/ultraestrutura , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/genética , Citoesqueleto/química , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Endocitose/genética , Endossomos/genética , Humanos , Cinética , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/ultraestrutura , Fosfatidilserinas/genética , Ligação Proteica/genética , Multimerização Proteica/genética , Imagem Individual de Molécula
14.
J Biol Chem ; 296: 100640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237899

RESUMO

Myosins are actin-based motor proteins known to perform a variety of different mechanical tasks in cells including transporting cargo, generating tension, and linking the cytoskeleton and membrane. Myosins that function as transporters often form complexes with adaptor proteins and vesicular membranes, making it unclear how they transport their cargo through the actin cytoskeletal network. Rai et al. now use single-molecule kinetics, FRET, and DNA origami scaffolds that mimic motor-adaptor complexes to reveal that the myosin VI-Dab2 complex, which is held together weakly and turns over rapidly, can facilitate processive transport without disruption of the cytoskeleton.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Citoesqueleto de Actina/metabolismo , Transporte Biológico , Proteínas do Citoesqueleto/metabolismo , Humanos , Ligação Proteica , Frações Subcelulares/metabolismo
15.
J Cell Sci ; 133(3)2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041893

RESUMO

Mutations that activate the RAS oncoproteins are common in cancer. However, aberrant upregulation of RAS activity often occurs in the absence of activating mutations in the RAS genes due to defects in RAS regulators. It is now clear that loss of function of Ras GTPase-activating proteins (RasGAPs) is common in tumors, and germline mutations in certain RasGAP genes are responsible for some clinical syndromes. Although regulation of RAS is central to their activity, RasGAPs exhibit great diversity in their binding partners and therefore affect signaling by multiple mechanisms that are independent of RAS. The RASSF family of tumor suppressors are essential to RAS-induced apoptosis and senescence, and constitute a barrier to RAS-mediated transformation. Suppression of RASSF protein expression can also promote the development of excessive RAS signaling by uncoupling RAS from growth inhibitory pathways. Here, we will examine how these effectors of RAS contribute to tumor suppression, through both RAS-dependent and RAS-independent mechanisms.


Assuntos
Neoplasias , Proteínas Ativadoras de ras GTPase , Apoptose , Proteínas Ativadoras de GTPase , Humanos , Neoplasias/genética , Transdução de Sinais
16.
Cancer Cell Int ; 22(1): 106, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248066

RESUMO

BACKGROUND: Disabled homolog 2 interacting protein (DAB2IP) plays a tumor-suppressive role in several types of human cancers. However, the molecular status and function of the DAB2IP gene in esophageal squamous cell carcinoma (ESCC) patients who received definitive chemoradiotherapy is rarely reported. METHODS: We examined the expression dynamics of DAB2IP by immunohistochemistry (IHC) in 140 ESCC patients treated with definitive chemoradiotherapy. A series of in vivo and in vitro experiments were performed to elucidate the effect of DAB2IP on the chemoradiotherapy (CRT) response and its underlying mechanisms in ESCC. RESULTS: Decreased expression of DAB2IP in ESCCs correlated positively with ESCC resistance to CRT and was a strong and independent predictor for short disease-specific survival (DSS) of ESCC patients. Furthermore, the therapeutic sensitivity of CRT was substantially increased by ectopic overexpression of DAB2IP in ESCC cells. In addition, knockdown of DAB2IP dramatically enhanced resistance to CRT in ESCC. Finally, we demonstrated that DAB2IP regulates ESCC cell radiosensitivity through enhancing ionizing radiation (IR)-induced activation of the ASK1-JNK signaling pathway. CONCLUSIONS: Our data highlight the molecular etiology and clinical significance of DAB2IP in ESCC, which may represent a new therapeutic strategy to improve therapy and survival for ESCC patients.

17.
BMC Cancer ; 22(1): 561, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590292

RESUMO

BACKGROUND: Studies have shown that DAB2IP inhibits cancer progression, while HSP90AA1 promotes cancer progression. However, the specific regulatory mechanism of DAB2IP and HSP90AA1 in colorectal cancer (CRC) is not clear. Our aim is to investigate the role and mechanism of DAB2IP and HSP90AA1 in the development of CRC. METHODS: We used bioinformation to analyze the interaction between DAB2IP and HSP90AA1 and predict their downstream pathways. Then, a series of in vitro and in vivo experiments were conducted to reveal the role of DAB2IP and HSP90AA1 in the invasion and metastasis of colorectal cancer, and flow cytometry was used to explore their effects on apoptosis. RESULTS: Loss of DAB2IP was associated with poor prognosis of CRC. In contrast, elevated expression of HSP90AA1 was associated with the malignant behavior of CRC. The present study demonstrated a negative correlation between DAB2IP and HSP90AA1. Using bioinformatic analysis, we scanned SRP9 which was highly expressed in CRC, as a co-related gene of DAB2IP and HSP90AA1. Mechanistically, DAB2IP promoted apoptosis through HSP90AA1/SRP9/ASK1/JNK signaling axis in CRC. CONCLUSIONS: These findings provide evidence that DAB2IP-based therapy may enhance the anticancer effect of HSP90AA1 inhibitors, and combined targeting of DAB2IP and HSP90AA1 may be a powerful treatment strategy to combat CRC.


Assuntos
Neoplasias Colorretais , Proteínas Ativadoras de ras GTPase , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Humanos , Proteínas Ativadoras de ras GTPase/genética
18.
Mov Disord ; 37(12): 2427-2439, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36148898

RESUMO

BACKGROUND: Coding and noncoding repeat expansions are an important cause of neurodegenerative diseases. OBJECTIVE: This study determined the clinical and genetic features of a large German family that has been followed for almost 2 decades with an autosomal dominantly inherited spinocerebellar ataxia (SCA) and independent co-occurrence of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). METHODS: We carried out clinical examinations and telephone interviews, reviewed medical records, and performed magnetic resonance imaging and positron emission tomography scans of all available family members. Comprehensive genetic investigations included linkage analysis, short-read genome sequencing, long-read sequencing, repeat-primed polymerase chain reaction, and Southern blotting. RESULTS: The family comprises 118 members across seven generations, 30 of whom were definitely and five possibly affected. In this family, two different pathogenic mutations were found, a heterozygous repeat expansion in C9ORF72 in four patients with ALS/FTD and a heterozygous repeat expansion in DAB1 in at least nine patients with SCA, leading to a diagnosis of DAB1-related ataxia (ATX-DAB1; SCA37). One patient was affected by ALS and SCA and carried both repeat expansions. The repeat in DAB1 had the same configuration but was larger than those previously described ([ATTTT]≈75 [ATTTC]≈40-100 [ATTTT]≈415 ). Clinical features in patients with SCA included spinocerebellar symptoms, sometimes accompanied by additional ophthalmoplegia, vertical nystagmus, tremor, sensory deficits, and dystonia. After several decades, some of these patients suffered from cognitive decline and one from additional nonprogressive lower motor neuron affection. CONCLUSION: We demonstrate genetic and clinical findings during an 18-year period in a unique family carrying two different pathogenic repeat expansions, providing novel insights into their genotypic and phenotypic spectrums. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Esclerose Lateral Amiotrófica , Ataxia Cerebelar , Demência Frontotemporal , Ataxias Espinocerebelares , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Ataxia Cerebelar/genética , Ataxias Espinocerebelares/genética , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
19.
Pharmacol Res ; 182: 106355, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35842183

RESUMO

Obesity-prone (OP) individuals have a significant predisposition to obesity and diabetes. Previously, we have found that OP individuals, despite being normal in weight and BMI, have already exhibited diabetes-related DNA methylation signatures. However, the underlying mechanisms remain obscure. Here we determined the effects of gut microbiota on DNA methylation and investigated the underlying mechanism from microbial-derived short-chain fatty acids (SCFAs). Diabetes-related DNA methylation loci were screened and validated in a new OP cohort. Moreover, the OP group was revealed to have distinct gut microbiota compositions, and fecal microbiota transplantation (FMT) demonstrated the role of gut microbiota in inducing diabetes-related DNA methylations and glucolipid disorders. UPLC-ESI-MS/MS analysis indicated a significantly lower level of total fecal SCFAs in the OP group. The gut microbiota from OP subjects yielded markedly decreased total SCFAs, while notably enriched propionate. Additionally, propionate was also identified by variable importance in projection (VIP) score as the most symbolic SCFAs of the OP group. Further cellular experiments verified that propionate could induce hypermethylation at locus cg26345888 and subsequently inhibit the expression of the target gene DAB1, which was crucially associated with clinical vitamin D deficiency and thus may affect the development and progression of diabetes. In conclusion, our study revealed that gut microbiota-derived propionate induces specific DNA methylation, thus predisposing OP individuals to diabetes. The findings partially illuminate the mechanisms of diabetes susceptibility in OP populations, implying gut microbiota and SCFAs may serve as promising targets both for clinical treatment and medication development of diabetes.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Metilação de DNA , Ácidos Graxos Voláteis/metabolismo , Humanos , Obesidade/genética , Obesidade/metabolismo , Propionatos/farmacologia , Espectrometria de Massas em Tandem
20.
EMBO Rep ; 21(4): e48791, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32133736

RESUMO

PI3K-Akt-FoxO-mTOR signaling is the central pathway controlling growth and metabolism in all cells. Ubiquitination of the protein kinase Akt prior to its phosphorylation is required for PI3K-Akt activity. Here, we found that the deubiquitinating (DUB) enzyme USP1 removes K63-linked polyubiquitin chains on Akt to restrict PI3K-Akt-FoxO signaling in mouse muscle during prolonged starvation. DUB screening platform identified USP1 as a direct DUB for Akt, and USP1 depletion in mouse muscle increased Akt ubiquitination, PI3K-Akt-FoxO signaling, and glucose uptake during fasting. Co-immunoprecipitation and mass spectrometry identified disabled homolog-2 (Dab2), the tuberous sclerosis complex TSC1/TSC2, and PHLPP1 as USP1 bound proteins. During starvation, Dab2 is essential for Akt recruitment to USP1-TSC1-PHLPP1 complex, and for PI3K-Akt-FoxO inhibition. Surprisingly, USP1 limits TSC1 levels to sustain mTOR-mediated basal protein synthesis rates and maintain its own protein levels. We propose that Dab2 recruits Akt to USP1-TSC1-PHLPP1 complex to efficiently terminate the transmission of growth signals when cellular energy level is low.


Assuntos
Proteína Forkhead Box O1 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Inanição , Proteases Específicas de Ubiquitina/metabolismo , Animais , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Camundongos , Músculos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA