Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301891

RESUMO

DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.


Assuntos
Queratinas , Lectinas Tipo C , Modelos Moleculares , Humanos , Células Dendríticas/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Receptor de Manose/química , Mutagênese , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Domínios e Motivos de Interação entre Proteínas , Cristalografia por Raios X
2.
Eur J Immunol ; 50(12): 1895-1911, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32673408

RESUMO

Conventional dendritic cells (cDCs) are specialized in antigen presentation. In the mouse spleen, cDCs are classified in cDC1s and cDC2s, and express DEC205 and DCIR2 endocytic receptors, respectively. Monoclonal antibodies (mAbs) αDEC205 (αDEC) and αDCIR2 have been fused to different antigens to deliver them to cDC1s or cDC2s. We immunized mice with αDEC and αDCIR2 fused to an antigen using Poly(I:C) as adjuvant. The initial immune response was analyzed from days 3 to 6 after the immunization. We also studied the influence of a booster dose. Our results showed that antigen targeting to cDC1s promoted a pro-inflammatory TH 1 cell response. Antigen targeting to cDC2s induced TFH cells, GCs, and plasma cell differentiation. After boost, antigen targeting to cDC1s improved the TH 1 cell response and induced TH 1-like TFH cells that led to an increase in specific antibody titers and IgG class switch. Additionally, a population of regulatory T cells was also observed. Antigen targeting to cDC2s did not improve the specific antibody response after boost. Our results add new information on the immune response induced after the administration of a booster dose with αDEC and αDCIR2 fusion mAbs. These results may be useful for vaccine design using recombinant mAbs.


Assuntos
Células Dendríticas/imunologia , Receptores de Superfície Celular/imunologia , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Formação de Anticorpos/imunologia , Apresentação de Antígeno/imunologia , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/imunologia
3.
Proc Natl Acad Sci U S A ; 113(47): 13438-13443, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821726

RESUMO

Clearance of dead cells is critical for maintaining homeostasis and prevents autoimmunity and inflammation. When cells undergo apoptosis and necrosis, specific markers are exposed and recognized by the receptors on phagocytes. DEC205 (CD205) is an endocytotic receptor on dendritic cells with antigen presentation function and has been widely used in immune therapies for vaccine generation. It has been shown that human DEC205 recognizes apoptotic and necrotic cells in a pH-dependent fashion. However, the natural ligand(s) of DEC205 remains unknown. Here we find that keratins are the cellular ligands of human DEC205. DEC205 binds to keratins specifically at acidic, but not basic, pH through its N-terminal domains. Keratins form intermediate filaments and are important for maintaining the strength of cells and tissues. Our results suggest that keratins also function as cell markers of apoptotic and necrotic cells and mediate a pH-dependent pathway for the immune recognition of dead cells.


Assuntos
Antígenos CD/metabolismo , Apoptose , Células Dendríticas/metabolismo , Queratinas/metabolismo , Lectinas Tipo C/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD/química , Glicosídeo Hidrolases/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Células Jurkat , Queratinas/química , Lectinas Tipo C/química , Ligantes , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/química , Necrose , Ligação Proteica , Receptores de Superfície Celular/química
4.
Proc Natl Acad Sci U S A ; 113(3): E319-27, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729864

RESUMO

Immunotherapy is gathering momentum as a primary therapy for cancer patients. However, monotherapies have limited efficacy in improving outcomes and benefit only a subset of patients. Combination therapies targeting multiple pathways can augment an immune response to improve survival further. Here, we demonstrate that dual aOX40 (anti-CD134)/aCTLA-4 (anti-cytotoxic T-lymphocyte-associated protein 4) immunotherapy generated a potent antigen-specific CD8 T-cell response, enhancing expansion, effector function, and memory T-cell persistence. Importantly, OX40 and CTLA-4 expression on CD8 T cells was critical for promoting their maximal expansion following combination therapy. Animals treated with combination therapy and vaccination using anti-DEC-205 (dendritic and epithelial cells, 205 kDa)-HER2 (human epidermal growth factor receptor 2) had significantly improved survival in a mammary carcinoma model. Vaccination with combination therapy uniquely restricted Th2-cytokine production by CD4 cells, relative to combination therapy alone, and enhanced IFNγ production by CD8 and CD4 cells. We observed an increase in MIP-1α (macrophage inflammatory protein-1α)/CCL3 [chemokine (C-C motif) ligand 3], MIP-1ß/CCL4, RANTES (regulated on activation, normal T-cell expressed and excreted)/CCL5, and GM-CSF production by CD8 and CD4 T cells following treatment. Furthermore, this therapy was associated with extensive tumor destruction and T-cell infiltration into the tumor. Notably, in a spontaneous model of prostate adenocarcinoma, vaccination with combination therapy reversed anergy and enhanced the expansion and function of CD8 T cells recognizing a tumor-associated antigen. Collectively, these data demonstrate that the addition of a vaccine with combined aOX40/aCTLA-4 immunotherapy augmented antitumor CD8 T-cell function while limiting Th2 polarization in CD4 cells and improved overall survival.


Assuntos
Antígeno CTLA-4/imunologia , Anergia Clonal/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Receptor ErbB-2/imunologia , Receptores OX40/agonistas , Vacinação , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Polaridade Celular , Proliferação de Células , Terapia Combinada , Feminino , Memória Imunológica , Imunoterapia , Masculino , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Receptores OX40/metabolismo , Análise de Sobrevida , Células Th2/citologia
5.
Proc Natl Acad Sci U S A ; 112(23): 7237-42, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26039988

RESUMO

Dendritic cells play important roles in regulating innate and adaptive immune responses. DEC205 (CD205) is one of the major endocytotic receptors on dendritic cells and has been widely used for vaccine generation against viruses and tumors. However, little is known about its structure and functional mechanism. Here we determine the structure of the human DEC205 ectodomain by cryoelectron microscopy. The structure shows that the 12 extracellular domains form a compact double ring-shaped conformation at acidic pH and become extended at basic pH. Biochemical data indicate that the pH-dependent conformational change of DEC205 is correlated with ligand binding and release. DEC205 only binds to apoptotic and necrotic cells at acidic pH, whereas live cells cannot be recognized by DEC205 at either acidic or basic conditions. These results suggest that DEC205 is an immune receptor that recognizes apoptotic and necrotic cells specifically through a pH-dependent mechanism.


Assuntos
Antígenos CD/fisiologia , Células Dendríticas/citologia , Concentração de Íons de Hidrogênio , Lectinas Tipo C/fisiologia , Receptores de Superfície Celular/fisiologia , Antígenos CD/química , Antígenos CD/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/ultraestrutura , Antígenos de Histocompatibilidade Menor , Mutagênese , Necrose , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/ultraestrutura
6.
Eur J Immunol ; 46(8): 1867-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27198610

RESUMO

Innate immunity, which is unable to discriminate self from allo-antigens, is thought to be important players in the induction of miscarriages. Here, we show that the administration of IL-12 to syngeneic-mated C57BL/6 mice on gestation day 7.5 (Gd 7.5), drives significant miscarriages in pregnant females. Furthermore, the administration on Gd 7.5 of α-galactosylceramide (α-GalCer), which is known to activate invariant natural killer T (iNKT) cells, induced miscarriages in both syngeneic-mated C57BL/6 mice and allogeneic-mated mice (C57BL/6 (♀) × BALB/c (♂)). Surprisingly, the percentages of both DEC-205(+) DCs and CD1d-restricted NK1.1(+) iNKT cells were higher in the myometrium of pregnant mice treated i.p. with α-GalCer than in the decidua. IL-12 secreted from α-GalCer-activated DEC-205(+) DCs stimulated the secretion of cytokines, including IL-2, IL-4, IFN-γ, TNF-α, perforin, and granzyme B, from the NK1.1(+) iNKT cells in the myometrium, leading to fetal loss in pregnant mice. Finally, the i.p. administration of IL-12 and/or α-GalCer in iNKT-deficient Jα18(-/-) (Jα18 KO) mice did not induce miscarriages. This study provides a new perspective on the importance of the myometrium, rather than the decidua, in regulating pregnancy and a mechanism of miscarriage mediated by activated DEC-205(+) DCs and NK1.1(+) iNKT cells in the myometrium of pregnant mice.


Assuntos
Aborto Espontâneo/induzido quimicamente , Galactosilceramidas/efeitos adversos , Interleucina-12/efeitos adversos , Miométrio/imunologia , Células T Matadoras Naturais/imunologia , Animais , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Galactosilceramidas/administração & dosagem , Injeções Intraperitoneais , Interleucina-12/administração & dosagem , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez
7.
Biochem Biophys Res Commun ; 460(2): 227-32, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25769955

RESUMO

In vivo approaches to inducing an effective immune response focus on targeted antigen (Ag) delivery to dendritic cells (DCs). In this study, we developed a new method of targeting plasmid DNA and/or the antigen (Ag)-antibody (Ab) complex to DCs via the DC receptor DEC-205, also known as cluster of differentiation CD205. We cloned and expressed a recombinant protein composed of mouse DEC-205-specific single-chain fragment variable region (mDEC-205-scFv), the streptococcal protein G (SPG) IgG-binding domain and cationic peptide (CP), which named mDEC205-scFv-SPG-CP (msSC). In vitro, the recombinant protein msSC can specifically bind to DCs through the section of mDEC-205-scFv, and bound the Ag-Ab complex via SPG as well as plasmid DNA through electrostatic bonding with CP in vitro. In addition, msSC functioned in a manner similar to anti-DEC-205 monoclonal Ab and bound to mouse bone marrow-derived DCs. It was demonstrated in vivo that msSC can target plasmid DNA to DCs, resulting in efficient uptake and expression. Moreover, msSC can form a complex with pGL3-CMV and transport it to draining lymph nodes when injected in vivo. These results indicate that msSC can be used as a carrier protein for vaccine delivery to DCs via formation of plasmid DNA-Ag-Ab ternary complexes.


Assuntos
Células Dendríticas/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Antígenos/imunologia , Linhagem Celular Transformada , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular
8.
Cent Eur J Immunol ; 39(4): 411-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26155156

RESUMO

DEC-205, a transmembrane receptor responsible for cross-presentation of apoptotic cell-derived antigens, is expressed by cortical thymic epithelial cells (TEC) and thymic dendritic cells (TDC) in humans and mice, but its function in T-cell development is still unclear. In this work we have studied for the first time the expression of DEC-205 in the rat thymus by HD83 monoclonal antibody (mAb) and immunohistochemistry, as well as the ability of this mAb to modulate thymocyte - TDC interactions in vitro. We showed the positivity of cortical TEC in situ, including thymic nurse cells (TNC) in suspension, and TDC, whereas subcapsular, perivascular and medullary TEC were negative. All examined DEC-205 positive and DEC-205 negative structures were MHC class II positive. HD83 mAb increased apoptosis of thymocytes in co-culture with TDC in vitro and the process was associated with increased binding of thymocytes to TDC in a rosette form. Since negative selection of thymocytes by clonal deletion (apoptosis) was mediated predominantly by TDC, our results suggest the possible indirect effect of the DEC-205 molecule in these mechanisms.

9.
J Control Release ; 373: 568-582, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067792

RESUMO

Cancer vaccine is regarded as an effective immunotherapy approach mediated by dendritic cells (DCs) which are crucial for antigen presentation and the initiation of adaptive immune responses. However, lack of DC-targeting properties significantly hampers the efficacy of cancer vaccines. Here, by using the phage display technique, peptides targeting the endocytic receptor DEC-205 primarily found on cDC1s were initially screened. An optimized hydrolysis-resistant peptide, hr-8, was identified and conjugated to PLGA-loaded antigen (Ag) and CpG adjuvant nanoparticles, resulting in a DC-targeting nanovaccine. The nanovaccine hr-8-PLGA@Ag/CpG facilitates dendritic cell maturation and improves antigen cross-presentation. The nanovaccine can enhance the antitumor immune response mediated by CD8+ T cells by encapsulating the nanovaccine with either exogenous OVA protein antigen or endogenous gp100/E7 antigenic peptide. As a result, strong antitumor effects are observed in both anti-PD-1 responsive B16-OVA and anti-PD-1 non-responsive B16 and TC1 immunocompetent tumor models. In summary, this study presents the initial documentation of a nanovaccine that targets dendritic cells via the novel DEC-205 binding peptide. This approach offers a new method for developing cancer vaccines that can potentially improve the effectiveness of cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Imunoterapia , Lectinas Tipo C , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor , Nanopartículas , Peptídeos , Receptores de Superfície Celular , Células Dendríticas/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Animais , Lectinas Tipo C/imunologia , Receptores de Superfície Celular/imunologia , Imunoterapia/métodos , Nanopartículas/química , Peptídeos/química , Peptídeos/administração & dosagem , Antígenos de Histocompatibilidade Menor/imunologia , Linhagem Celular Tumoral , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Feminino , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Camundongos , Antígenos CD/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linfócitos T CD8-Positivos/imunologia , Nanovacinas
10.
Int J Biol Macromol ; 224: 998-1011, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306904

RESUMO

Potentilla anserina L polysaccharide (PAP) is known to regulate immunity. Poly(lactic-co-glycolicacid) (PLGA) is a type of drug carrier with biocompatibility and biodegradable USFDA approved polymer, which possesses the advantages of high safety and good sustained-release effect. The DEC205 receptor, a type I membrane protein, is widely distributed on the surface of macrophages and dendritic cells (DCs) and plays a key role in antigen recognition and presentation. In this study, we prepared Potentilla anserina L polysaccharide PLGA nanoparticles targeting DEC205 receptor (DEC205-PAPP) and characterized the nanoparticles with regards to their effects on immune activation in vitro and in vivo. In vitro, DEC205-PAPP promoted the uptake activity of macrophages and increased the secretion of NO and cytokines (IFN-γ, IL-4, IL-6, and GM-CSF), up-regulated the expression of CD80+, CD86+. In vivo, DEC205-PAPP elevated the immune organ index, induced DC maturation, promoted T lymphocyte proliferation and differentiation, and increased the levels of antigen-specific IgG antibody and cytokines (IFN-γ, IL-4), which prolonged the residence time of the OVA antigen in the immune organs and the lymph nodes. In conclusion, DEC205-PAPP had a slow-release effect, induced humoral and cellular immune responses, and could potentially be used as an effective antigen-targeted delivery system.


Assuntos
Nanopartículas , Potentilla , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Interleucina-4/metabolismo , Antígenos , Imunidade Celular , Citocinas/metabolismo , Nanopartículas/química , Polissacarídeos/química , Células Dendríticas
11.
J Fungi (Basel) ; 9(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37233259

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus, which is the most frequent endemic systemic mycosis in many Latin American countries, where ~10 million people are believed to be infected. In Brazil, it is ranked as the tenth most common cause of death among chronic infectious diseases. Hence, vaccines are in development to combat this insidious pathogen. It is likely that effective vaccines will need to elicit strong T cell-mediated immune responses composed of IFNγ secreting CD4+ helper and CD8+ cytolytic T lymphocytes. To induce such responses, it would be valuable to harness the dendritic cell (DC) system of antigen-presenting cells. To assess the potential of targeting P10, which is a peptide derived from gp43 secreted by the fungus, directly to DCs, we cloned the P10 sequence in fusion with a monoclonal antibody to the DEC205 receptor, an endocytic receptor that is abundant on DCs in lymphoid tissues. We verified that a single injection of the αDEC/P10 antibody caused DCs to produce a large amount of IFNγ. Administration of the chimeric antibody to mice resulted in a significant increase in the levels of IFN-γ and IL-4 in lung tissue relative to control animals. In therapeutic assays, mice pretreated with αDEC/P10 had significantly lower fungal burdens compared to control infected mice, and the architecture of the pulmonary tissues of αDEC/P10 chimera-treated mice was largely normal. Altogether, the results obtained so far indicate that targeting P10 through a αDEC/P10 chimeric antibody in the presence of polyriboinosinic: polyribocytidylic acid is a promising strategy in vaccination and therapeutic protocols to combat PCM.

12.
Front Immunol ; 14: 1227633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727784

RESUMO

Restoration of immunological tolerance to self antigens has been a major drive in understanding the mechanisms of, and developing new treatments for, autoimmune and autoinflammatory disease. Sessile dendritic cells (DC) are considered the main instruments underpinning immunological tolerance particularly the CD205+ (DEC205+) cDC1 subset in contrast to DCIR2+ cDC2 which mediate immunogenicity. Targeting DC using autoantigen peptide-antibody fusion proteins has been a well explored methodology for inducing tolerance. Here we show that subcutaneous (s.c.) inoculation of hen-egg lysozyme (HEL)-DEC205 Ig fusion prevents the development of spontaneous uveoretinitis (experimental autoimmune uveoretinitis, EAU) in a transgenic mouse model generated by crossing interphotoreceptor retinol binding protein (IRBP)-HEL (sTg HEL) with HEL specific TCR (sTg TCR) mice. Prolonged suppression of EAU required injections of HEL-DEC205 Ig once weekly, reflecting the half life of s.c. DC. Interestingly, HEL-DCIR2 Ig also had a suppressive effect on development of EAU but less so than DEC205 Ig while it had minimal effect on preventing the retinal atrophy associated with EAU. In addition, HEL-DEC205 Ig was only effective when administered s.c. rather than systemically and had no effect on EAU induced by adoptive transfer of HEL-activated T cells. These data demonstrate the importance of systemic (lymph node) rather than local (eye) antigen presentation in the development of EAU as well as suggest a potential therapeutic approach to controlling sight-threatening immune-mediated uveitis provided relevant antigen(s) can be identified.


Assuntos
Anticorpos , Autoantígenos , Animais , Camundongos , Transferência Adotiva , Células Dendríticas , Receptores de Antígenos de Linfócitos T
13.
Int J Biol Macromol ; 227: 576-589, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549613

RESUMO

Nanoparticles targeting the DEC-205 receptor were found to induce antigen-specific protective immune response. When the delivery system carries both antigens and immunomodulators, it can maximize the expected therapeutic effect of the drug and induce effective humoral and cellular immune responses to antigens.In this study, we encapsulated the Eucommia ulmoides Oliv. polysaccharides (EUPS) into PLGA nanoparticles (NPs) and conjugated it with anti-CD205 monoclonal Ab (MAb) to produce a DEC-205 receptor targeted PLGA nanoparticles (anti-DEC-205-EUPS-PLGA NPs). The physicochemical characteristics and adjuvant activity of the above NPs were evaluated in vitro and in vivo. In the in vitro setting, 200 µg·mL-1 anti-DEC-205-EUPS-PLGA could improve the proliferation of DCs and promote their antigen up-take activity. In the in vivo setting, anti-DEC-205-EUPS-PLGA NPs remarkably controlled the release of drug and antigen to induce sustained immune responses and up-regulated the levels of FMDV-specific IgG antibodies, promoted the cytotoxic activity of CTLs and NK cells, and improved the proliferation of splenocytes. Moreover, the anti-DEC-205-EUPS-PLGA NPs facilitated the maturation of DCs. The above data indicated that anti-DEC-205-EUPS-PLGA NPs employed as an targeted adjuvant induced the humoral and cellular immune activity by promoting the maturation of DCs. These findings may provide a new insight onto the development of vaccine adjuvants.


Assuntos
Eucommiaceae , Febre Aftosa , Nanopartículas , Vacinas , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Glicóis , Células Dendríticas , Antígenos , Imunidade Celular , Adjuvantes Imunológicos/farmacologia , Polissacarídeos/farmacologia
14.
Vaccines (Basel) ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35632440

RESUMO

Dendritic cell (DC) targeting by DEC205+ cells effectively promotes the internalization of antigens that may trigger a specific immune response. In this study, we evaluated the ability of a recombinant antibody, anti-DEC205 (rAb ZH9F7), to trigger cellular endocytosis in subpopulations of DCs and targeted cells after intradermal injection and subsequent migration toward lymph nodes. Furthermore, the cellular immune response was evaluated in pigs after intradermal application of the antigenized rAb ZH9F7 combined with porcine circovirus type 2 cap antigen (rAb ZH9F7-Cap). We demonstrated that rAb ZH9F7 recognized conventional type 1 and 2 DCs from the blood and skin and monocytes. It promoted receptor-mediated endocytosis and migration of cDCs and moDCs toward regional lymph nodes. Intradermal application of rAb ZH9F7-Cap induced a higher frequency of IFN-γ-secreting CD4+CD8+ T lymphocytes and antibodies against Cap protein than that in the control group. In conclusion, the rAb ZH9F7-Cap system promoted the target of skin cDC1 and cDC2, provoking migration to the regional lymph nodes and inducing a Th1 response, as evidenced by the proliferation of double-positive CD4+CD8+ T cells, which correlates with an enhanced ability to target the cDC1 subset both in vitro and in vivo.

15.
Cell Rep ; 39(5): 110763, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508132

RESUMO

T follicular helper (TFH) cells promote expansion of germinal center (GC) B cells and plasma cell differentiation. Whether cognate peptide-MHCII (pMHCII) density instructs selection and cell fate decisions in a quantitative manner remains unclear. Using αDEC205-OVA to differentially deliver OVA peptides to GC B cells on the basis of DEC205 allelic copy number, we find DEC205+/+ B cells take up 2-fold more antigen than DEC205+/- cells, leading to proportional TFH cell help and B cell expansion. To validate these results, we establish a caged OVA peptide, which is readily detected by OVA-specific TFH cells after photo-uncaging. In situ uncaging of peptides leads to multiple serial B-T contacts and cell activation. Differential CD40 signaling, is both necessary and sufficient to mediate 2-fold differences in B cell expansion. While plasmablast numbers are increased, pMHCII density does not directly control the output or quality of plasma cells. Thus, we distinguish the roles TFH cells play in expansion versus differentiation.


Assuntos
Ligante de CD40 , Plasmócitos , Linfócitos B , Diferenciação Celular , Centro Germinativo , Linfócitos T Auxiliares-Indutores
16.
Front Immunol ; 13: 791799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401532

RESUMO

Yersinia pestis, the cause of plague, is a newly evolved Gram-negative bacterium. Through the acquisition of the plasminogen activator (Pla), Y. pestis gained the means to rapidly disseminate throughout its mammalian hosts. It was suggested that Y. pestis utilizes Pla to interact with the DEC-205 (CD205) receptor on antigen-presenting cells (APCs) to initiate host dissemination and infection. However, the evolutionary origin of Pla has not been fully elucidated. The PgtE enzyme of Salmonella enterica, involved in host dissemination, shows sequence similarity with the Y. pestis Pla. In this study, we demonstrated that both Escherichia coli K-12 and Y. pestis bacteria expressing the PgtE-protein were able to interact with primary alveolar macrophages and DEC-205-transfected CHO cells. The interaction between PgtE-expressing bacteria and DEC-205-expressing transfectants could be inhibited by the application of an anti-DEC-205 antibody. Moreover, PgtE-expressing Y. pestis partially re-gained the ability to promote host dissemination and infection. In conclusion, the DEC-205-PgtE interaction plays a role in promoting the dissemination and infection of Y. pestis, suggesting that Pla and the PgtE of S. enterica might share a common evolutionary origin.


Assuntos
Escherichia coli K12 , Salmonella enterica , Yersinia pestis , Animais , Proteínas de Bactérias/genética , Cricetinae , Cricetulus , Ativadores de Plasminogênio
17.
Cell Rep Med ; 3(5): 100621, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584631

RESUMO

Modulation of immune function at the tumor site could improve patient outcomes. Here, we analyze patient samples of metastatic melanoma, a tumor responsive to T cell-based therapies, and find that tumor-infiltrating T cells are primarily juxtaposed to CD14+ monocytes/macrophages rather than melanoma cells. Using immunofluorescence-guided laser capture microdissection, we analyze transcriptomes of CD3+ T cells, CD14 + monocytes/macrophages, and melanoma cells in non-dissociated tissue. Stromal CD14+ cells display a specific transcriptional signature distinct from CD14+ cells within tumor nests. This signature contains LY75, a gene linked with antigen capture and regulation of tolerance and immunity in dendritic cells (DCs). When applied to TCGA cohorts, this gene set can distinguish patients with significantly prolonged survival in metastatic cutaneous melanoma and other cancers. Thus, the stromal CD14+ cell signature represents a candidate biomarker and suggests that reprogramming of stromal macrophages to acquire DC function may offer a therapeutic opportunity for metastatic cancers.


Assuntos
Melanoma , Segunda Neoplasia Primária , Neoplasias Cutâneas , Humanos , Macrófagos , Melanoma/genética , Fenótipo , Neoplasias Cutâneas/genética , Linfócitos T
18.
Int J Biol Sci ; 17(11): 2944-2956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345218

RESUMO

The generation of successful anticancer vaccines relies on the ability to induce efficient and long-lasting immune responses to tumor antigens. In this scenario, dendritic cells (DCs) are essential cellular components in the generation of antitumor immune responses. Thus, delivery of tumor antigens to specific DC populations represents a promising approach to enhance the efficiency of antitumor immunotherapies. In the present study, we employed antibody-antigen conjugates targeting a specific DC C-type lectin receptor. For that purpose, we genetically fused the anti-DEC205 monoclonal antibody to the type 16 human papillomavirus (HPV-16) E7 oncoprotein to create a therapeutic vaccine to treat HPV-associated tumors in syngeneic mouse tumor models. The therapeutic efficacy of the αDEC205-E7 mAb was investigated in three distinct anatomical tumor models (subcutaneous, lingual and intravaginal). The immunization regimen comprised two doses of the αDEC205-E7 mAb coadministered with a DC maturation stimulus (Polyinosinic:polycytidylic acid, poly (I:C)) as an adjuvant. The combined immunotherapy produced robust antitumor effects on both the subcutaneous and orthotopic tumor models, stimulating rapid tumor regression and long-term survival. These outcomes were related to the activation of tumor antigen-specific CD8+ T cells in both systemic compartments and lymphoid tissues. The αDEC205-E7 antibody plus poly (I:C) administration induced long-lasting immunity and controlled tumor relapses. Our results highlight that the delivery of HPV tumor antigens to DCs, particularly via the DEC205 surface receptor, is a promising therapeutic approach, providing new opportunities for the development of alternative immunotherapies for patients with HPV-associated tumors at different anatomical sites.


Assuntos
Antígenos CD/imunologia , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Neoplasias Experimentais/prevenção & controle , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Receptores de Superfície Celular/imunologia , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Feminino , Humanos , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/virologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Poli I-C/administração & dosagem
19.
Mol Biotechnol ; 63(10): 973-982, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34146324

RESUMO

Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.


Assuntos
Antígenos Virais/genética , Proteínas do Capsídeo/genética , Nicotiana/crescimento & desenvolvimento , Rotavirus/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Antígenos Virais/química , Antígenos Virais/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Moleculares , Peso Molecular , Engenharia de Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Rotavirus/genética , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
20.
J Immunol Methods ; 489: 112911, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33186587

RESUMO

Recombinant hybrid antibodies are commonly used in antigen-targeting assays to reduce the immunogenic potential associated with using classic mouse antibodies in other species. The DEC205 receptor has become an attractive target due to its effectiveness in activating the immune response and is considered a promising vaccination target. The aim of this study was to produce a fully chimeric mouse x pig anti-porcine DEC205 recombinant antibody (rAb). Based on a mouse anti-porcine DEC205 monoclonal antibody (mAb), we designed and expressed a chimeric mouse x pig rAb using the Expi293f system. The resulting rAb maintained the recognition capacity of the native mouse mAb toward the porcine DEC205 receptor, as evidenced by western blot analysis. By using flow cytometry, we evaluated the ability of the rAb to recognize DEC205+ dendritic cells. In conclusion, the chimeric mouse x pig anti-DEC205 rAb can be used in antigen-targeting assays as a vaccination strategy in pigs.


Assuntos
Anticorpos Monoclonais/biossíntese , Antígenos CD/imunologia , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Superfície Celular/imunologia , Animais , Anticorpos Monoclonais/imunologia , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA