Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 75(2): 340-356.e10, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31253575

RESUMO

The microRNAs encoded by the miR-17∼92 polycistron are commonly overexpressed in cancer and orchestrate a wide range of oncogenic functions. Here, we identify a mechanism for miR-17∼92 oncogenic function through the disruption of endogenous microRNA (miRNA) processing. We show that, upon oncogenic overexpression of the miR-17∼92 primary transcript (pri-miR-17∼92), the microprocessor complex remains associated with partially processed intermediates that aberrantly accumulate. These intermediates reflect a series of hierarchical and conserved steps in the early processing of the pri-miR-17∼92 transcript. Encumbrance of the microprocessor by miR-17∼92 intermediates leads to the broad but selective downregulation of co-expressed polycistronic miRNAs, including miRNAs derived from tumor-suppressive miR-34b/c and from the Dlk1-Dio3 polycistrons. We propose that the identified steps of polycistronic miR-17∼92 biogenesis contribute to the oncogenic re-wiring of gene regulation networks. Our results reveal previously unappreciated functional paradigms for polycistronic miRNAs in cancer.


Assuntos
Carcinogênese/genética , MicroRNAs/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação ao Cálcio/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Iodeto Peroxidase/genética , Proteínas de Membrana/genética , MicroRNAs/biossíntese , Conformação de Ácido Nucleico
2.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125754

RESUMO

The Dlk1-Dio3 domain is important for normal embryonic growth and development. The heart is the earliest developing and functioning organ of the embryo. In this study, we constructed a transcriptional termination model by inserting termination sequences and clarified that the lack of long non-coding RNA (lncRNA) expression in the Dlk1-Dio3 domain caused the death of maternal insertion mutant (MKI) and homozygous mutant (HOMO) mice starting from E13.5. Parental insertion mutants (PKI) can be born and grow normally. Macroscopically, dying MKI and HOMO embryos showed phenomena such as embryonic edema and reduced heart rate. Hematoxylin and eosin (H.E.) staining showed thinning of the myocardium in MKI and HOMO embryos. In situ hybridization (IHC) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) showed downregulation of lncGtl2, Rian, and Mirg expression in MKI and HOMO hearts. The results of single-cell RNA sequencing (scRNA-Seq) analysis indicated that the lack of lncRNA expression in the Dlk1-Dio3 domain led to reduced proliferation of epicardial cells and may be an important cause of cardiac dysplasia. In conclusion, this study demonstrates that Dlk1-Dio3 domain lncRNAs play an integral role in ventricular development.


Assuntos
Proteínas de Ligação ao Cálcio , Regulação da Expressão Gênica no Desenvolvimento , Coração , Iodeto Peroxidase , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , Camundongos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Coração/embriologia , Coração/crescimento & desenvolvimento , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Feminino , Desenvolvimento Embrionário/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proliferação de Células/genética , Embrião de Mamíferos/metabolismo , Proteínas Nucleares
3.
Cancer Cell Int ; 23(1): 215, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752544

RESUMO

BACKGROUND: The aim of this study was to determine the underlying potential mechanisms and function of DIO3OS, a lincRNA in osteosarcoma and clarify that DIO3OS can be used as a potential diagnostic biomarker and immunotherapeutic target. METHODS: The expression matrix data and clinical information were obtained from XENA platform of UCSC and GEO database as the test cohorts. The external validation cohort was collected from our hospital. Bioinformatics analysis was used to annotate the biological function of DIO3OS. Immune infiltration and immune checkpoint analysis were applied to evaluate whether DIO3OS can be used as an immunotherapeutic target. ROC curves and AUC were established to assess the diagnostic value of DIO3OS for differentiating patients from other subtypes sarcoma. The expression analysis was detected by qRT-PCR, western blot, and immunohistochemical. Wound healing assay and Transwell assay were applied to determine the migration and invasion function of DIO3OS in osteosarcoma cell lines. The tail vein injection osteosarcoma cells metastases model was used in this research. RESULTS: High expression of DIO3OS was identified as a risk lincRNA for predicting overall survival of osteosarcoma in test cohort. The outcomes of experiments in vitro and in vivo showed that low expression of DIO3OS limited osteosarcoma tumor metastasis with inhibiting TGF-ß signaling pathway. Immune checkpoint genes (CD200 and TNFRSF25) expressions were inhibited in the low DIO3OS expression group. The DIO3OS expression can be applied to reliably distinguish osteosarcoma from lipomatous neoplasms, myomatous neoplasms, nerve sheath tumors, and synovial-like neoplasms. This result was further validated in the validation cohort. CONCLUSIONS: In conclusion, our outcomes indicated that DIO3OS is a potential diagnostic and prognostic biomarker of osteosarcoma, emphasizing its potential as a target of immunotherapy to improve the treatment of osteosarcoma through TGF-ß signaling pathway. TRIAL REGISTRATION NUMBER: The present retrospectively study was approved by the Ethics Committee of The Second Affiliated Hospital of Nanchang University [Review (2020) No. (115)].

4.
Proc Natl Acad Sci U S A ; 117(3): 1524-1532, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31919282

RESUMO

Loss of the tumor suppressor tuberous sclerosis complex 1 (Tsc1) in the liver promotes gluconeogenesis and glucose intolerance. We asked whether this could be attributed to aberrant expression of small RNAs. We performed small-RNA sequencing on liver of Tsc1-knockout mice, and found that miRNAs of the delta-like homolog 1 (Dlk1)-deiodinase iodothyronine type III (Dio3) locus are up-regulated in an mTORC1-dependent manner. Sustained mTORC1 signaling during development prevented CpG methylation and silencing of the Dlk1-Dio3 locus, thereby increasing miRNA transcription. Deletion of miRNAs encoded by the Dlk1-Dio3 locus reduced gluconeogenesis, glucose intolerance, and fasting blood glucose levels. Thus, miRNAs contribute to the metabolic effects observed upon loss of TSC1 and hyperactivation of mTORC1 in the liver. Furthermore, we show that miRNA is a downstream effector of hyperactive mTORC1 signaling.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Gluconeogênese/fisiologia , Iodeto Peroxidase/metabolismo , MicroRNAs/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Regulação para Cima , Animais , Proteínas de Ligação ao Cálcio/genética , Loci Gênicos , Impressão Genômica , Gluconeogênese/genética , Iodeto Peroxidase/genética , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética , Análise de Sequência , Transdução de Sinais , Transcriptoma , Proteína 1 do Complexo Esclerose Tuberosa/genética
5.
Biochem Genet ; 61(5): 1791-1806, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36802306

RESUMO

Hepatocellular carcinoma has become one of the most shared cancers in the whole world because of its high morbidity, poor survival rate, and low recovery rate. LncRNA DIO3 opposite strand upstream RNA (DIO3OS) has been reported to be obviously important in several human cancers, while its biological function in hepatocellular carcinoma (HCC) remains unclear. Here, DIO3OS gene expression data and clinical information of HCC patients were extracted from the Cancer Genome Atlas (TCGA) database and the university of California Santa Cruz (UCSC) Xena database. In our study, the Wilcoxon rank sum test was used to compare DIO3OS expression between healthy individuals and HCC patients. It was found that patients with HCC had significantly lower DIO3OS expression than healthy individuals. Furthermore, Kaplan-Meier curves and Cox regression analysis showed that high DIO3OS expression tended to predict better prognosis and higher survival rate in HCC patients. In addition, the gene set enrichment analysis (GSEA) assay was used to annotate the biological function of DIO3OS. It was found that DIO3OS was significantly correlated with immune invasion in HCC. This was also aided by the subsequent ESTIMATE assay. Our study provides a novel biomarker and therapeutic strategy for patients with hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Biomarcadores Tumorais/genética
6.
BMC Gastroenterol ; 22(1): 505, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482325

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most commonly diagnosed cancer and third leading cause of cancer-related death worldwide in 2020. Exosomes derived from cancer-associated fibroblasts (CAFs-exo) can promote tumor progression in various human cancers. However, the underlying regulatory mechanism controlling how CAFs-exo can promote HCC progression remains poorly understood. METHODS: CAFs and para-cancer fibroblasts (PAFs) were isolated from HCC tissues and corresponding para-cancer tissues, then were cultured in vitro. CAFs and PAFs were characterized by immunofluorescence and western blot (WB) assays. Exosomes were isolated by ultracentrifugation, and characterized by transmission electron microscopy, nanoflow cytometry, and WB assay. The internalization of exosomes by HCC cells was observed under a fluorescence microscope. Cell Counting Kit-8 (CCK-8) assay was used to evaluate cell proliferation. Wound healing and transwell assays were used for migration and invasion experiments. RT-PCR assay was used to examine differentially expressed microRNAs (miRNAs) in exosomes and HCC cells. The TargetScan database was used to predict miRNA target genes. Hedgehog interacting protein (HHIP) expression analysis, prognostic analysis, and enrichment analysis of HHIP-related co-expressed genes were performed using the TIMER, UALCAN, Kaplan-Meier plotter, and LinkedOmics databases. RESULTS: CAFs-exo were internalized by HCC cells. CAFs-exo contributed to the aggressive phenotype of HCC cells, while inhibiting exosome secretion reversed these effects. Mechanistically, miRNAs in the DLK1-DIO3 imprinted region (miR-329-3p, miR-380-3p, miR-410-5p, miR-431-5p) were increased in HCC cells co-cultured with CAFs-exo compared with PAFs-exo. Expression of HHIP, a possible miR-431-5p target gene, was significantly downregulated in HCC cells. Low HHIP expression level in tumor tissues could predict poor prognosis in HCC patients. HHIP-related co-expressed genes were mainly associated with cell adhesion molecules. CONCLUSIONS: CAFs-exo can promote HCC progression by delivering miRNAs in the DLK1-DIO3 imprinted region to HCC cells, subsequently inhibiting HHIP expression. HHIP is a potential prognostic biomarker in HCC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Glicoproteínas de Membrana , MicroRNAs , Humanos , Proteínas de Ligação ao Cálcio , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Glicoproteínas de Membrana/genética
7.
BMC Pregnancy Childbirth ; 22(1): 741, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184597

RESUMO

BACKGROUND: Recent studies suggest that the incidence of small for gestational age (SGA) birth related to maternal depression, but the mechanism is unclear. The aim of this study was to explore the changes of promoter methylation in the placenta which may be involved in the relationship between prenatal depression and SGA. METHODS: Three hundred forty-five pregnant women were enrolled in this prospective cohort study. Perinatal emotion and sleep quality in the second and third trimesters were assessed using self-rating depression scale, self-rating anxiety scale, and Pittsburgh sleep quality index. According to the exposure (depressed emotion of mother) and outcome (SGA), the placentas were divided into four groups. Methylation of the promoter regions of the placental CRH, HSD11ß2, SLA16A10, DIO3, and MTNR1B genes was determined using next generation sequencing based on bisulfite sequencing PCR. RESULTS: There were 97 (28.1%) and 95 (27.5%) pregnant women who had depression in the second trimester and third trimester, respectively. Thirty-five pregnant women had an SGA birth. The incidence of SGA births in this prospective cohort was 10.1%. The risk factors of SGA birth were low BMI of pregnancy women (RR = 0.71, 95%CI = 0.54 ~ 0.92), hypertensive disorder complicating pregnancy (HDCP, RR = 4.7, 95%CI = 1.18 ~ 18.72), and maternal depression in the second trimester (RR = 3.71, 95%CI = 1.31 ~ 12.16). We found that the CRH and HSD11ß2 methylation levels were higher in the depression group than those in the non-depression group. Methylation levels of DIO3 were higher in SGA group than that in the non-SGA group. Higher methylation levels of CRH correlated with higher methylation levels of DIO3 in the placenta. CONCLUSIONS: Maternal depression in the second trimester may lead to the changes of methylation levels in the promoter region of CRH and HSD11ß2 gene, while the changes of methylation of DIO3 in subsequent could related to SGA. This study suggests that maternal depressed emotion during pregnancy may result in SGA due to the epigenetic changes of placenta.


Assuntos
Recém-Nascido Pequeno para a Idade Gestacional , Placenta , Feminino , Retardo do Crescimento Fetal , Idade Gestacional , Humanos , Recém-Nascido , Metilação , Gravidez , Regiões Promotoras Genéticas , Estudos Prospectivos , Vitaminas
8.
Int J Mol Sci ; 23(9)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563567

RESUMO

Beige adipocytes with thermogenic function are activated during cold exposure in white adipose tissue through the process of browning. These cells, similar to brown adipocytes, dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). Recently, we have shown that tissue transglutaminase (TG2) knock-out mice have decreased cold tolerance in parallel with lower utilization of their epididymal adipose tissue and reduced browning. To learn more about the thermogenic function of this fat depot, we isolated preadipocytes from the epididymal adipose tissue of wild-type and TG2 knock-out mice and differentiated them in the beige direction. Although differentiation of TG2 knock-out preadipocytes is phenotypically similar to the wild-type cells, the mitochondria of the knock-out beige cells have multiple impairments including an altered electron transport system generating lower electrochemical potential difference, reduced oxygen consumption, lower UCP1 protein content, and a higher portion of fragmented mitochondria. Most of these differences are present in preadipocytes as well, and the differentiation process cannot overcome the functional disadvantages completely. TG2 knock-out beige adipocytes produce more iodothyronine deiodinase 3 (DIO3) which may inactivate thyroid hormones required for the establishment of optimal mitochondrial function. The TG2 knock-out preadipocytes and beige cells are both hypometabolic as compared with the wild-type controls which may also be explained by the lower expression of solute carrier proteins SLC25A45, SLC25A47, and SLC25A42 which transport acylcarnitine, Co-A, and amino acids into the mitochondrial matrix. As a consequence, the mitochondria in TG2 knock-out beige adipocytes probably cannot reach the energy-producing threshold required for normal thermogenic functions, which may contribute to the decreased cold tolerance of TG2 knock-out mice.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
Int J Mol Sci ; 23(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35742991

RESUMO

The opening of the ATP-sensitive mitochondrial potassium channel (mitok-ATP) is a common goal of cardioprotective strategies in the setting of acute and chronic myocardial disease. The biologically active thyroid hormone (TH), 3-5-3-triiodothyronine (T3), has been indicated as a potential activator of mitoK-ATP but the underlying mechanisms are still elusive. Here we describe a novel role of T3 in the transcriptional regulation of mitoK and mitoSur, the recently identified molecular constituents of the channel. To mimic human ischemic heart damage, we used a rat model of a low T3 state as the outcome of a myocardial ischemia/reperfusion event, and neonatal rat cardiomyocytes (NRCM) challenged with hypoxia or H2O2. Either in the in vivo or in vitro models, T3 administration to recover the physiological concentrations was able to restore the expression level of both the channel subunits, which were found to be downregulated under the stress conditions. Furthermore, the T3-mediated transcriptional activation of mitoK-ATP in the myocardium and NRCM was associated with the repression of the TH-inactivating enzyme, deiodinase 3 (Dio3), and an up-regulation of the T3-responsive miR-133a-3p. Mechanistically, the loss and gain of function experiments and reporter gene assays performed in NRCM, have revealed a new regulatory axis whereby the silencing of Dio3 under the control of miR-133a-3p drives the T3-dependent modulation of cardiac mitoK and mitoSur transcription.


Assuntos
MicroRNAs , Mitocôndrias Cardíacas , Trifosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias Cardíacas/metabolismo , Canais de Potássio/metabolismo , Ratos , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia
10.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955961

RESUMO

The Dlk1-Dio3 imprinted domain on mouse chromosome 12 contains three well-characterized paternally methylated differentially methylated regions (DMRs): IG-DMR, Gtl2-DMR, and Dlk1-DMR. These DMRs control the expression of many genes involved in embryonic development, inherited diseases, and human cancer in this domain. The first maternal methylation DMR discovered in this domain was the Meg8-DMR, the targets and biological function of which are still unknown. Here, using an enhancer-blocking assay, we first dissected the functional parts of the Meg8-DMR and showed that its insulator activity is dependent on the CCCTC-binding factor (CTCF) in MLTC-1. Results from RNA-seq showed that the deletion of the Meg8-DMR and its compartment CTCF binding sites, but not GGCG repeats, lead to the downregulation of numerous genes on chromosome 12, in particular the drastically reduced expression of Dlk1 and Rtl1 in the Dlk1-Dio3 domain, while differentially expressed genes are enriched in the MAPK pathway. In vitro assays revealed that the deletion of the Meg8-DMR and CTCF binding sites enhances cell migration and invasion by decreasing Dlk1 and activating the Notch1-Rhoc-MAPK/ERK pathway. These findings enhance research into gene regulation in the Dlk1-Dio3 domain by indicating that the Meg8-DMR functions as a long-range regulatory element which is dependent on CTCF binding sites and affects multiple genes in this domain.


Assuntos
Impressão Genômica , RNA Longo não Codificante , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Metilação de DNA , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Gravidez , RNA Longo não Codificante/genética
11.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572862

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease of the central nervous system that arises from interplay between non-genetic and genetic risk factors. The epigenetics functions as a link between these factors, affecting gene expression in response to external influence, and therefore should be extensively studied to improve the knowledge of MS molecular mechanisms. Among others, the epigenetic mechanisms underlie the establishment of parent-of-origin effects that appear as phenotypic differences depending on whether the allele was inherited from the mother or father. The most well described manifestation of parent-of-origin effects is genomic imprinting that causes monoallelic gene expression. It becomes more obvious that disturbances in imprinted genes at the least affecting their expression do occur in MS and may be involved in its pathogenesis. In this review we will focus on the potential role of imprinted genes in MS pathogenesis.


Assuntos
Loci Gênicos , Impressão Genômica , Esclerose Múltipla/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Epigênese Genética , Humanos , Iodeto Peroxidase/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Esclerose Múltipla/patologia
12.
Dev Biol ; 455(1): 10-18, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301299

RESUMO

The imprinted delta like 1 homolog (DLK1) - thyroxine deiodinase type III (DIO3) locus regulates development and growth. Its imprinting regulation involves two differentially methylated regions (DMRs), intergenic-DMR (IG-DMR) and maternally expressed gene 3-DMR (Meg3-DMR). In mice, a maternal deletion of the IG-DMR leads to LOI in the locus, proving that the IG-DMR is a cis-acting imprinting control region of the locus. However, the Meg3-DMR overlaps with the promoter, exon 1 and intron 1 of the Meg3 gene. Because deletion of the Meg3-DMR inactivates the Meg3 gene, their roles in imprinting regulation of Meg3-DMR mice is unknown. Therefore, we generated two mouse models: Meg3Δ(1-4) and Meg3Δ(2-4), respectively targeting exons 1-4 and exons 2-4 of the Meg3 gene. A maternal deletion of Meg3Δ(1-4) caused embryonic death and LOI in both embryos and placentas, but did not affect methylation status of the IG-DMR. In contrast, mice carrying a maternal deletion of Meg3Δ(2-4) were born normally and did not have LOI. These data indicate that it is the Meg3-DMR, not the Meg3 gene, which regulates imprinting of the Dlk1-Dio3 locus.


Assuntos
Metilação de DNA , Loci Gênicos , Impressão Genômica , RNA Longo não Codificante/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Desenvolvimento Embrionário/genética , Éxons/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Iodeto Peroxidase/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Placenta/metabolismo , Gravidez , Deleção de Sequência
13.
J Hepatol ; 73(2): 328-341, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32240714

RESUMO

BACKGROUND & AIMS: Hepatoblastoma (HB) is a rare disease. Nevertheless, it is the predominant pediatric liver cancer, with limited therapeutic options for patients with aggressive tumors. Herein, we aimed to uncover the mechanisms of HB pathobiology and to identify new biomarkers and therapeutic targets in a move towards precision medicine for patients with advanced HB. METHODS: We performed a comprehensive genomic, transcriptomic and epigenomic characterization of 159 clinically annotated samples from 113 patients with HB, using high-throughput technologies. RESULTS: We discovered a widespread epigenetic footprint of HB that includes hyperediting of the tumor suppressor BLCAP concomitant with a genome-wide dysregulation of RNA editing and the overexpression of mainly non-coding genes of the oncogenic 14q32 DLK1-DIO3 locus. By unsupervised analysis, we identified 2 epigenomic clusters (Epi-CA, Epi-CB) with distinct degrees of DNA hypomethylation and CpG island hypermethylation that are associated with the C1/C2/C2B transcriptomic subtypes. Based on these findings, we defined the first molecular risk stratification of HB (MRS-HB), which encompasses 3 main prognostic categories and improves the current clinical risk stratification approach. The MRS-3 category (28%), defined by strong 14q32 locus expression and Epi-CB methylation features, was characterized by CTNNB1 and NFE2L2 mutations, a progenitor-like phenotype and clinical aggressiveness. Finally, we identified choline kinase alpha as a promising therapeutic target for intermediate and high-risk HBs, as its inhibition in HB cell lines and patient-derived xenografts strongly abrogated tumor growth. CONCLUSIONS: These findings provide a detailed insight into the molecular features of HB and could be used to improve current clinical stratification approaches and to develop treatments for patients with HB. LAY SUMMARY: Hepatoblastoma is a rare childhood liver cancer that has been understudied. We have used cutting-edge technologies to expand our molecular knowledge of this cancer. Our biological findings can be used to improve clinical management and pave the way for the development of novel therapies for this cancer.


Assuntos
Colina Quinase , Hepatoblastoma , Neoplasias Hepáticas , beta Catenina/genética , Biomarcadores Tumorais/análise , Proteínas de Ligação ao Cálcio/genética , Colina Quinase/antagonistas & inibidores , Colina Quinase/metabolismo , Metilação de DNA , Descoberta de Drogas/métodos , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatoblastoma/mortalidade , Hepatoblastoma/patologia , Ensaios de Triagem em Larga Escala , Humanos , Lactente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Prognóstico , Medição de Risco/métodos
14.
FASEB J ; 33(1): 1374-1388, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30138038

RESUMO

Emerging evidence has elucidated that microRNAs (miRNAs) transcribed from miRNA cluster at DLK-DIO3 imprinted domain are involved in various cancers. However, as one member of this cluster, the underlying mechanisms and functions of miR-381-3p in bladder cancer (BCa) still remains elusive. Here we demonstrate that the hypermethylated status of upstream maternally expressed gene 3 divergent methylation region reduces the expression of miR-381-3p in BCa by bisulfite-sequencing PCR. In vitro and in vivo experiments indicate that overexpression of miR-381-3p significantly inhibits cell proliferation via inducing G1 phase arrest and migration via down-regulating MET and CCNA2 induced EMT progression. CDK6/CCNA2/MET are all identified as the direct targets of miR-381-3p by bioinformatics analysis and dual-luciferase reporter assay. Furthermore, inhibition of CCNA2 mediated by miR-381-3p as the crucial biregulator not only participates in the proliferation regulation with CDK6 in cell cycle but also modulates the EMT progression via ROCK/AKT/ß-catenin/SNAIL pathway, which establishes an EMT circuit combined with miR-381-3p/MET/AKT/GSK-3ß/SNAIL pathway, and SNAIL is the last confocal target to induce EMT progression. To conclude, we propose 2 novel regulatory circuits mediated by miR-381-3p in BCa, which may assist in the development of more effective therapies against BCa in the future.-Li, J., Ying, Y., Xie, H., Jin, K., Yan, H., Wang, S., Xu, M., Xu, X., Wang, X., Yang, K., Zheng, X., Xie, L. Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer.


Assuntos
Ciclo Celular , Ciclina A2/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Transição Epitelial-Mesenquimal , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias da Bexiga Urinária/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclina A2/genética , Regulação para Baixo , Inativação Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais
15.
Am J Respir Cell Mol Biol ; 60(1): 106-116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30134121

RESUMO

Patients with pulmonary arterial hypertension (PAH) can harbor mutations in several genes, most commonly in BMPR2. However, disease penetrance in patients with BMPR2 mutations is low. In addition, most patients do not carry known PAH gene mutations, suggesting that other factors determine susceptibility to PAH. To begin to identify additional genomic factors contributing to PAH pathogenesis, we exposed 32 mouse strains to chronic hypoxia. We found that the PL/J strain has extremely high right ventricular systolic pressure (RVSP; 86.58 mm Hg) but minimal lung remodeling. To identify potential genomic factors contributing to the high RVSP, RNAseq analysis of PL/J lung mRNAs and microRNAs (miRNAs) after hypoxia was performed, and it demonstrated that 4 of 43 upregulated miRNAs in the Dlk1-Dio3 imprinting region are predicted to target T cell marker mRNAs. These target mRNAs, as well as the numbers of T cells were downregulated. In addition, C5a and its receptor, C5AR1, were increased. Analysis of Rho-associated protein kinase (Rock) 2 mRNA expression, in the RhoA/Rock pathway, demonstrated a significant increase in PL/J. Inhibition of Rock2 ameliorated a portion of the elevated RVSP. In addition, we identified miR-150-5p as a potential regulator of Rock2 expression. In conclusion, we identified two possible pathways contributing to the hypoxia pulmonary hypertension phenotype of extreme RVSP elevation: aberrant T cell expression driven by hypoxia-induced miRNAs and increased expression of C5a and C5AR1. We suggest that the PL/J mouse will be a good model for seeking mechanism(s) of RVSP elevation in hypoxia-induced PAH.


Assuntos
Biomarcadores/análise , Regulação da Expressão Gênica , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , MicroRNAs/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Transdução de Sinais
16.
Cancer Cell Int ; 19: 202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31384177

RESUMO

BACKGROUND: Long noncoding RNA (lncRNA) has been implicated in numerous tumors, including pancreatic cancer (PC). However, the precise cellular roles and molecular mechanisms of lncRNA DIO3OS on PC development remains to be fully clarified. METHODS: We performed the meta-analysis on PC samples and non-tumor samples retrieved from the TCGA database, and measured the levels of DIO3OS in PC cell lines and a normal pancreatic duct epithelial cell line HPDE6-C7. Cell proliferation was evaluated via CCK-8 assay. Cell invasion in vitro was investigated by transwell assay. The RNA immunoprecipitation assay and luciferase reporter assay was utilized to confirm the putative miR-122-binding site in DIO3OS. The effects of DIO3OS on PC progression were tested using in vivo subcutaneous xenografts. RESULTS: Our results showed that DIO3OS was highly expressed in human PC tissues and PC cell lines. DIO3OS exhibited oncogenic properties in stimulating PC cell proliferation and invasion in vitro and promoting cancer growth in vivo. Through online predictive tools and functional experiments, we found that DIO3OS could bind directly to microRNA-122 (miR-122) and inhibited its expression, which functioned as a tumor suppressor in PC cells. We also verified that ALDOA was the direct target of miR-122, and the tumor suppressive effects caused by DIO3OS knockdown or miR-122 overexpression could be rescued by re-expression of ALDOA in PC cells. CONCLUSIONS: Overall, our study suggested that lncRNA DIO3OS promotes PC cell growth and invasion by competing for miR-122 to modulate the expression of ALDOA. These findings yield a better understanding of the potential mechanisms by which gain of DIO3OS expression accelerates PC progression.

17.
J Biochem Mol Toxicol ; 33(6): e22310, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30790392

RESUMO

Zearalenone (ZEA) and imprinted long noncoding RNAs (lncRNAs) are both closely related to reproduction and development. However, whether they have connections in regulating reproduction and development is not clear yet. The aim of this research is to investigate their relationship. lncRNA microarray was performed to analyze differentially expressed genes, and real-time quantitative polymerase chain reaction (PCR) was used to verify the accuracy of microarray analysis. Meanwhile, the technologies of rapid amplification of cDNA ends, RNA fluorescence in situ hybridization and bioinformatics were adopted to characterize the selected lncRNA. Analysis of lncRNA microarray showed lncRNAs and messenger RNAs related to reproduction and development were significantly differently expressed, and Dio3os was probably the target lncRNA. Then, the experiment of real-time quantitative PCR verified the accuracy of microarray data. Characterization of Dio3os showed Dio3os, an antisense lncRNA with 2312 bp and 15 open reading frames, was enriched in the cytoplasm. Our findings suggest ZEA probably exerts toxic effects on reproduction and development by mediating Dio3os.


Assuntos
Endométrio/metabolismo , RNA Antissenso/biossíntese , RNA Longo não Codificante/biossíntese , Reprodução/efeitos dos fármacos , Zearalenona/toxicidade , Animais , Endométrio/patologia , Feminino , Camundongos , Células Estromais/metabolismo , Células Estromais/patologia
18.
Adv Exp Med Biol ; 1155: 847-856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468451

RESUMO

PBDEs (stands for polybrominated diphenyl ethers) are extensively utilized flame retardants, and BDE 209 is one of the most widely used congeners. Studies have suggested the general toxic effects of PBDEs on the endocrine system and neural development. Our previous studies found that BDE 209 changed Type 3 iodothyronine deiodinase (Dio 3) expression in human SK-N-AS neuroblastoma cells. The current study was designed to examine the potential protection of taurine on alterations of Dio 3 expression induced by BDE 209 in SK-N-AS cells. Briefly, SK-N-AS cells were pretreated with taurine prior to the BDE 209 treatment, and the cell viability was evaluated by the MTT (methyl-thiazolyl-tetrazolium) assay. The disturbance or restoration in the levels of Dio 3 proteins and mRNA were observed separately by the western blot and qRT-PCR. Our data showed that taurine moderately attenuated BDE 209-mediated the loss of cell viability. Also, taurine moderately prevented the reduction in the Dio 3 protein expression and mRNA expression induced by BDE 209 in the SK-N-AS cells. Our findings indicated that taurine potentially provide the protection on PBDEs-induced toxicity on endocrine and neuro-development.


Assuntos
Iodeto Peroxidase/metabolismo , Taurina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Retardadores de Chama , Éteres Difenil Halogenados/efeitos adversos , Humanos , Neuroblastoma
19.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167510

RESUMO

Understanding the molecular mechanisms of skeletal myoblast differentiation is essential for studying muscle developmental biology. In our previous study, we reported that knockdown of myocyte enhancer factor 2A (MEF2A) inhibited myoblast differentiation. Here in this study, we further identified that MEF2A controlled this process through regulating the maternally expressed 3 (MEG3)-iodothyronine deiodinase 3 (DIO3) miRNA mega cluster and protein phosphatase 2A (PP2A) signaling. MEF2A was sufficient to induce MEG3 expression in bovine skeletal myoblasts. A subset of miRNAs in the MEG3-DIO3 miRNA cluster was predicted to target PP2A subunit genes. Consistent with these observations, MEF2A regulated PP2A signaling through its subunit gene protein phosphatase 2 regulatory subunit B, gamma (PPP2R2C) during bovine myoblast differentiation. MiR-758 and miR-543 in the MEG3-DIO3 miRNA cluster were down-regulated in MEF2A-depleted myocytes. Expression of miR-758 and miR-543 promoted myoblast differentiation and repressed PPP2R2C expression. Luciferase activity assay showed that PPP2R2C was post-transcriptionally targeted by miR-758 and miR-543. Taken together, these results reveal that the MEG3-DIO3 miRNAs function at downstream of MEF2A to modulate PP2A signaling in bovine myoblast differentiation.


Assuntos
Iodeto Peroxidase/genética , Fatores de Transcrição MEF2/genética , Família Multigênica , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Proteína Fosfatase 2/metabolismo , RNA Longo não Codificante/genética , Animais , Bovinos , Diferenciação Celular , Regulação da Expressão Gênica , Modelos Biológicos , Interferência de RNA , Transdução de Sinais
20.
BMC Genomics ; 19(1): 183, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510661

RESUMO

BACKGROUND: The generation of induced pluripotent stem cells (iPSCs) has underdefined mechanisms. In addition, leukemia inhibitory factor (LIF) activated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is the master regulator for naïve-state pluripotency achievement and maintenance. However, the regulatory process to attain naïve pluripotent iPSCs is not well understood. RESULTS: We performed transcriptome analysis to dissect the genomic expression during mouse iPSC induction, with or without blocking the JAK/STAT3 activity. We describe JAK/STAT3 signaling-specific biological events such as gametogenesis, meiotic/mitotic cell cycle, and DNA repair, and JAK/STAT3-dependent expression of key transcription factors such as the naïve pluripotency-specific genes, developmental pluripotency associated (Dppa) family, along with histone modifiers and non-coding RNAs in reprogramming. We discover that JAK/STAT3 activity does not affect early phase mesenchymal to epithelial transition (MET) but is necessary for proper imprinting of the Dlk1-Dio3 region, an essential event for pluripotency achievement at late-reprogramming stage. This correlates with the JAK/STAT3-dependent stimulation of Dppa3 and Polycomb repressive complex 2 (PRC2) genes. We further demonstrate that JAK/STAT3 activity is essential for DNA demethylation of pluripotent loci including Oct4, Nanog, and the Dlk1-Dio3 regions. These findings correlate well with the previously identified STAT3 direct targets. We further propose a model of pluripotency achievement regulated by JAK/STAT3 signaling during the reprogramming process. CONCLUSIONS: Our study illustrates novel insights for JAK/STAT3 promoted pluripotency establishment, which are valuable for further improving the naïve-pluripotent iPSC generation across different species including humans.


Assuntos
Reprogramação Celular , Epigênese Genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Células Cultivadas , Desmetilação do DNA , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Janus Quinase 1/genética , Meiose , Camundongos , Fator de Transcrição STAT3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA