RESUMO
Platinum-based drugs are widely recognized efficient anti-tumor agents, but faced with multiple undesirable effects. Here, four dinuclear platinum(II) complexes, [{Pt(1,2-pn)Cl}2(µ-pydz)]Cl2 (C1), [{Pt(ibn)Cl}2(µ-pydz)]Cl2 (C2), [{Pt(1,3-pn)Cl}2(µ-pydz)]Cl2 (C3) and [{Pt(1,3-pnd)Cl}2(µ-pydz)]Cl2 (C4), were designed (pydz is pyridazine, 1,2-pn is ( ±)-1,2-propylenediamine, ibn is 1,2-diamino-2-methylpropane, 1,3-pn is 1,3-propylenediamine, and 1,3-pnd is 1,3-pentanediamine). Interactions and binding ability of C1-C4 complexes with calf thymus DNA (CT-DNA) has been monitored by viscosity measurements, UV-Vis, fluorescence emission spectroscopy and molecular docking. Binding affinities of C1-C4 complexes to the bovine serum albumin (BSA) has been monitored by fluorescence emission spectroscopy. The tested complexes exhibit variable cytotoxicity toward different mouse and human tumor cell lines. C2 shows the most potent cytotoxicity, especially against mouse (4T1) and human (MDA-MD468) breast cancer cells in the dose- and time-dependent manner. C2 induces 4T1 and MDA-MD468 cells apoptosis, further documented by the accumulation of cells at sub-G1 phase of cell cycle and increase of executive caspase 3 and caspase 9 levels in 4T1 cells. C2 exhibits anti-proliferative effect through the reduction of cyclin D3 and cyclin E expression and elevation of inhibitor p27 level. Also, C2 downregulates c-Myc and phosphorylated AKT, oncogenes involved in the control of tumor cell proliferation and death. In order to measure the amount of platinum(II) complexes taken up by the cells, the cellular platinum content were quantified. However, C2 failed to inhibit mouse breast cancer growth in vivo. Chemical modifications of tested platinum(II) complexes might be a valuable approach for the improvement of their anti-tumor activity, especially effects in vivo.
Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Piridazinas , Humanos , Animais , Camundongos , Feminino , Platina/farmacologia , Platina/química , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Ligantes , DNA/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Piridazinas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/químicaRESUMO
A ligand (HL) was synthesized from the pyridoxal hydrochloride (vitamin B6 form) and 1-(2-Aminoethyl)piperidine in one single step. The metal complexes [Zn(L)(Bpy)]NO3 (1), [Cu(L)(Bpy)]NO3 (2), and [Co(L)(Bpy)]NO3 (3) were prepared by tethering HL and 2,2'-bipyridine. The synthesized HL and metal complexes 1-3 were thoroughly characterized using spectroscopic techniques such as 1H NMR, 13C NMR, FTIR, EI-MS, molar conductance, and magnetic moment, in addition to CHN elemental analysis. The geometry of complexes was square pyramidal around the metal ions {Zn(II), Cu(II), and Co(II)}. The interaction of ligand and metal complexes with DNA and BSA macromolecules was accomplished by UV-Vis absorption and fluorescence spectroscopy in vitro. The hyperchromism in band at 303-325 with no shift supports the groove binding with some partial intercalation in grooves. Similarly, in BSA-binding studies, complex 2 shows greater binding potential in the hydrophobic core probably near the Trp-212 in the subdomain IIA. Furthermore, complex 2 shows excellent cytotoxicity on HepG2 cancer cells with IC50 = 25.0 ± 0.45 µM. The detailed analysis by cell-cycle studies shows cell arrest at the G2/M phase. The type of cell death was authenticated by an annexin V-FTIC dual staining experiment that reveals maximum death by apoptosis together with non-specific necrosis.
RESUMO
In this study, Schiff base substituted phthalocyanine complexes (Zn1c, Zn2c) and their quaternized derivatives (Q-Zn1c, Q-Zn2c) were synthesized for the first time. Their structures have been characterized by FT-IR, 1H-NMR, UV-Vis, mass spectrometry and elemental analysis as well as. The photophysicochemical properties (fluorescence, singlet oxygen and photodegradation quantum yield) of these novel complexes were investigated in dimethylsulfoxide (DMSO) for both non-ionic and quaternized cationic phthalocyanine complexes and in aqueous solution for quaternized cationic phthalocyanine complexes. Water soluble cationic phthalocyanine compounds gave good singlet oxygen quantum yield (0.65 for Q-Zn1c, 0.66 for Q-Zn2c in DMSO; 0.65 for Q-Zn2c in aqueous solution). The binding of Q-Zn1c and Q-Zn2c to BSA/DNA was studied by using UV-Vis and fluorescence spectroscopy and these. Studies indicate that the mechanism of BSA quenching by quaternized zinc(II) phthalocyanines was static quenching. Quaternized zinc(II) phthalocyanines interacted with ct-DNA by intercalation. Quaternized zinc(II) phthalocyanines caused a decrease in cell viability and triggered apoptotic cell death after PDT was applied at a concentration that did not have a toxic effect on their own. Q-Zn1c and Q-Zn2c mediated PDT reduced the activity of SOD, CAT, GSH while increased MDA level in the prostate cancer cells. Furthermore, expression of apoptotic proteins after PDT was examined. The results revealed that the synthesized water soluble quaternized zinc(II) phthalocyanine complexes (Q-Zn1c and Q-Zn2c) are promising potential photosensitizers for PDT.
Assuntos
Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Zinco/farmacologia , Água/química , Dimetil Sulfóxido/farmacologia , Oxigênio Singlete/química , Espectroscopia de Infravermelho com Transformada de Fourier , Solubilidade , DNA , Fotoquimioterapia/métodos , Linhagem CelularRESUMO
The cyclocondensation reaction of aldehydes with dimedone and bis(6-aminopyrimidin-4-one) in acetic acid led to the formation of the corresponding bis(pyrimido[4,5-b]quinoline-4,6-diones) which are known as bis(sulfanediyl)bis(tetrahydro-5-deazaflavin) analogs in a single step. Also, bis(pyrimido[4,5-b]quinoline-4,6-diones) which are linked to naphthyl core via phenoxymethyl linkage is prepared. The interactions of the synthesized compounds with DNA and bovine serum albumin (BSA) were studied. Gel electrophoresis assay was used to show the capability of the compounds to photocleave the supercoiled pBR322 plasmid DNA in UV-A (365â nm). Besides, the most photocleavable compound, bis(tetrahydropyrimido[4,5-b]quinoline-4,6-dione) linked to pyridin-3-yl at position-5 exhibits good binding affinities toward CT-DNA and BSA as supported by UV/VIS spectral studies. In addition to the experimental findings, a molecular docking simulation was performed to collect detailed binding data for this compound to both biomolecules.
Assuntos
Quinolinas , Soroalbumina Bovina , Aldeídos , DNA/química , Flavinas , Simulação de Acoplamento Molecular , Naftalenos , Ligação Proteica , Quinolinas/química , Soroalbumina Bovina/químicaRESUMO
A new tetracopper(II) complex bridged both by oxamido and carboxylato groups, namely [Cu4 (dmaepox)2 (bpy)2 ](NO3 )2 ·2H2 O, where H3 dmaepox and bpy represent N-benzoato-N'- (3-methylaminopropyl)oxamide and 2,2'-bipyridine, was synthesized, and its structure reveals the presence of a centrosymmetric cyclic tetracopper(II) cation assembled by a pair of cis-dmaepox3- - bridged dicopper(II) units through the carboxylato groups, in which the endo- and exo-copper(II) ions bridged by the oxamido group have a square-planar and a square-pyramidal coordination geometries, respectively. The aromatic packing interactions assemble the complex molecules to a two-dimensional supramolecular structure. The reactivity toward DNA and protein bovine serum albumin (BSA) indicates that the complex can interact with herring sperm DNA through the intercalation mode and the binding affinity is dominated by the hydrophobicity and chelate ring arrangement around copper(II) ions and quenches the intrinsic fluorescence of BSA via a static process. The cytotoxicity of the complex shows selective cancer cell antiproliferative activity.
Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cobre/farmacologia , Desenho de Fármacos , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Compostos Organometálicos/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/efeitos adversos , Cobre/química , Cobre/metabolismo , Cristalografia por Raios X , Hepatócitos/patologia , Humanos , Substâncias Intercalantes/efeitos adversos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Cinética , Ligantes , Neoplasias Hepáticas/patologia , Estrutura Molecular , Compostos Organometálicos/efeitos adversos , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , SolubilidadeRESUMO
A new one-dimensional (1D) copper(II) coordination polymer {[Cu2 (dmaepox)(dabt)](NO3) · 0.5 H2 O}n , where H3 dmaepox and dabt denote N-benzoato-N'-(3-methylaminopropyl)oxamide and 2,2'-diamino-4,4'-bithiazole, respectively, was synthesized and characterized by single-crystal X-ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis-oxamido and carboxylato groups to form a 1-D coordination polymer with the corresponding Cu · · · Cu separations of 5.1946(19) and 5.038(2) Å. There is a three-dimensional supramolecular structure constructed by hydrogen bonding and π-π stacking interactions in the crystal. The reactivity towards herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) indicated that the copper(II) polymer can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro cytotoxicity suggested that the copper(II) polymer exhibits cytotoxic effects against the selected tumor cell lines.
Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Cobre/química , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/toxicidade , Cristalografia por Raios X , DNA/metabolismo , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/toxicidade , Estrutura Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Tiazóis/químicaRESUMO
In an effort to develop new potent anticancer agents, two Schiff base rhenium(I) tricarbonyl complexes, containing the ubiquitous aminoquinoline scaffold, were synthesized. Both aminoquinoline ligands and Re(I) complexes showed adequate stability over a 48-h incubation period. Furthermore, the cytotoxic activity of the precursor ligands and rhenium(I) complexes were evaluated against the hormone-dependent MCF-7 and hormone-independent triple negative MDA-MB-231 breast cancer cell lines. Inclusion of the [Re(CO)3Cl]+ entity significantly enhanced the cytotoxicity of the aminoquinoline Schiff base ligands against the tested cancer cell lines. Remarkably, the incorporation of the Schiff-base iminoquinolyl entity notably enhanced the cytotoxic activity of the Re(I) complexes, in comparison with the iminopyridyl entity. Notably, the quinolyl-substituted complex showed up to three-fold higher activity than cisplatin against breast cancer cell lines, underpinning the significance of the quinoline pharmacophore in rational drug design. In addition, the most active Re(I) complex showed better selectivity towards the breast cancer cells over non-tumorigenic FG-0 cells. Western blotting revealed that the complexes increased levels of γH2AX, a key DNA damage response protein. Moreover, apoptosis was confirmed in both cell lines due to the detection of cleaved PARP. The complexes show favourable binding affinities towards both calf thymus DNA (CT-DNA), and bovine serum albumin (BSA), and the order of their interactions align with their cytotoxic effects. The in silico molecular simulations of the complexes were also performed with CT-DNA and BSA targets.
Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Rênio , Humanos , Feminino , Bases de Schiff/farmacologia , Bases de Schiff/química , Rênio/química , DNA/metabolismo , Células MCF-7 , Soroalbumina Bovina/química , Hormônios , Aminoquinolinas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/química , LigantesRESUMO
Herein, we report the synthesis and biological evaluation of [Pd(L)(OH2)Cl] complex (where L = 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione) as a novel promising anticancer candidate. The complex was characterized by single-crystal X-ray diffraction and other various spectroscopic techniques. Besides, the optimized structure was determined through DFT calculations revealing that the coordination geometry of [Pd(L)(OH2)Cl] complex is square planar. The binding propensity of [Pd(L)(OH2)Cl] complex with DNA and BSA was assessed by the spectrophotometric method. The antimicrobial profile of the ligand and its [Pd(L)(OH2)Cl] complex was screened against clinically important bacterial strains. [Pd(L)(OH2)Cl] complex showed promising activity against these microorganisms. Pd(L)(OH2)Cl] complex exhibited a potent antiproliferative potential compared to its ligand against different human cancer cells (A549, HCT116, MDA-MB-231, and HepG2) with less toxic effect against normal cells (WI-38). Additionally, [Pd(L)(OH2)Cl] complex exerted its anticancer effects against the most responsive cells (HCT116 cells; IC50 = 11 ± 1 µM) through suppressing their colony-forming capabilities and triggering apoptosis and cell cycle arrest at S phase. Quantitative PCR analysis revealed a remarkable upregulation of the mRNA expression level of p53 and caspase-3 by 4.8- and 5.9-fold, respectively, relative to control. Remarkable binding properties and non-covalent interactions between L and its [Pd(L)(OH2)Cl] complex with the binding sites of different receptors including CDK2, MurE ligase, DNA, and BSA were established using molecular docking. Based on our results, [Pd(L)(OH2)Cl] complex is an intriguing candidate for future investigations as a potential anticancer drug for the treatment of colon cancer.
Assuntos
Antineoplásicos , Complexos de Coordenação , Cicloexanonas , Humanos , Paládio/farmacologia , Paládio/química , Simulação de Acoplamento Molecular , Ligantes , Antineoplásicos/química , DNA/química , Complexos de Coordenação/química , Linhagem Celular TumoralRESUMO
Many terpyridines and their metal complexes are known to exhibit remarkable potential for the interaction of biological targets. Notably, a subtle change in the structure of the ligand can influence these interactions significantly. In this regard, it would be very interesting to assess the binding affinity of functionalized molecules with DNA/BSA. In this work, a novel ester-based terpyridine (L) and the corresponding four metal complexes with Ni(II) (MC1), Cu(II) (MC2), Fe(III) (MC3) and Ru(III) (MC4) were prepared and structurally characterized using various spectroscopic and analytical techniques including the validation of molecular structures of ligand (L) and Ni(II)-Tpy complex (MC1). The EPR data demonstrate that MC1 is diamagnetic and other complexes (MC2-MC4) exhibit paramagnetic behavior. Additionally, the structures of ligands and metal complexes were determined using DFT studies and the same were utilized for the docking studies. Interestingly, MC3 and MC4 exhibit a predominant lowest binding energy of -9.62 Kcal/mol (with DNA) and -10.05 Kcal/mol (with BSA) respectively. The binding affinity of the ligand and its complexes with protein and DNA was evaluated by spectroscopic techniques. Notably, the cytotoxicity studies of L and MC1-MC4 were performed against the MCF-7 (human breast cancer) cell lines. The complex MC4 displayed great activity with an IC50 of 3.5⯱â¯1.75⯵M among all synthesized compounds and comparable with cisplatin.
Assuntos
Complexos de Coordenação , DNA , Simulação de Acoplamento Molecular , Soroalbumina Bovina , DNA/química , DNA/metabolismo , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Ésteres/química , Piridinas/química , Piridinas/farmacologia , Ligantes , Ligação Proteica , Células MCF-7 , Bovinos , Animais , Níquel/química , Linhagem Celular TumoralRESUMO
A novel series of 2-cyano-3-(pyrazol-4-yl)-N-(thiazol-2-yl)acrylamide derivatives (3a-f) were synthesized using Knoevenagel condensation and characterized using various spectral tools. The weak nuclease activity of compounds (3a-f) against pBR322 plasmid DNA was greatly enhanced by irradiation at 365 nm. Compounds 3b and 3c, incorporating thienyl and pyridyl moieties, respectively, exhibited the utmost nuclease activity in degrading pBR322 plasmid DNA through singlet oxygen and superoxide free radicals' species. Furthermore, compounds 3b and 3c affinities towards calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were investigated using UV-Vis and fluorescence spectroscopic analysis. They revealed good binding characteristics towards CT-DNA with Kb values of 6.68 × 104 M-1 and 1.19 × 104 M-1 for 3b and 3c, respectively. In addition, compounds 3b and 3c ability to release free radicals on radiation were targeted to be used as cytotoxic compounds in vitro for colon (HCT116) and breast cancer (MDA-MB-231) cells. A significant reduction in the cell viability on illumination at 365 nm was observed, with IC50 values of 23 and 25 µM against HCT116 cells, and 30 and 9 µM against MDA-MB-231 cells for compounds 3b and 3c, respectively. In conclusion, compounds 3b and 3c exhibited remarkable DNA cleavage and cytotoxic activity on illumination at 365 nm which might be associated with free radicals' production in addition to having a good affinity for interacting with CT-DNA and BSA.
RESUMO
The present work demonstrates the synthesis, structural diversity and coordination behavior of some selected new Ni(II)-Tpy complexes. The structural analysis revealed the coordination of the selected terpyridine ligands with the core metal atom in two different modes via dimeric species (1:1 fashion) through the Cl-bridging and a bis(Tpy)-Ni complex (2:1 fashion). Perhaps the most striking manifestations of these Ni(II)-Tpy complexes are BSA/DNA binding ability and anticancer activity. In addition, the cytotoxicity studies of Tpy ligand (4-([2,2':6',2â³-terpyridin]-4'-yl)phenyl 5-methylthiophene-2-carboxylate) and the Ni(II) complexes were carried out using lung cancer cell line (A549), breast cancer cell line (MCF-7) and normal cell line (Vero cell). The cytotoxicity results were compared with the cisplatin control group. Notably, bis-terpyridyl complex 3C (R = 4-([2,2':6',2â³-terpyridin]-4'-yl)phenyl 4-isopropoxybenzoate) demonstrates better activity with the IC50 value of 23.13 ± 3 µm for A549 and 22.7 ± 3 for MCF-7. The DFT calculations reveal the significant energy differences of HOMO and LUMO for the ligands and their corresponding Ni(II) complexes. The Tpy ligands and Ni(II)-Tpy complexes were investigated for BSA binding and further all the Ni(II) complexes were analyzed for DNA binding studies.
Assuntos
Antineoplásicos , Complexos de Coordenação , DNA , Níquel , Piridinas , Soroalbumina Bovina , Humanos , Níquel/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , DNA/metabolismo , DNA/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Piridinas/química , Piridinas/farmacologia , Células A549 , Células MCF-7 , Animais , BovinosRESUMO
Four Ru(II) complexes (A2-A5) were synthesized from the reaction of coumarin Schiff base ligands (7da2-tsc, 7da3-mtsc, 7da4-etsc and 7da5-ptsc) with [RuHCl(CO)(PPh3)3]. The compounds were characterized by FT-IR, UV-Vis, 1H, 13C and 31P NMR, mass spectrometry and crystallographic analysis. Calf Thymus DNA (CT-DNA) binding studies revealed the intercalative mode of binding of the complexes with DNA. The results of Bovine serum albumin (BSA) binding studies established the interaction between BSA followed static quenching mechanism. The cytotoxic effects of the complexes and the ligands were evaluated against breast (MCF-7 and MDA-MB-231) and lung carcinoma cell lines (A549 and NCI-H460) using MTT assay. Complex A4 demonstrated potent cytotoxic effects on both breast and lung cancer cells. Furthermore, morphological observations and FACS analysis showed the decrease in cell density by complex A4 by induced morphological changes and apoptotic body formation and cell death in both breast and lung cancer cells. Moreover, the invertebrate model Caenorhabditis elegans was employed to assess the in vivo anticancer activity of compound A4. The findings indicated that the treatment with A4 reduced tumor development and significantly extended organismal lifespan by 64 % in the tumoral strain JK1466 without adversely affecting essential physiological functions of the worm. Additionally, A4 demonstrated an upregulation of two crucial antioxidant defense genes. Overall, these results suggested that the compound A4 can be a potential candidate with novel chemotherapeutic applications.
Assuntos
Antineoplásicos , Caenorhabditis elegans , Complexos de Coordenação , Rutênio , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rutênio/química , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Mutação , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , DNA/química , Células MCF-7RESUMO
A number of new biguanidine-sulfonamide derivatives (1-16) were synthesized and their structures were characterized by spectroscopic and analytical methods. Crystal structures of the compounds 1, 4, 8, 10 and 14 were determined by single crystal X-ray diffraction studies. X-ray crystallographic data showed the π-electron delocalization through the biguanide units. The AChE and BChE cholinesterase inhibitor, DPPH antioxidant and DNA/BSA binding properties of the synthesized compounds were evaluated. Results of cholinesterase inhibitory properties have shown that the compounds containing electron-withdrawing (-F, -Cl) groups have higher AChE/BChE inhibitory and antioxidant activities. Compound 3 showed higher BChE inhibitory activity than tacrine with IC50 value of 28.4 µM. The compounds interact with DNA via minor groove binding mode. The compounds with a naphthyl group in its structure strongly binds with DNA/BSA biomolecules.Communicated by Ramaswamy H. Sarma.
Assuntos
Antioxidantes , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Antioxidantes/química , Acetilcolinesterase/química , Tacrina/química , Sulfanilamida , Simulação de Acoplamento Molecular , Relação Estrutura-AtividadeRESUMO
In an initiation to investigate a prospective bioactive compound, a mononuclear Ni(II) complex with N, N, and O donor Schiff base ligand was synthesized and characterized in the present study through FTIR, ESI-mass, and X-ray crystallographic diffraction studies. A slightly distorted octahedral geometry has been obtained for the Ni(II) complex from X-ray crystallographic diffraction studies. In vitro comprehensive biological studies show the antifungal specific efficiency of the complex against Colletotrichum siamense (AP1) and Fusarium equisetum (F.E.) pathogens, which are responsible for anthracnose and wilt disease, respectively, but no inhibitory effect on both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) for these pathogens was observed to be 0.25 and 0.5 mM, respectively. The experiment also reveals that significant damage of mycelia and enlarged, misshaped damaged spores are noticed in comparison to hexaconazole, used as a positive control under a light microscope post 48 h treatment of AP1 and F.E. with the MIC of the complex. The binding interaction studies of the complex with DNA and BSA performed through a variety of spectroscopic techniques demonstrate a strong binding behavior of the complex for both the binding systems. The observed negative ΔH° and ΔS° values for DNA reveal the existence of hydrogen-bonding/van der Waals interactions for DNA which was also exemplified from the molecular docking and self-assembly studies of the complex. The positive ΔH° and ΔS° values for BSA demonstrate the hydrophobic interactions of the complex with BSA. However, cytotoxicity studies against the MDA-MB-231 breast cancer cell line did not demonstrate any significant potentiality of the complex as an anticancer agent. All the bio-experimental studies provide clear evidence that the synthesized Ni(II) complex exhibits potential antifungal activity and could be used as a therapeutic fungicide agent in comparison to hexaconazole in agricultural practices.
Assuntos
Equisetum , Fusarium , Antifúngicos/farmacologia , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Simulação de Acoplamento Molecular , Estudos Prospectivos , DNARESUMO
In this work, herein we report the synthesis, structural characterization and in vitro cytotoxic evaluation of two mixed Co(II)/Ni(II)-nalidixic acid-bipyridyl complexes (1 and 2). The structural analysis of metal complexes 1 and 2 was carried out by analytical and multispectroscopic techniques (FT-IR, UV-vis, EPR, sXRD). The crystallographic details of complexes 1 and 2 revealed a monoclinic crystal system with P21/c space group. DFT studies of complexes were performed to get electronic structure and localization of HOMO and LUMO electron densities. Hirshfeld surface analysis of metal complexes 1 and 2 was employed to understand the various intermolecular interactions (C-H···O, N-H···H and O-H···O) that define the stability of crystal lattice structures. The comparative interaction studies of complex 1 and complex 2 with DNA/BSA were performed by diverse multispectroscopic and analytical techniques to evaluate their chemotherapeutic potential. The magnitude of the DNA binding propensity and binding mode was verified by calculating Kb, K and Ksv values. Higher binding affinity was observed in case of complex 2via intercalative mode. Furthermore, the cytotoxic assessment of complexes 1 and 2 was examined against MDA-MB-231 (triple negative human breast cancer cell line) and HepG2 (liver carcinoma cell line) employing MTT assay which revealed remarkably effecient and specific cytotoxic activity of complex 2.
Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Preparações Farmacêuticas , Antineoplásicos/química , Linhagem Celular , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/química , Humanos , Simulação de Acoplamento Molecular , Ácido Nalidíxico , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
In an effort to discover a novel potential bioactive compound, a mono-nuclear Pd(II) complex with an amino acid derivative as ligand was synthesized and characterized through experimental and computational methodologies. A square-planar configuration was suggested for palladium(II) complex utilizing density functional theory. MEP map and Mulliken atomic charge were detected electrophilic and nucleophilic regions of the compound for reactions. The lipophilicity and cytotoxic activity of the complex was more effective than cisplatin. Also, OSIRIS DataWarrior revealed proper oral bioavailability and good drug-likeness for the compound. In-vitro binding behavior of the Pd(II) complex with DNA and serum albumin (BSA) were fully determined via variety of procedures including fluorescence, UV-Vis, CD, viscosity, gel electrophoresis experiments and molecular simulation. The negative signs of ΔH° and ΔS° for Pd(II) complex-CT-DNA/-BSA systems indicated the existence of hydrogen bonding/van der Waals interactions for both binding systems. Additionally, docking simulation illustrated the interaction of Pd(II) complex with the minor groove of DNA and the hydrophobic cavity of the BSA (drug binding site I).
Assuntos
Paládio , Albumina Sérica , Sítios de Ligação , DNA/química , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Paládio/química , Paládio/farmacologia , Ligação Proteica , Albumina Sérica/metabolismo , Soroalbumina Bovina/química , TermodinâmicaRESUMO
Lipid-conjugated Ru(III) complexes - designed to obtain lipophilic analogues of the low molecular weight derivative AziRu, which is a NAMI-A-like anticancer agent - have been synthesized and fully characterized. A detailed biophysical investigation, including multiple, integrated techniques, allowed determining their molecular and self-assembling properties in aqueous solutions mimicking the extracellular environment, showing that our design produced a protective effect from hydrolysis of the Ru(III) complexes. In vitro biological experiments, carried out in comparison with AziRu, demonstrated that, among the novel lipophilic Ru(III) complexes synthesized, the compounds derivatized with palmitic and stearic acid, that we named PalmiPyRu and StePyRu respectively, showed attractive features and a promising antiproliferative activity, selective on specific breast cancer phenotypes. To get a deeper insight into their interactions with potential biomacromolecular targets, their ability to bind both bovine serum albumin (BSA), an abundant serum carrier protein, and some DNA model systems, including duplex and G-quadruplex structures, has been investigated by spectroscopic techniques. Inductively coupled plasma-mass spectrometry (ICP-MS) analysis of the ruthenium amount incorporated in human MCF-7 and MDA-MB-231 breast cancer cells, after incubation in parallel experiments with PalmiPyRu and AziRu, showed a markedly higher cell uptake of the lipophilic Ru(III) complex with respect to AziRu. These data confirmed that the proper lipidic tail decorating the metal complex not only favoured the formation of aggregates in the extracellular media but also improved their cell membrane penetration, thus leading to higher antiproliferative activity selective on breast cancer cells.
Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Rutênio , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Feminino , Humanos , Rutênio/farmacologia , Soroalbumina Bovina/químicaRESUMO
Deoxyribonucleic acid (DNA) and bovine serum albumin (BSA) binding interactions for a series of ruthenium heterocyclic complexes were monitored using ultraviolet-visible (UV-Vis) spectrophotometry, fluorescence emission spectroscopy and agarose gel electrophoresis. Investigations of the DNA interactions for the metal complexes revealed that they are groove-binders with intrinsic binding constants in the order of 104 - 107 M-1. Electronic spectrophotometric DNA titrations of the bis-heterocyclic metal complexes illustrated hypochromism of their intraligand electronic transitions and the presence of diffuse isosbestic points which are synonymous with homogeneous binding modes. Metal complexes with the mono-heterocyclic chelates also showed alterations in their intraligand transitions and changes in their metal-based electronic transitions which are suggestive of metal coordination to the CT-DNA structure. Using agarose gel electrophoresis assessments, Hoechst DNA binding competition studies corroborate that the metal complexes are DNA groove-binders. Optimal uptake of these metal complexes by BSA was observed based on their optimal apparent association and Stern-Volmer constants (Kapp and KSV > 104 M-1). Radical scavenging studies revealed that the metal complexes have high activities towards the neutralization of NO and DPPH radicals. Data attained from the BSA electronic spectrophotometric titrations for the majority of the metal complexes illustrated distinct hyperchromism accompanied with blue shifts which indicates unwinding of the protein strands. Predominately, the metal complexes showed moderate cytotoxicity against both triple-negative breast cancer and cervical cancer cell lines that was greater than that of 5-fluorouracil.Communicated by Ramaswamy H. Sarma.
Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , DNA/metabolismo , Humanos , Ligação Proteica , Soroalbumina Bovina/metabolismoRESUMO
OBJECTIVES: In this research, the biological properties of the yttrium (III) (Y) complex, with 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) ligand, were examined for in vitro fish DNA (FS-DNA)/ bovine serum albumin (BSA) interactions, DNA-cleavage, anticancer and antibacterial activities. METHODS: Multi-spectrophotometric techniques and computational calculations were used for the interaction studies of the BSA and FS-DNA with the Y-complex. Absorption and fluorescence spectroscopy methods were used to define thermodynamic parameters, the binding constants (Kb), and the probable binding mechanism. Also, the DFT (density functional theory) study and molecular docking calculation of the Y-complex were done. Besides, the nanocarriers of Y-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. Finally, DNA-cleavage, anticancer, and antibacterial activities of this complex were investigated. RESULTS: The absorption and fluorescence measurements were exhibited that the Y-complex has a high binding affinity to FS-DNA and BSA through a static mechanism. The negative thermodynamic parameter values for both DNA/BSA binding were confirmed that the hydrogen bonds and van der Waals forces played an essential role in the spontaneous bonding procedure. The site marker competitive studies for BSA confirmed that the Y-complex bonds to the sub-domain IB of protein (site III) on BSA, which was entirely agreement by docking calculation. The complex has displayed efficient DNA cleavage, antifungal and antibacterial activities. The anticancer activity of the Y-complex and its starch/lipid nano-encapsulated was carried out in cancer cell lines, which exposed considerably high activity. CONCLUSIONS: Thus, Y-complex can be transported professionally through BSA in the blood and bonds in the groove of DNA. Base on biological applications of the Y-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer and antibacterial candidates.
Assuntos
Clivagem do DNA , Soroalbumina Bovina , Animais , Antibacterianos/farmacologia , Sítios de Ligação , DNA/metabolismo , Lipídeos , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Amido , Termodinâmica , ÍtrioRESUMO
Four new ferrocenyl substituted thiosemicarbazone ligands (L1-L4) and their corresponding binuclear ruthenium(II) arene complexes of the general type [(η6-p cym)(L)Ru(µ-im)Ru(L)(η6-p-cym)]Cl (C1-C4) and [(η6-p cym)(L)Ru(µ-azpy)Ru(L)(η6-p-cym)]Cl2 (C5-C8) (cym = cymene, im = imidazole, azpy = 4,4'-azopyridine) have been synthesized and characterized. The structures of the complexes were established through DFT calculations and geometry optimization. The interactions of the binuclear complexes with DNA were investigated by absorption, emission and viscosity studies which indicated that the complexes bind to DNA via intercalation. Meanwhile, the interaction of complexes with the protein, bovine serum albumin (BSA), has also been studied using fluorescence emission spectroscopy. The experimental results show that the binuclear complexes exhibit good binding propensities to BSA. The complexes can quench the intrinsic fluorescence of BSA remarkably through a static or dynamic quenching process. In addition, the in vitro cytotoxicity of complexes C1-C8 against HeLa cell line was assayed which showed lower IC50 values indicating their higher cytotoxicity and potency in killing the cancer cells at low concentrations.Communicated by Ramaswamy H. Sarma.