Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(3): 622-638.e22, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002797

RESUMO

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Longevidade/genética , Sirtuínas/metabolismo , Sequência de Aminoácidos , Animais , Peso Corporal , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Evolução Molecular , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Cinética , Masculino , Mutagênese , Filogenia , Roedores/classificação , Alinhamento de Sequência , Sirtuínas/química , Sirtuínas/genética , Raios Ultravioleta
2.
Cell ; 167(4): 1001-1013.e7, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881299

RESUMO

RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability.


Assuntos
Instabilidade Genômica , Reparo de DNA por Recombinação , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , DNA/metabolismo , Dano ao DNA , Expressão Gênica , RNA/metabolismo , RNA Polimerase II/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Schizosaccharomyces/enzimologia
3.
Genes Dev ; 36(1-2): 4-6, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022326

RESUMO

During meiosis, a molecular program induces DNA double-strand breaks (DSBs) and their repair by homologous recombination. DSBs can be repaired with or without crossovers. ZMM proteins promote the repair toward crossover. The sites of DSB repair are also sites where the axes of homologous chromosomes are juxtaposed and stabilized, and where a structure called the synaptonemal complex initiates, providing further regulation of both DSB formation and repair. How crossover formation and synapsis initiation are linked has remained unknown. The study by Pyatnitskaya and colleagues (pp. 53-69) in this issue of Genes & Development highlights the central role of the Saccharomyces cerevisiae ZMM protein Zip4 in this process.


Assuntos
Troca Genética , Complexo Sinaptonêmico , Pareamento Cromossômico , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Meiose/genética
4.
Genes Dev ; 36(1-2): 53-69, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969823

RESUMO

Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11, and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Complexo Sinaptonêmico , Animais , Proteínas de Ciclo Celular/genética , Pareamento Cromossômico , Troca Genética , Mamíferos/genética , Meiose/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
5.
Mol Cell ; 77(2): 384-394.e4, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31806351

RESUMO

HMCES (5hmC binding, embryonic stem cell-specific-protein), originally identified as a protein capable of binding 5-hydroxymethylcytosine (5hmC), an epigenetic modification generated by TET proteins, was previously reported to covalently crosslink to DNA at abasic sites via a conserved cysteine. We show here that Hmces-deficient mice display normal hematopoiesis without global alterations in 5hmC. HMCES specifically enables DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway during class switch recombination (CSR) in B cells, and HMCES deficiency leads to a significant defect in CSR. HMCES mediates Alt-EJ through its SOS-response-associated-peptidase domain (SRAPd), a function that requires DNA binding but is independent of its autopeptidase and DNA-crosslinking activities. We show that HMCES is recruited to switch regions of the immunoglobulin locus and provide a potential structural basis for the interaction of HMCES with long DNA overhangs generated by Alt-EJ during CSR. Our studies provide further evidence for a specialized role for HMCES in DNA repair.


Assuntos
Linfócitos B/fisiologia , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Switching de Imunoglobulina/genética , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Camundongos , Camundongos Endogâmicos C57BL , Translocação Genética/genética
6.
Genes Dev ; 33(17-18): 1175-1190, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31395742

RESUMO

The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. DNA double-strand breaks (DSBs) within rDNA induce both rDNA transcriptional repression and nucleolar segregation, but the link between the two events remains unclear. Here we found that DSBs induced on rDNA trigger transcriptional repression in a cohesin- and HUSH (human silencing hub) complex-dependent manner throughout the cell cycle. In S/G2 cells, transcriptional repression is further followed by extended resection within the interior of the nucleolus, DSB mobilization at the nucleolar periphery within nucleolar caps, and repair by homologous recombination. We showed that nuclear envelope invaginations frequently connect the nucleolus and that rDNA DSB mobilization, but not transcriptional repression, involves the nuclear envelope-associated LINC complex and the actin pathway. Altogether, our data indicate that rDNA break localization at the nucleolar periphery is not a direct consequence of transcriptional repression but rather is an active process that shares features with the mobilization of persistent DSB in active genes and heterochromatin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Ribossômico/genética , Regulação da Expressão Gênica/genética , RNA Longo não Codificante/metabolismo , Nucléolo Celular/metabolismo , Histonas/metabolismo , Recombinação Homóloga/genética , Membrana Nuclear/metabolismo , Coesinas
7.
Trends Genet ; 39(7): 560-574, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36967246

RESUMO

DNA double-strand breaks (DSBs) are one of the most genotoxic DNA lesions, driving a range of pathological defects from cancers to immunodeficiencies. To combat genomic instability caused by DSBs, evolution has outfitted cells with an intricate protein network dedicated to the rapid and accurate repair of these lesions. Pioneering studies have identified and characterized many crucial repair factors in this network, while the advent of genome manipulation tools like clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) has reinvigorated interest in DSB repair mechanisms. This review surveys the latest methodological advances and biological insights gained by utilizing Cas9 as a precise 'damage inducer' for the study of DSB repair. We highlight rapidly inducible Cas9 systems that enable synchronized and efficient break induction. When combined with sequencing and genome-specific imaging approaches, inducible Cas9 systems greatly expand our capability to spatiotemporally characterize cellular responses to DSB at specific genomic coordinates, providing mechanistic insights that were previously unobtainable.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Sistemas CRISPR-Cas/genética , Reparo do DNA/genética , Reparo do DNA por Junção de Extremidades , DNA/genética , Edição de Genes/métodos
8.
EMBO J ; 41(1): e108813, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34817085

RESUMO

Heterochromatin is a conserved feature of eukaryotic chromosomes, with central roles in gene expression regulation and maintenance of genome stability. How heterochromatin proteins regulate DNA repair remains poorly described. In the yeast Saccharomyces cerevisiae, the silent information regulator (SIR) complex assembles heterochromatin-like chromatin at sub-telomeric chromosomal regions. SIR-mediated repressive chromatin limits DNA double-strand break (DSB) resection, thus protecting damaged chromosome ends during homologous recombination (HR). As resection initiation represents the crossroads between repair by non-homologous end joining (NHEJ) or HR, we asked whether SIR-mediated heterochromatin regulates NHEJ. We show that SIRs promote NHEJ through two pathways, one depending on repressive chromatin assembly, and the other relying on Sir3 in a manner that is independent of its heterochromatin-promoting function. Via physical interaction with the Sae2 protein, Sir3 impairs Sae2-dependent functions of the MRX (Mre11-Rad50-Xrs2) complex, thereby limiting Mre11-mediated resection, delaying MRX removal from DSB ends, and promoting NHEJ.


Assuntos
Reparo do DNA por Junção de Extremidades , Endonucleases/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Endonucleases/química , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero/metabolismo
9.
Mol Cell ; 69(6): 1046-1061.e5, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547717

RESUMO

A single mutagen can generate multiple different types of DNA lesions. How different repair pathways cooperate in complex DNA lesions, however, remains largely unclear. Here we measured, clustered, and modeled the kinetics of recruitment and dissociation of 70 DNA repair proteins to laser-induced DNA damage sites in HeLa cells. The precise timescale of protein recruitment reveals that error-prone translesion polymerases are considerably delayed compared to error-free polymerases. We show that this is ensured by the delayed recruitment of RAD18 to double-strand break sites. The time benefit of error-free polymerases disappears when PARP inhibition significantly delays PCNA recruitment. Moreover, removal of PCNA from complex DNA damage sites correlates with RPA loading during 5'-DNA end resection. Our systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Neoplasias do Colo do Útero/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Instabilidade Genômica , Células HeLa , Humanos , Cinética , Modelos Genéticos , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
10.
Mol Cell ; 72(2): 250-262.e6, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270107

RESUMO

Double-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains.


Assuntos
Cromatina/genética , Reparo do DNA/genética , Histonas/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Humanos , Células K562 , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
11.
J Biol Chem ; 300(3): 105708, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311177

RESUMO

A DNA double-strand break (DSB) is one of the most dangerous types of DNA damage that is repaired largely by homologous recombination or nonhomologous end-joining (NHEJ). The interplay of repair factors at the break directs which pathway is used, and a subset of these factors also function in more mutagenic alternative (alt) repair pathways. Resection is a key event in repair pathway choice and extensive resection, which is a hallmark of homologous recombination, and it is mediated by two nucleases, Exo1 and Dna2. We observed differences in resection and repair outcomes in cells harboring nuclease-dead dna2-1 compared with dna2Δ pif1-m2 that could be attributed to the level of Exo1 recovered at DSBs. Cells harboring dna2-1 showed reduced Exo1 localization, increased NHEJ, and a greater resection defect compared with cells where DNA2 was deleted. Both the resection defect and the increased rate of NHEJ in dna2-1 mutants were reversed upon deletion of KU70 or ectopic expression of Exo1. By contrast, when DNA2 was deleted, Exo1 and Ku70 recovery levels did not change; however, Nej1 increased as did the frequency of alt-end joining/microhomology-mediated end-joining repair. Our findings demonstrate that decreased Exo1 at DSBs contributed to the resection defect in cells expressing inactive Dna2 and highlight the complexity of understanding how functionally redundant factors are regulated in vivo to promote genome stability.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Helicases , Proteínas de Ligação a DNA , Exodesoxirribonucleases , Proteínas de Saccharomyces cerevisiae , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Genes Cells ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845450

RESUMO

DNA double-strand breaks (DSBs) are the most severe DNA lesions and need to be removed immediately to prevent loss of genomic information. Recently, it has been revealed that DSBs induce novel transcription from the cleavage sites in various species, resulting in RNAs being referred to as damage-induced RNAs (diRNAs). While diRNA synthesis is an early event in the DNA damage response and plays an essential role in DSB repair activation, the location where diRNAs are newly generated in plants remains unclear, as does their transcriptional mechanism. Here, we performed the sequencing of polyadenylated (polyA) diRNAs that emerged around all DSB loci in Arabidopsis thaliana under the expression of the exogenous restriction enzyme Sbf I and observed 88 diRNAs transcribed via RNA polymerase II in 360 DSB loci. Most of the detected diRNAs originated within active genes and were transcribed from DSBs in a bidirectional manner. Furthermore, we found that diRNA elongation tends to terminate at the boundary of an endogenous gene located near DSB loci. Our results provide reliable evidence for understanding the importance of new transcription at DSBs and show that diRNA is a crucial factor for successful DSB repair.

13.
Trends Biochem Sci ; 45(9): 779-793, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513599

RESUMO

DNA double-strand break (DSB) resection, once thought to be a simple enzymatic process, is emerging as a highly complex series of coordinated activities required to maintain genome integrity. Progress in cell biology, biochemistry, and genetics has deciphered the precise resecting activities, the regulatory components, and their ability to properly channel the resected DNA to the appropriate DNA repair pathway. Herein, we review the mechanisms of regulation of DNA resection, with an emphasis on negative regulators that prevent single-strand (ss)DNA accumulation to maintain genome stability. Interest in targeting DNA resection inhibitors is emerging because their inactivation leads to poly(ADP-ribose) polymerase inhibitor (PARPi) resistance. We also present detailed regulation of DNA resection machineries, their analysis by functional assays, and their impact on disease and PARPi resistance.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo
14.
Plant J ; 114(2): 403-423, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36786716

RESUMO

In eukaryotes, meiotic recombination maintains genome stability and creates genetic diversity. The conserved Ataxia-Telangiectasia Mutated (ATM) kinase regulates multiple processes in meiotic homologous recombination, including DNA double-strand break (DSB) formation and repair, synaptonemal complex organization, and crossover formation and distribution. However, its function in plant meiotic recombination under stressful environmental conditions remains poorly understood. In this study, we demonstrate that ATM is required for the maintenance of meiotic genome stability under heat stress in Arabidopsis thaliana. Using cytogenetic approaches we determined that ATM does not mediate reduced DSB formation but does ensure successful DSB repair, and thus meiotic chromosome integrity, under heat stress. Further genetic analysis suggested that ATM mediates DSB repair at high temperature by acting downstream of the MRE11-RAD50-NBS1 (MRN) complex, and acts in a RAD51-independent but chromosome axis-dependent manner. This study extends our understanding on the role of ATM in DSB repair and the protection of genome stability in plants under high temperature stress.


Assuntos
Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , Temperatura , Reparo do DNA/genética , Instabilidade Genômica , Proteínas de Ciclo Celular/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
15.
Trends Genet ; 37(6): 582-599, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785198

RESUMO

Nonhomologous DNA end joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways in eukaryotes. The well-known critical proteins involved in NHEJ include Ku70/80, DNA-PKcs, Artemis, DNA pol λ/µ, DNA ligase IV-XRCC4, and XLF. Recent studies have added a number of new proteins to the NHEJ repertoire namely paralog of XRCC4 and XLF (PAXX), modulator of retroviral infection (MRI)/ cell cycle regulator of NHEJ (CYREN), transactivation response DNA-binding protein (TARDBP) of 43 kDa (TDP-43), intermediate filament family orphan (IFFO1), ERCC excision repair 6 like 2 (ERCC6L2), and RNase H2. PAXX acts as a stabilizing factor for the main NHEJ components. MRI/CYREN seems to play a dual role stimulating NHEJ in the G1 phase of the cell cycle, while inhibiting the pathway in the S and G2 phases. TDP-43 can recruit the ligase IV-XRCC4 complex to the DSB sites and stimulate ligation in neuronal cells. RNase H2 excises out the ribonucleotides inserted during repair by DNA polymerase µ/TdT. This review provides a brief glimpse into how these new partners were discovered and their contribution to the mechanism and regulation of NHEJ.


Assuntos
Reparo do DNA por Junção de Extremidades/fisiologia , Proteínas/metabolismo , Animais , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Proteínas/genética , Ribonucleases/genética , Ribonucleases/metabolismo
16.
Plant Cell Physiol ; 65(1): 142-155, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37930797

RESUMO

DNA double-strand breaks (DSBs) are among the most serious types of DNA damage, causing mutations and chromosomal rearrangements. In eukaryotes, DSBs are immediately repaired in coordination with chromatin remodeling for the deposition of DSB-related histone modifications and variants. To elucidate the details of DSB-dependent chromatin remodeling throughout the genome, artificial DSBs need to be reproducibly induced at various genomic loci. Recently, a comprehensive method for elucidating chromatin remodeling at multiple DSB loci via chemically induced expression of a restriction enzyme was developed in mammals. However, this DSB induction system is unsuitable for investigating chromatin remodeling during and after DSB repair, and such an approach has not been performed in plants. Here, we established a transgenic Arabidopsis plant harboring a restriction enzyme gene Sbf I driven by a heat-inducible promoter. Using this transgenic line, we performed chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) of histones H4K16ac and H2A.Z and investigated the dynamics of these histone marks around the endogenous 623 Sbf I recognition sites. We also precisely quantified DSB efficiency at all cleavage sites using the DNA resequencing data obtained by the ChIP-seq procedure. From the results, Sbf I-induced DSBs were detected at 360 loci, which induced the transient deposition of H4K16ac and H2A.Z around these regions. Interestingly, we also observed the co-localization of H4K16ac and H2A.Z at some DSB loci. Overall, DSB-dependent chromatin remodeling was found to be highly conserved between plants and animals. These findings provide new insights into chromatin remodeling that occurs in response to DSBs in Arabidopsis.


Assuntos
Arabidopsis , Histonas , Histonas/metabolismo , Quebras de DNA de Cadeia Dupla , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , DNA , Reparo do DNA
17.
Genes Cells ; 28(1): 53-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36415926

RESUMO

Steroid hormones induce the transcription of target genes by activating nuclear receptors. Early transcriptional response to various stimuli, including hormones, involves the active catalysis of topoisomerase II (TOP2) at transcription regulatory sequences. TOP2 untangles DNAs by transiently generating double-strand breaks (DSBs), where TOP2 covalently binds to DSB ends. When TOP2 fails to rejoin, called "abortive" catalysis, the resulting DSBs are repaired by tyrosyl-DNA phosphodiesterase 2 (TDP2) and non-homologous end-joining (NHEJ). A steroid, cortisol, is the most important glucocorticoid, and dexamethasone (Dex), a synthetic glucocorticoid, is widely used for suppressing inflammation in clinics. We here revealed that clinically relevant concentrations of Dex and physiological concentrations of cortisol efficiently induce DSBs in G1 phase cells deficient in TDP2 and NHEJ. The DSB induction depends on glucocorticoid receptor (GR) and TOP2. Considering the specific role of TDP2 in removing TOP2 adducts from DSB ends, induced DSBs most likely represent stalled TOP2-DSB complexes. Inhibition of RNA polymerase II suppressed the DSBs formation only modestly in the G1 phase. We propose that cortisol and Dex frequently generate DSBs through the abortive catalysis of TOP2 at transcriptional regulatory sequences, including promoters or enhancers, where active TOP2 catalysis occurs during early transcriptional response.


Assuntos
Quebras de DNA de Cadeia Dupla , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucocorticoides/farmacologia , Reparo do DNA , Proteínas Nucleares/metabolismo , Hidrocortisona/farmacologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA/genética
18.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34006647

RESUMO

Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Autoantígeno Ku/genética , Células Precursoras de Linfócitos B/metabolismo , Recombinação V(D)J , Animais , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fase G1/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Precursoras de Linfócitos B/citologia
19.
Reprod Health ; 21(1): 18, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310235

RESUMO

BACKGROUND: Male infertility is a global health issue. The more causative genes related to human male infertility should be further explored. The essential role of Zcwpw1 in male mouse fertility has been established and the role of ZCWPW1 in human reproduction needs further investigation to verify. METHODS: An infertile man with oligoasthenoteratozoospermia phenotype and his parents were recruited from West China Second University Hospital, Sichuan University. A total of 200 healthy Han Chinese volunteers without any evidence of infertility were recruited as normal controls, while an additional 150 infertile individuals were included to assess the prevalence of ZCWPW1 variants in a sporadic male sterile population. The causative gene variant was identified by Whole-exome sequencing and Sanger sequencing. The phenotype of the oligoasthenoteratozoospermia was determined by Papanicolaou staining, immunofluorescence staining and electron microscope. In-vitro experiments, western blot and in-silicon analysis were applied to assess the pathogenicity of the identified variant. Additionally, we examined the influence of the variant on the DNA fragmentation and DNA repair capability by Sperm Chromatin Dispersion and Neutral Comet Assay. RESULTS: The proband exhibits a phenotype of oligoasthenoteratozoospermia, his spermatozoa show head defects by semen examination, Papanicolaou staining and electron microscope assays. Whole-exome sequencing and Sanger sequencing found the proband carries a homozygous ZCWPW1 variant (c.1064C > T, p. P355L). Immunofluorescence analysis shows a significant decrease in ZCWPW1 expression in the proband's sperm. By exogenous expression with ZCWPW1 mutant plasmid in vitro, the obvious declined expression of ZCWPW1 with the mutation is validated in HEK293T. After being treated by hydroxyurea, MUT-ZCWPW1 transfected cells and empty vector transfected cells have a higher level of γ-H2AX, increased tail DNA and reduced H3K9ac level than WT-ZCWPW1 transfected cells. Furthermore, the Sperm Chromatin Dispersion assay revealed the proband's spermatozoa have high DNA fragmentation. CONCLUSIONS: It is the first report that a novel homozygous missense mutation in ZCWPW1 caused human male infertility with sperm head defects and high DNA fragmentation. This finding enriches the gene variant spectrum and etiology of oligoasthenoteratozoospermia.


Assuntos
Infertilidade Masculina , Oligospermia , Humanos , Masculino , Cromatina , Fragmentação do DNA , Células HEK293 , Infertilidade Masculina/genética , Sêmen , Cabeça do Espermatozoide , Espermatozoides
20.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542327

RESUMO

DNA damage is induced by both endogenous and exogenous factors. Repair of DNA double-strand break (DSB), a serious damage that threatens genome stability, decreases with senescence. However, the molecular mechanisms underlying the decline in DNA repair capacity during senescence remain unclear. We performed immunofluorescence staining for phosphorylated histone H2AX (γ-H2AX) in normal human fetal lung fibroblasts and human skin fibroblasts of different ages after chronic irradiation (total dose, 1 Gy; dose rate, 1 Gy/day) to investigate the effect of cellular senescence and organismal aging on DSB repair. Accumulation of DSBs was observed with cellular senescence and organismal aging, probably caused by delayed DSB repair. Importantly, the formation of γ-H2AX foci, an early event in DSB repair, is delayed with cellular senescence and organismal aging. These results suggest that the delay in γ-H2AX focus formation might delay the overall DSB repair. Interestingly, immediate γ-H2AX foci formation was suppressed in cells with senescence-associated heterochromatin foci (SAHF). To investigate the relationship between the γ-H2AX focus formation and SAHF, we used LiCl to relax the SAHFs, followed by irradiation. We demonstrated that LiCl rescued the delayed γ-H2AX foci formation associated with cellular senescence. This indicates that SAHF interferes with γ-H2AX focus formation and inhibits DSB repair in radiation-induced DSB. Our results suggest that therapeutic targeting of SAHFs have potential to resolve DSB repair dysfunction associated with cellular senescence.


Assuntos
Histonas , Exposição à Radiação , Humanos , Histonas/metabolismo , Heterocromatina , Reparo do DNA , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA