Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Oral Investig ; 28(5): 254, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630328

RESUMO

OBJECTIVE: Dentinogenesis imperfecta (DI) is an inherited dentin defect and may be isolated or associated with disorders such as osteogenesis imperfecta, odontochondrodysplasia Ehler-Danlos and others. Isolated DI is caused mainly by pathogenic variants in DSPP gene and around 50 different variants have been described in this gene. Herein, we report on 19 patients from two unrelated Egyptian families with isolated DI. Additionally, we focused on genetic counselling of the two families. MATERIALS AND METHODS: The patients were examined clinically and dentally. Panoramic X-rays were done to some patients. Whole exome sequencing (WES) and Sanger sequencing were used. RESULTS: WES revealed two new nonsense variants in DSPP gene, c.288T > A (p.Tyr96Ter) and c.255G > A (p.Trp85Ter). Segregation analysis by Sanger sequencing confirmed the presence of the first variant in all affected members of Family 1 while the second variant was confirmed to be de novo in the patient of Family 2. CONCLUSIONS AND CLINICAL RELEVANCE: Our study extends the number of DSPP pathogenic variants and strengthens the fact that DSPP is the most common DI causative gene irrespective of patients' ethnicity. In addition, we provide insights on genetic counseling issues in patients with inherited DSPP variants taking into consideration the variable religion, culture and laws in our society.


Assuntos
Dentinogênese Imperfeita , Osteocondrodisplasias , Humanos , Dentinogênese Imperfeita/genética , Aconselhamento Genético , Etnicidade , Radiografia Panorâmica
2.
Connect Tissue Res ; 64(5): 505-515, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247252

RESUMO

AIM: Inflammation is a complex host response to harmful infection or injury, and it seems to play a crucial role in tissue regeneration both positively and negatively. We have previously demonstrated that the activation of the complement C5a pathway affects dentin-pulp regeneration. However, limited information is available to understand the role of the complement C5a system related to inflammation-mediated dentinogenesis. The aim of this study was to determine the role of complement C5a receptor (C5aR) in regulating lipopolysaccharide (LPS)-induced odontogenic differentiation of dental pulp stem cells (DPSCs). MATERIAL AND METHODS: Human DPSCs were subjected to LPS-stimulated odontogenic differentiation in dentinogenic media treated with the C5aR agonist and antagonist. A putative downstream pathway of the C5aR was examined using a p38 mitogen-activated protein kinase (p38) inhibitor (SB203580). RESULTS: Our data demonstrated that inflammation induced by the LPS treatment potentiated DPSC odontogenic differentiation and that this is C5aR dependent. C5aR signaling controlled the LPS-stimulated dentinogenesis by regulating the expression of odontogenic lineage markers like dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1). Moreover, the LPS treatment increased the total p38, and the active form of p38 expression, and treatment with SB203580 abolished the LPS-induced DSPP and DMP-1 increase. CONCLUSIONS: These data suggest a significant role of C5aR and its putative downstream molecule p38 in the LPS-induced odontogenic DPSCs differentiation. This study highlights the regulatory pathway of complement C5aR/p38 and a possible therapeutic approach for improving the efficiency of dentin regeneration during inflammation.


Assuntos
Polpa Dentária , Lipopolissacarídeos , Humanos , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Complemento C5a/metabolismo , Polpa Dentária/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Regeneração , Células-Tronco/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
3.
Clin Oral Investig ; 27(7): 3885-3894, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37017752

RESUMO

OBJECTIVES: To investigate the genetic causes and teeth characteristics of dentin dysplasia Shields type II(DD-II) in three Chinese families. MATERIALS AND METHODS: Data from three Chinese families affected with DD-II were collected. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) were conducted to screen for variations, and Sanger sequencing was used to verify mutation sites. The physical and chemical characteristics of the affected teeth including tooth structure, hardness, mineral content, and ultrastructure were investigated. RESULTS: A novel frameshift deletion mutation c.1871_1874del(p.Ser624fs) in DSPP was found in families A and B, while no pathogenic mutation was found in family C. The affected teeth's pulp cavities were obliterated, and the root canals were smaller than normal teeth and irregularly distributed comprising a network. The patients' teeth also had reduced dentin hardness and highly irregular dentinal tubules. The Mg content of the teeth was significantly lower than that of the controls, but the Na content was obviously higher than that of the controls. CONCLUSIONS: A novel frameshift deletion mutation, c.1871_1874del (p.Ser624fs), in the DPP region of the DSPP gene causes DD-II. The DD-II teeth demonstrated compromised mechanical properties and changed ultrastructure, suggesting an impaired function of DPP. Our findings expand the mutational spectrum of the DSPP gene and strengthen the understanding of clinical phenotypes related to the frameshift deletion in the DPP region of the DSPP gene. CLINICAL RELEVANCE: A DSPP mutation can alter the characteristics of the affected teeth, including tooth structure, hardness, mineral content, and ultrastructure.


Assuntos
Dentinogênese Imperfeita , Dente , Humanos , Dentina/patologia , Dentinogênese , Dentinogênese Imperfeita/genética , Proteínas da Matriz Extracelular/genética , Mutação , Fenótipo
4.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555228

RESUMO

Periodontitis is a common inflammatory disease that in some cases can cause tooth loss. Cementum is a mineralized tissue that forms part of the insertion periodontium and serves to fix the teeth to the alveolar bone. In addition, it acts as a reservoir of different growth and differentiation factors, which regulate the biology of the teeth. Cementogenesis is a complex process that is still under investigation and involves different factors, including dentin sialophosphoprotein (DSPP). In this work we studied the role of surface microtopography in the differentiation of human dental pulp stem cells (hDPSCs) into cementoid-like secreting cells. We cultured hDPSCs on decellularized dental scaffolds on either dentin or cementum surfaces. Cell morphology was evaluated by light and electron microscopy. We also evaluated the DSPP expression by immunohistochemistry. The hDPSCs that was cultured on surfaces with accessible dentinal tubules acquired an odontoblastic phenotype and emitted characteristic processes within the dentinal tubules. These cells synthesized the matrix components of a characteristic reticular connective tissue, with fine collagen fibers and DSPP deposits. The hDPSCs that was cultured on cementum surfaces generated a well-organized tissue consisting of layers of secretory cells and dense fibrous connective tissue with thick bundles of collagen fibers perpendicular to the scaffold surface. Intra- and intercellular deposits of DSPP were also observed. The results presented here reinforce the potential for hDPSCs to differentiate in vitro into cells that secrete a cementoid-like matrix in response to the physical stimuli related to the microtopography of contact surfaces. We also highlight the role of DSPP as a component of the newly formed matrix.


Assuntos
Polpa Dentária , Dente , Humanos , Células-Tronco/metabolismo , Dente/metabolismo , Ligamento Periodontal , Diferenciação Celular , Colágeno/metabolismo , Células Cultivadas
5.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216099

RESUMO

Leptin is a non-glycosylated 16 kDa protein synthesized mainly in adipose cells. The main function of leptin is to regulate energy homeostasis and weight control in a central manner. There is increasing evidence that leptin also has systemic effects, acting as a link between innate and acquired immune responses. The expression of leptin and its receptor in human dental pulp and periradicular tissues have already been described, as well as several stimulatory effects of leptin protein expression in dental and periodontal tissues. The aim of this paper was to review and to compile the reported scientific literature on the role and effects of leptin in the dental pulp and periapical tissues. Twelve articles accomplished the inclusion criteria, and a comprehensive narrative review was carried out. Review of the available scientific literature concluded that leptin has the following effects on pulpal and periapical physiology: 1) Stimulates odontogenic differentiation of dental pulp stem cells (DPSCs), 2) Increases the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1), odontoblastic proteins involved in odontoblastic differentiation and dentin mineralization, 3) Stimulates vascular endothelial growth factor (VEGF) expression in human dental pulp tissue and primary cultured cells of human dental pulp (hDPCs), 4) Stimulates angiogenesis in rat dental pulp cells, and 5) Induces the expression of interleucinas 6 and 8 in human periodontal ligament cells (hPDLCs). There is evidence which suggests that leptin is implicated in the dentin mineralization process and in pulpal and periapical inflammatory and reparative responses.


Assuntos
Polpa Dentária/metabolismo , Leptina/metabolismo , Ligamento Periodontal/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos , Odontogênese/fisiologia
6.
BMC Oral Health ; 22(1): 151, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488332

RESUMO

BACKGROUND: A force applied during orthodontic treatment induces inflammation to root area and lead to root resorption known as orthodontically induced inflammatory root resorption (OIIRR). Dentine sialophosphoprotein (DSPP) is one of the most abundant non-collagenous proteins in dentine that was released into gingival crevicular fluid (GCF) during OIIRR. The aim of this research is to compare DSPP detection using the univariate and multivariate analysis in predicting classification level of root resorption. METHODS: The subjects for this study consisted of 30 patients in 3 group classified as normal, mild, and severe groups of OIIRR. The GCF samples were taken from upper permanent central incisors in the normal and mild group while the upper primary second molars in the severe group. The DSPP qualitative detection limit was determined by analyzing the whole absorption spectrum utilizing multivariate analysis embedded with different preprocessing method. The multivariate analysis represents the multi-wavelength spectrum while univariate analyzes the absorption of a single wavelength. RESULTS: The results showed that the multivariate analysis technique using partial least square-discriminate analysis (PLS-DA) with the preprocess method has successfully improved in classification prediction for the normal and mild group at 0.88 percent accuracy. The multivariate using PLS-DA algorithm with Mean Center preprocess method was able to predict normal and mild tooth resorption classes better than the univariate analysis. The classification parameters have improved in term of the specificity, precision and accuracy. CONCLUSION: Therefore, the multivariate analysis helps to predict an early detection of tooth resorption complimenting the sensitivity of the univariate analysis. Trial registration NCT05077878 (14/10/2021).


Assuntos
Reabsorção da Raiz , Dentina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Análise Espectral
7.
Int Endod J ; 54(4): 572-584, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33200415

RESUMO

AIM: To investigate the potential role of Krüppel-like factor 6 (KLF6) in the odontoblastic differentiation of immortalized dental papilla mesenchymal cells (iMDP-3) cells. METHODOLOGY: Alizarin Red S (ARS) and Alkaline phosphatase (ALP) staining was used to examine the mineralization effect of iMDP-3 cells after odontoblastic induction. Real-time PCR and Western blotting were employed to analyse dentine sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP1), RUNX family transcription factor 2 (RUNX2), ALP and KLF6 expression during this process. Co-expression of the KLF6 with DMP1, DSPP and RUNX2 was detected by double immunofluorescence staining to explore their local relationship in the cell. To further investigate KLF6 functions, Klf6 gain- and loss-of-function assays followed by ARS and ALP stainings, real-time PCR and Western blotting were performed using Klf6-overexpression plasmids and Klf6 siRNA to investigate whether changes in Klf6 expression affect the odontoblastic differentiation of iMDP-3 cells. Dual-luciferase reporter assays were used to elucidate the mechanistic regulation of Dspp and Dmp1 expression by Klf6. Means were compared using the unpaired t-test and Kruskal-Wallis one-way anova with P < 0.05 and P < 0.01 defined as statistical significance levels. RESULTS: The expression levels of Klf6 (P < 0.01), Dspp (P < 0.05), Dmp1 (P < 0.01), Runx2 (P < 0.01) and Alp (P < 0.01) were significantly elevated during odontoblastic differentiation of iMDP-3 cells. KLF6 was co-localized with DSPP, DMP1 and RUNX2 in the cytoplasm and nucleus of iMDP-3 cells. Overexpression of Klf6 promoted the odontoblastic differentiation of iMDP-3, whereas the inhibition of Klf6 prevented this procession. Dual-luciferase assays revealed that Klf6 upregulates Dspp and Dmp1 transcription in iMDP-3 cells during odontoblastic differentiation. CONCLUSION: Klf6 promoted odontoblastic differentiation by targeting the transcription promoter of Dmp1 and Dspp. This study may offer novel insights into strategies for treating injuries to dental pulp tissue.


Assuntos
Polpa Dentária , Proteínas da Matriz Extracelular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Dentina , Proteínas da Matriz Extracelular/genética , Fator 6 Semelhante a Kruppel , Odontoblastos , Fosfoproteínas/genética , Sialoglicoproteínas/genética
8.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205668

RESUMO

Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.


Assuntos
Moléculas de Adesão Celular/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Boca/crescimento & desenvolvimento , Osteonectina/fisiologia , Trombospondinas/fisiologia , Animais , Proteínas de Sinalização Intercelular CCN/fisiologia , Neoplasias de Cabeça e Pescoço/etiologia , Humanos , Boca/embriologia , Tenascina/fisiologia , Cicatrização
9.
J Contemp Dent Pract ; 22(8): 882-889, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753839

RESUMO

AIM AND OBJECTIVE: The study was conducted to evaluate the effects of N-acetylcysteine (NAC) on the propagation and differentiation of stem cells from human exfoliated deciduous teeth(SHED). MATERIALS AND METHODS: SHEDs were isolated by explant culture method and characterized for stem cell properties using flow cytometry method. MTT assay and Cell Counting Kit-8 (CCK-8) assay were used to examine the viability and proliferation of the SHEDs. The effects of NAC-induced osteo/odontoblastic differentiation of SHEDs were determined by functional staining for mineralization, and the gene expression of osteo/odontoblastic transcription factors and proteins was evaluated by real-time quantitative reverse transcription-polymerase chain reaction(qRT-PCR) analyses. Protein levels of collagen type 1 (COL1), dentin sialophosphoprotein (DSPP), and dentin matrix acidic phosphoprotein 1(DMP-1) were calculated by the Western blot method to assess the osteo/odontogenic differentiation. RESULTS: SHEDs presented mesenchymal stem cell (MSC)-like characteristics on flow cytometric analysis. The cell viability and metabolic activity of SHEDs were increased with an increase in the concentrations of NAC from 0.5 to 10 nM. However, the concentrations of NAC from 0.5 to 2.5 mM did not affect cell proliferation. NAC incorporated at a concentration of 2.5 mM showed higher mineralization and considerably increased gene expression levels of runt-related transcription factor 2 (RUNX2), COL1A1, DSPP, and DMP-1. It significantly increased the protein expression of odontoblast-related matrix proteins like COL1, DSPP, and DMP-1. CONCLUSION: NAC regulates the healthy propagation of dental stem cells in vitro. Its effects on the differentiation of dental pulp SHEDs remain unidentified. This study explores that NAC can encourage the mineralization of SHEDs and differentiate them into the odontoblastic lineage. CLINICAL SIGNIFICANCE: The results propose that NAC could have a significant pharmacological role in activating and enhancing odontogenic differentiation of dental stem cells and possibly a prospect in regenerative dentistry.


Assuntos
Acetilcisteína , Polpa Dentária , Acetilcisteína/farmacologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Odontoblastos , Células-Tronco , Dente Decíduo
10.
Connect Tissue Res ; 61(6): 526-536, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31284784

RESUMO

Purpose/Aim: The aim of this study was to explore whether dentinogenesis imperfecta (DGI)-related aberrations are detectable in odontogenic tissues. Materials and Methods: Morphological and histological analyses were carried out on 3 teeth (two maxillary 1st molars, one maxillary central incisor) extracted from a patient with DGI Type II. A maxillary 2nd molar teeth extracted from a healthy patient was used as control. A micro-computed tomographic (µCT) data-acquisition system was used to scan and reconstruct samples. Pentachrome and picrosirius red histologic stains were used to analyze odontogenic tissues and their collagenous matrices. Results: Our findings corroborate DGI effects on molar and incisor root elongation, and the hypo-mineralized state of DGI dentin. In addition to these findings, we discovered changes to the DGI pulp cavity: Reactionary dentin formation, which we theorize is exacerbated by the early loss of enamel, nearly obliterated an acellular but still-vascularized DGI pulp cavity. We also discovered an accumulation of lamellated cellular cementum at the root apices, which we hypothesize compensates for the severe and rapid attrition of the DGI tooth. Conclusions: Based on imaging and histological data, we propose a novel hypothesis to explain the complex dental phenotypes observed in patients with DGI Type II.


Assuntos
Dentinogênese Imperfeita/diagnóstico por imagem , Dentinogênese Imperfeita/patologia , Modelos Biológicos , Adolescente , Pré-Escolar , Cemento Dentário/diagnóstico por imagem , Cemento Dentário/patologia , Polpa Dentária/irrigação sanguínea , Polpa Dentária/diagnóstico por imagem , Polpa Dentária/patologia , Dentina/patologia , Humanos , Incisivo/diagnóstico por imagem , Masculino , Dente Molar/diagnóstico por imagem , Fenótipo , Ápice Dentário/diagnóstico por imagem , Ápice Dentário/patologia , Raiz Dentária/diagnóstico por imagem
11.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630820

RESUMO

Recent reports highlight the potential tumorigenic role of Dentin Sialophosphoprotein (DSPP) and its cognate partner Matrix Metalloproteinase 20 (MMP-20) in Oral Squamous Cell Carcinomas (OSCCs). However, the function/mechanism of these roles is yet to be fully established. The present study aimed to investigate the effects of DSPP and MMP20 silencing on specific proteins involved in oral cancer cell adhesion, angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). Stable lines of DSPP/MMP20 silenced OSCC cell line (OSC2), previously established via lentiviral-mediated shRNA transduction, were analyzed for the effects of DSPP, MMP20, and combined DSPP-MMP20 silencing on MMP2, MMP9, integrins αvß3 and αvß6, VEGF, Kallikerin- 4,-5,-8,-10, E-cadherin, N-cadherin, Vimentin, met, src, snail, and Twist by Western blot. Results show a significant decrease (p < 0.05) in the expression of MMP2, MMP9, integrin αvß3, αvß6, VEGF, Kallikerins -4, -5, -8, -10, N-cadherin, vimentin met, src, snail and twist following DSPP and MMP20 silencing, individually and in combination. On the other hand, the expression of E-cadherin was found to be significantly increased (p < 0.05). These results suggest that the tumorigenic effect of DSPP and MMP20 on OSC2 cells is mediated via the upregulation of the genes involved in invasion, metastasis, angiogenesis, and epithelial-mesenchymal transition (EMT).


Assuntos
Proteínas da Matriz Extracelular/farmacologia , Metaloproteinase 20 da Matriz/metabolismo , Fosfoproteínas/farmacologia , Sialoglicoproteínas/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Caderinas/metabolismo , Carcinoma de Células Escamosas/patologia , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 20 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Bucais/patologia , Invasividade Neoplásica , Metástase Neoplásica/genética , Neovascularização Patológica/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
12.
Cell Mol Biol Lett ; 23: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002682

RESUMO

BACKGROUND: Recent findings indicate that dentin sialophosphoprotein (DSPP) and matrix metalloproteinase (MMP) 20 interact in oral squamous cell carcinoma (OSCC). The objective of this study was to determine the effects of DSPP/MMP20 gene silencing on oral cancer stem cell (OCSC) markers. METHODS: The expression of well-established OCSC markers: ABCG2; ALDH1; CD133; CD44; BMI1; LGR4, and Podoplanin in DSPP/MMP20-silenced OSCC cell line, OSC2, and controls were assayed by western blot (WB), and flow cytometry techniques. The sensitivity of OSC2 cells to cisplatin following DSPP/MMP20 silencing was also determined. RESULTS: DSPP/MMP20 silencing resulted in downregulation of OCSC markers, more profoundly ABCG2 (84%) and CD44 (81%), following double silencing. Furthermore, while treatment of parent (pre-silenced) OSC2 cells with cisplatin resulted in upregulation of OCSC markers, DSPP/MMP20-silenced OSC2 cells similarly treated resulted in profound downregulation of OCSC markers (72 to 94% at 50 µM of cisplatin), and a marked reduction in the proportion of ABCG2 and ALDH1 positive cells (~ 1%). CONCLUSIONS: We conclude that the downregulation of OCSC markers may signal a reduction in OCSC population following MMP20/DSPP silencing in OSCC cells, while also increasing their sensitivity to cisplatin. Thus, our findings suggest a potential role for DSPP and MMP20 in sustaining OCSC population in OSCCs, possibly, through mechanism(s) that alter OCSC sensitivity to treatment with chemotherapeutic agents such as cisplatin.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Metaloproteinase 20 da Matriz/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Humanos , Receptores de Hialuronatos/metabolismo , Metaloproteinase 20 da Matriz/química , Metaloproteinase 20 da Matriz/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sialoglicoproteínas/antagonistas & inibidores , Sialoglicoproteínas/genética , Regulação para Cima/efeitos dos fármacos
13.
Cell Tissue Res ; 367(2): 351-358, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27628095

RESUMO

Formation of dentin requires the maturation of procollagen I and the proteolytic processing of the dentin sialophosphoprotein (DSPP). These cleavage events can be facilitated by the metalloproteinases meprin α and meprin ß as well as by bone morphogenetic protein 1 (BMP-1). All three enzymes have been shown to play important roles during collagen I maturation in vivo and their potential in cleaving DSPP was demonstrated in vitro. Hence, it has been discussed whether meprin α, meprin ß, BMP-1 or all three are crucial factors in the onset and progression of dentin-related diseases and this issue is addressed here. In this study, we compare the incisors and molars of meprin α (Mep1a -/-)- and meprin ß (Mep1b -/-)-deficient mice with wild-type (WT) controls on the macroscopic and microscopic level. The dentin was evaluated towards the bone mineral density, dentin volume, calcification and collagen matrix integrity. Using immunohistochemistry, we could identify meprin ß, BMP-1 and DSPP/DSP in the pre-dentin of WT mice. Nevertheless, no significant dentin malformation was observed in Mep1b -/- or Mep1a -/- deficient mice.


Assuntos
Dentina/anormalidades , Proteínas da Matriz Extracelular/metabolismo , Metaloendopeptidases/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Animais , Proteínas da Matriz Extracelular/química , Células HEK293 , Humanos , Incisivo/citologia , Incisivo/metabolismo , Incisivo/ultraestrutura , Camundongos , Fosfoproteínas/química , Domínios Proteicos , Sialoglicoproteínas/química
14.
Cell Tissue Res ; 363(2): 385-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26310138

RESUMO

Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription.


Assuntos
Calcificação Fisiológica/genética , Diferenciação Celular/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/metabolismo , Odontoblastos/citologia , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Animais , Biomarcadores/metabolismo , Papila Dentária/citologia , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Dente Molar/embriologia , Dente Molar/metabolismo , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sialoglicoproteínas/metabolismo
15.
J Biol Chem ; 289(41): 28225-36, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25138274

RESUMO

Odontoblasts are a type of terminally differentiated matrix-secreting cells. A number of molecular mechanisms are involved in the differentiation of odontoblasts. Several studies demonstrated that Krüppel-like factor 4 (KLF4) promotes odontoblast differentiation via control of dentin sialophosphoprotein (DSPP). Because nuclear factor I-C (NFIC) is also known to control DSPP, we investigated the relationship between NFIC and KLF4 during odontoblast differentiation. Klf4 mRNA expression was significantly decreased in Nfic(-/-) pulp cells compared with wild type cells. In immunohistochemistry assays, dentin matrix protein 1 (Dmp1), and DSP protein expression was barely observed in Nfic(-/-) odontoblasts and dentin matrix. Nfic bound directly to the Klf4 promoter and stimulated Klf4 transcriptional activity, thereby regulating Dmp1 and DSPP expression during odontoblast differentiation. Nfic or Klf4 overexpression promoted mineralized nodule formation in MDPC-23 cells. In addition, Nfic overexpression also decreased Slug luciferase activity but augmented E-cadherin promoter activity via up-regulation of Klf4 in odontoblasts. Our study reveals important signaling pathways during dentinogenesis: the Nfic-Klf4-Dmp1-Dspp and the Nfic-Klf4-E-cadherin pathways in odontoblasts. Our results indicate the important role of NFIC in regulating KLF4 during dentinogenesis.


Assuntos
Caderinas/genética , Dentinogênese/genética , Proteínas da Matriz Extracelular/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição NFI/genética , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular , Dentina/citologia , Dentina/crescimento & desenvolvimento , Dentina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição NFI/metabolismo , Odontoblastos/citologia , Odontoblastos/metabolismo , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Sialoglicoproteínas/metabolismo , Transdução de Sinais , Transcrição Gênica
16.
Int Endod J ; 48(2): 115-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24661255

RESUMO

AIM: To investigate the behaviour of dental pulp cells under hypoxic conditions in vivo using an experimental animal model. METHODOLOGY: A mini-screw was inserted into the inferior dental nerve canal of rats to arrest the blood supply, which resulted in a reduced oxygen level in the dental pulps of molar teeth used for the experimental group. The decrease in blood supply was evaluated by injected India ink in transparent specimens. The hypoxia marker hypoxyprobe-1 was investigated by immunohistochemical staining. The mRNA expressions of ATP-binding cassette transporter (ABC) G2 (ABCG2) which is a marker for the capacity to excrete metabolites and for stem-like cells as well as dentine sialophosphoprotein (DSPP) and osteocalcin (OCN) which are markers for mineralization were evaluated by RT-PCR. Protein was evaluated by immunohistochemical staining using ABCG2, dentine sialoprotein (DSP) and OCN. RESULTS: The evaluation of India ink indicated a decreased blood supply in the transparent specimens, and hypoxyprobe-1 immunohistochemical staining showed positive expression. ABCG2, DSPP and OCN mRNA expressions increased at 7 and 14 days. Immunohistochemically, ABCG2, DSP and OCN-positive cells were localized in the odontoblastic layer. CONCLUSIONS: Hypoxic conditions promoted mineralization and differentiation of dental pulp cells of the odontoblastic layer.


Assuntos
Hipóxia Celular/fisiologia , Polpa Dentária/citologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Carbono , Diferenciação Celular/fisiologia , Polpa Dentária/irrigação sanguínea , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/fisiologia , Imuno-Histoquímica , Masculino , Modelos Animais , Odontoblastos/fisiologia , Osteocalcina/metabolismo , Fosfoproteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialoglicoproteínas/metabolismo , Microtomografia por Raio-X
17.
Connect Tissue Res ; 55 Suppl 1: 138-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24844412

RESUMO

Most of the proposed extracellular biomineralization processes include the secretion of proteins that interact with mineral ions and/or mineral surfaces. Typically these proteins are acidic or have acidic domains that interact with multivalent cations in the extracellular environment. We propose that most acidic, Ca(2+)-binding proteins challenge the cell's mechanisms for trafficking through the endoplasmic reticulum (ER) lumen due to lumenal mM calcium that cause them to form large aggregates. We have recently shown that >95% of the DSPP mutations that cause non-syndromic genetic dentin diseases start their dominant negative affects by failing to rapidly exit the ER likely by forming complexes that cannot be normally trafficked to the Golgi. The complexes of mutant DSPP then capture more (severe disease) or less (mild disease) of the DSPP translated from the normal allele. After searching genomic databases as well as the published literature, we found the IleProVal (IPV)-like motif at the predicted amino terminus of many acidic proteins made in the mineralizing as well as non-mineralizing tissues of many species including vertebrates, echinoderms, mollusks, and yeast. While we often focused on acidic proteins reported associated with mineralizing structures, proteins associated with hormones and their storage/secretion, digestion, blood functions, as well as milk and other secreted fluids started with variations of the motif. Our hypothesis is that the IPV-like motif interacts with a highly conserved cargo receptor in the ER that efficiently traffics the acidic proteins out of the organelle before they can form harmful aggregates in the Ca(2+)-rich lumen.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular/fisiologia , Retículo Endoplasmático/metabolismo , Motivos de Aminoácidos , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Humanos , Mutação/genética , Transporte Proteico
18.
Cureus ; 16(5): e59697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38840992

RESUMO

Dentin dysplasia Type 1 (DD1) is an uncommon inherited condition marked by structural irregularities in dentin, leading to notable dental abnormalities. Clinically, patients typically present with generalized slight yellowish discoloration and tooth mobility, while radiographic examination often reveals a reduced pulp chamber with the absence of pulp stones, a hallmark feature of DD1. Treatment involves a multidisciplinary approach including extraction of affected teeth, direct sinus lift procedure bilaterally, implant placement, and subsequent fixed prosthesis placement. In a recent case, after six months, a patient demonstrated improved oral health-related quality of life with stabilized implant-supported prostheses providing functional and esthetic benefits. This emphasizes the importance of early diagnosis and intervention in managing DD1, underscoring the effectiveness of a multidisciplinary approach in enhancing oral function and esthetics. Further research is warranted to deepen our understanding of the genetic basis of this condition and develop targeted therapies.

19.
J Mol Histol ; 54(4): 329-347, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37357253

RESUMO

FAM20C phosphorylates secretory proteins at S-x-E/pS motifs, and previous studies of Fam20C-dificient mice revealed that FAM20C played essential roles in bone and tooth formation. Inactivation of FAM20C in mice led to hypophosphatemia that masks direct effect of FAM20C in these tissues, and consequently the direct role of FAM20C remains unknown. Our previous study reported that osteoblast/odontoblast-specific Fam20C transgenic (Fam20C-Tg) mice had normal serum phosphate levels and that osteoblastic FAM20C-mediated phosphorylation regulated bone formation and resorption. Here, we investigated the direct role of FAM20C in dentin using Fam20C-Tg mice. The tooth of Fam20C-Tg mice contained numerous highly phosphorylated proteins, including SIBLINGs, compared to that of wild-type mice. In Fam20C-Tg mice, coronal dentin volume decreased and mineral density unchanged at early age, while the volume unchanged and the mineral density elevated at maturity. In these mice, radicular dentin volume and mineral density decreased at all ages, and histologically, the radicular dentin had wider predentin and abnormal apical-side dentin with embedded cells and argyrophilic canaliculi. Immunohistochemical analyses revealed that abnormal apical-side dentin had bone and dentin matrix properties accompanied with osteoblast-lineage cells. Further, in Fam20C-Tg mice, DSPP content which is important for dentin formation, was reduced in dentin, especially radicular dentin, which might lead to defects mainly in radicular dentin. Renal subcapsular transplantations of tooth germ revealed that newly formed radicular dentin replicated apical abnormal dentin of Fam20C-Tg mice, corroborating that FAM20C overexpression indeed caused the abnormal dentin. Our findings indicate that odontoblastic FAM20C-mediated phosphorylation in the tooth regulates dentin formation and odontoblast differentiation.


Assuntos
Odontoblastos , Dente , Camundongos , Animais , Odontoblastos/metabolismo , Camundongos Transgênicos , Dente/metabolismo , Diferenciação Celular/fisiologia , Proteínas da Matriz Extracelular/genética , Dentina/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação ao Cálcio/análise
20.
Front Cell Dev Biol ; 11: 1271455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954207

RESUMO

Heparan sulfate proteoglycans (HSPGs) surround the surface of odontoblasts, and their modification affects their affinity for Wnt ligands. This study proposes applying Matching Transformation System® (MA-T), a novel chlorinated oxidant, to enhance dentinogenesis. MA-T treatment in odontoblasts decreased sulfation of HSPG and upregulated the expression of dentin sialophosphoprotein (Dspp) and Dentin Matrix Protein 1 (Dmp1) via activation of canonical Wnt signaling in vitro. Ex vivo application of MA-T also enhanced dentin matrix formation in developing tooth explants. Reanalysis of a public single-cell RNA-seq dataset revealed significant Wnt activity in the odontoblast population, with enrichment for Wnt10a and Wnt6. Silencing assays showed that Wnt10a and Wnt6 were redundant in inducing Dspp and Dmp1 mRNA expression. These Wnt ligands' expression was upregulated by MA-T treatment, and TCF/LEF binding sites are present in their promoters. Furthermore, the Wnt inhibitors Notum and Dkk1 were enriched in odontoblasts, and their expression was also upregulated by MA-T treatment, together suggesting autonomous maintenance of Wnt signaling in odontoblasts. This study provides evidence that MA-T activates dentinogenesis by modifying HSPG and through subsequent activation of Wnt signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA