Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 208, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872157

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) patients have a dismal survival rate because of cancer metastasis and drug resistance. The study aims to identify the genes that concurrently modulate EMT, metastasis and EGFR-TKI resistance, and to investigate the underlying regulatory mechanisms. METHODS: Cox regression and Kaplan-Meier analyses were applied to identify prognostic oncogenes in LUAD. Gene set enrichment analysis (GSEA) was used to indicate the biological functions of the gene. Wound-healing and Transwell assays were used to detect migratory and invasive ability. EGFR-TKI sensitivity was evaluated by assessing the proliferation, clonogenic survival and metastatic capability of cancer cells with treatment with gefitinib. Methylated RNA immunoprecipitation (MeRIP) and RNA immunoprecipitation (RIP) analyses established the level of m6A modification present on the target gene and the protein's capability to interact with RNA, respectively. Single-sample gene set enrichment (ssGSEA) algorithm used to investigate levels of immune cell infiltration. RESULTS: Our study identified dual-specificity phosphatase 5 (DUSP5) as a novel and powerful predictor of adverse outcomes for LUAD by using public datasets. Functional enrichment analysis found that DUSP5 was positively enriched in EMT and transforming growth factor-beta (TGF-ß) signaling pathway, a prevailing pathway involved in the induction of EMT. As expected, DUSP5 knockdown suppressed EMT via inhibiting the canonical TGF-ß/Smad signaling pathway in in vitro experiments. Consistently, knockdown of DUSP5 was first found to inhibit migratory ability and invasiveness of LUAD cells in in vitro and prevent lung metastasis in in vivo. DUSP5 knockdown re-sensitized gefitinib-resistant LUAD cells to gefitinib, accompanying reversion of EMT progress. In LUAD tissue samples, we found 14 cytosine-phosphate-guanine (CpG) sites of DUSP5 that were negatively associated with DUSP5 gene expression. Importantly, 5'Azacytidine (AZA), an FDA-approved DNA methyltransferase inhibitor, restored DUSP5 expression. Moreover, RIP experiments confirmed that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a m6A reader protein, could bind DUSP5 mRNA. YTHDF1 promoted DUSP5 expression and the malignant phenotype of LUAD cells. In addition, the DUSP5-derived genomic model revealed the two clusters with distinguishable immune features and tumor mutational burden (TMB). CONCLUSIONS: Briefly, our study discovered DUSP5 which was regulated by epigenetic modification, might be a potential therapeutic target, especially in LUAD patients with acquired EGFR-TKI resistance.

2.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724995

RESUMO

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Assuntos
Células Epiteliais , Exossomos , MicroRNAs , Prostatite , Células Estromais , Animais , Humanos , Masculino , Camundongos , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Exossomos/metabolismo , Inflamação/genética , Inflamação/patologia , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , MicroRNAs/metabolismo , Dor Pélvica/genética , Dor Pélvica/metabolismo , Próstata/patologia , Próstata/metabolismo , Prostatite/genética , Prostatite/patologia , Prostatite/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo
3.
Cell Mol Life Sci ; 79(8): 430, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851433

RESUMO

Most cells involved in atherosclerosis release extracellular vesicles (EVs), which can carry bioactive substances to downstream tissues via circulation. We hypothesized that EVs derived from atherosclerotic plaques could promote atherogenesis in remote locations, a mechanism that mimics the blood metastasis of cancer. Ldlr gene knockout (Ldlr KO) rats were fed on a high cholesterol diet and underwent partial carotid ligation to induce local atherosclerosis. EVs were separated from carotid artery tissues and downstream blood of carotid ligation by centrifugation. MiRNA sequencing and qPCR were then performed to detect miRNA differences in EVs from rats with and without induced carotid atherosclerosis. Biochemical analyses demonstrated that EVs derived from atherosclerosis could increase the expression of ICAM-1, VCAM-1, and E-selectin in endothelial cells in vitro. EVs derived from atherosclerosis contained a higher level of miR-23a-3p than those derived from controls. MiR-23a-3p could promote endothelial inflammation by targeting Dusp5 and maintaining ERK1/2 phosphorylation in vitro. Inhibiting EV release could attenuate atherogenesis and reduce macrophage infiltration in vivo. Intravenously administrating atherosclerotic plaque-derived EVs could induce intimal inflammation, arterial wall thickening and lumen narrowing in the carotids of Ldlr KO rats, while simultaneous injection of miR-23a-3p antagomir could reverse this reaction. The results suggested that EVs may transfer atherosclerosis to remote locations by carrying proinflammatory factors, particularly miR-23a-3p.


Assuntos
Aterosclerose , Vesículas Extracelulares , MicroRNAs , Placa Aterosclerótica , Animais , Antagomirs/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Inflamação/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica/metabolismo , Ratos
4.
Stem Cells ; 39(10): 1395-1409, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34169608

RESUMO

Dual-specificity phosphatases (DUSPs) are defined by their capability to dephosphorylate both phosphoserine/phosphothreonine (pSer/pThr) and phosphotyrosine (pTyr). DUSP5, a member of DUSPs superfamily, is located in the nucleus and plays crucially regulatory roles in the signaling pathway transduction. In our present study, we discover that DUSP5 significantly promotes osteogenic differentiation of mesenchymal stromal cells (MSCs) by activating SMAD1 signaling pathway. Mechanistically, DUSP5 physically interacts with the phosphatase domain of small C-terminal phosphatase 1/2 (SCP1/2, SMAD1 phosphatases) by the linker region. In addition, we further confirm that DUSP5 activates SMAD1 signaling through a SCP1/2-dependent manner. Specifically, DUSP5 attenuates the SCP1/2-SMAD1 interaction by competitively binding to SCP1/2, which is responsible for the SMAD1 dephosphorylation, and thus results in the activation of SMAD1 signaling. Importantly, DUSP5 expression in mouse bone marrow MSCs is significantly reduced in ovariectomized (OVX) mice in which osteogenesis is highly passive, and overexpression of Dusp5 via tail vein injection reverses the bone loss of OVX mice efficiently. Collectively, this work demonstrates that the linker region of DUSP5 maybe a novel chemically modifiable target for controlling MSCs fate choices and for osteoporosis treatment.


Assuntos
Fosfatases de Especificidade Dupla , Osteogênese , Proteína Smad1 , Animais , Proteínas de Transporte , Diferenciação Celular , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Camundongos , Fosfoproteínas Fosfatases , Fosforilação , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad1/metabolismo
5.
Pharmacol Res ; 177: 106120, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131482

RESUMO

CX-5461 is a first-in-class selective RNA polymerase I inhibitor. Previously we found that CX-5461 had anti-inflammatory activities. In this study we characterized potential immunosuppressive effects of CX-5461 and explored the underlying mechanisms. Allogeneic skin transplantation model (BALB/c to C57BL/6 mice) and heterotopic heart transplantation model (F344 to Lewis rats) were used. We showed that CX-5461 was a potent inhibitor of alloimmunity which prevented acute allograft rejections. CX-5461 treatment was invariably associated with expansion of the regulatory T cell population. In vitro, CX-5461 inhibited agonists-induced T cell activation. CX-5461 consistently inhibited the expression of interferon-γ and interleukin - 2, key mediators of T cell-mediated alloimmunity. Mechanistically, CX-5461-induced immunosuppression was, at least partly, dependent on the p53-DUSP5 (dual-specificity phosphatase 5) axis and subsequent antagonism of the Erk1/2 mitogen-activated protein kinase pathway. In conclusion, our results suggest that CX-5461 is a promising candidate of a novel class of immunosuppressant which may be used as an alternative to the currently approved anti-rejection therapies.


Assuntos
Imunossupressores , Proteína Supressora de Tumor p53 , Animais , Benzotiazóis , Fosfatases de Especificidade Dupla/genética , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Naftiridinas , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew
6.
Mol Cell Probes ; 66: 101866, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183924

RESUMO

BACKGROUND: Pancreatic cancer (PC) is an insidious cancer that is commonly diagnosed in advanced stages. Therefore, it is necessary to understand PC-related mechanisms in order to discover new and reliable diagnostic biomarkers. It is known that miRNAs play a crucial role in carcinogenesis by targeting mRNAs. In this study we aimed to explore interaction between downregulated miR-203 and its upregulated target DUSP5 in PC. METHODS: Using bioinformatics approaches we identified the DUSP5 as a direct target gene of miR-203 and detected potential binding sites between miR-203 and DUSP5. Additionally, we evaluated subcellular location, expression level and prognostic value of DUSP5 in PC through using various bioinformatics tools. To investigate the relationship between miR-203 and DUSP5, we increased the expression levels of miR-203 by transfecting miR-203 mimics into the pancreatic cancer cell line, PANC-1. Finally, MTT, wound healing, and colony formation assays were performed to determine effect of overexpressed miR-203 on proliferation and migration of PANC-1 cells. RESULTS: We found that expression level of DUSP5 in pancreas tissue was one of the lowest tissue expression among all normal human tissue types. In addition, DUSP5 expression was upregulated both PC tissues and cell line and associated with poor overall survival in PC. Overexpression of miR-203 significantly downregulated expression level of DUSP5 and remarkably suppressed proliferation, migration and colony formation ability of PANC-1 cells. CONCLUSIONS: These findings suggest that miR-203 restrains proliferation and migration of PC cells by regulating oncogenic activity of DUSP5 in PC, thereby could be novel candidate biomarkers for PC diagnosis and treatment.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pancreáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Neoplasias Pancreáticas
7.
J Cell Biochem ; 122(10): 1506-1516, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34192359

RESUMO

As a unique and common obstetric complication of pregnant women, pre-eclampsia (PE) has been the first leading cause of maternal and perinatal morbidity and mortality in the world. Mounting studies have demonstrated that an abnormality of long noncoding RNA (lncRNA) expression was related to the pathological process of PE. Here, we showed that lncRNA AFAP1-AS1 was markedly downregulated in pre-eclamptic placentas. We further investigated the mechanism underlying the regulatory role of AFAP1-AS1 in PE using human trophoblast cells. In vitro functional assays revealed that AFAP1-AS1 knockdown inhibited trophoblast proliferation, migration, and invasion. Moreover, AFAP1-AS1 interacts with EZH2 and inhibits DUSP5 expression through modulating H3K27m3 in the DUSP5 promoter of trophoblast cells, thus being involved in PE pathogenesis. Overall, these findings suggest that AFAP1-AS1 could potentially become a prognostic biomarker as well as a new therapeutic target for PE.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Pré-Eclâmpsia/patologia , RNA Longo não Codificante/antagonistas & inibidores , Adulto , Apoptose , Biomarcadores/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Fosfatases de Especificidade Dupla/genética , Epigênese Genética , Transição Epitelial-Mesenquimal , Feminino , Humanos , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Prognóstico , RNA Longo não Codificante/genética , Taxa de Sobrevida , Trofoblastos/metabolismo , Trofoblastos/patologia
8.
Toxicol Appl Pharmacol ; 433: 115782, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740634

RESUMO

BACKGROUND: Epigallocatechin gallate (EGCG) has attracted increasing attention due to its beneficial effect on cardiovascular health. The aim of this study was to investigate the underlying mechanism by which EGCG protects against myocardial ischaemia/reperfusion injury (I/RI). METHODS: Murine myocardial I/RI and H2O2-induced cardiomyocyte injury models were established to evaluate the therapeutic effects of EGCG. In the myocardial I/RI mouse model, the echocardiographic parameters of ejection fraction (EF) and fraction shortening (FS) levels, infarct size, histological evaluation and transmission electron microscopy (TEM) were used to evaluate cardiac tissue damage and autophagy. MTT assays, TUNEL staining, flow cytometry and immunofluorescence (IF) were used to monitor cell viability, apoptosis and autophagy in vitro. qRT-PCR and western blotting were used to determine the mRNA and protein levels of key molecules, respectively. The epigenetic regulation of DUSP5 was assessed via RNA immunoprecipitation (RIP), RNA pull-down and chromatin immunoprecipitation (ChIP) assays. RESULTS: EGCG significantly improved cardiac function, reduced infarct size, enhanced cell viability and inhibited autophagic activity in both myocardial I/RI mouse models and H2O2-induced cardiomyocyte injury models. Moreover, EGCG suppressed H2O2- or myocardial I/R-increased Gm4419 expression, and Gm4419 overexpression dramatically abolished EGCG-mediated protective effects against myocardial I/RI. Mechanistically, Gm4419 epigenetically suppressed DUSP5 by recruiting EZH2, thus activating ERK1/2 pathway-mediated autophagy. Furthermore, the in vivo experiments further verified that the Gm4419-mediated disruptive effects of EGCG on myocardial I/RI were potentiated by DUSP5 knockdown but attenuated by DUSP5 overexpression. CONCLUSIONS: In conclusion, our findings demonstrated that EGCG protected against myocardial I/RI by modulating Gm4419/DUSP5/ERK1/2-mediated autophagy.


Assuntos
Catequina/análogos & derivados , Fosfatases de Especificidade Dupla/metabolismo , Epigênese Genética , Inativação Gênica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , Animais , Autofagia/efeitos dos fármacos , Catequina/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , RNA Longo não Codificante/genética , Transdução de Sinais
9.
J Cell Physiol ; 235(2): 944-956, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31309567

RESUMO

This study investigated the role of microRNA-95 (miR-95) in gastric cancer (GC) and to elucidate the underlying mechanism. Initially, bioinformatic prediction was used to predict the differentially expressed genes and related miRNAs in GC. miR-95 and DUSP5 expression was altered in GC cell line (MGC803) to evaluate their respective effects on the epithelial-mesenchymal transition (EMT) process, cellular processes (cell proliferation, migration, invasion, cell cycle, and apoptosis), cancer stem cell (CSC) phenotype, as well as tumor growth ability. It was further predicted in bioinformatic prediction and verified in GC tissue and cell line experiments that miR-95 was highly expressed in GC. miR-95 negatively regulated DUSP5, which resulted in the MAPK pathway activation. Inhibited miR-95 or overexpressed DUSP5 was observed to inhibit the levels of CSC markers (CD133, CD44, ALDH1, and Lgr5), highlighting the inhibitory role in the CSC phenotype. More important, evidence was obtained demonstrating that miR-95 knockdown or DUSP5 upregulation exerted an inhibitory effect on the EMT process, cellular processes, and tumor growth. Together these results, miR-95 knockdown inhibited GC development via DUSP5-dependent MAPK pathway.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/fisiologia , Neoplasias Gástricas/metabolismo , Adulto , Animais , Linhagem Celular Tumoral , Fosfatases de Especificidade Dupla/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Neoplasias Experimentais , Neoplasias Gástricas/genética , Transcriptoma , Regulação para Cima
10.
J Transl Med ; 18(1): 332, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867783

RESUMO

BACKGROUND: Recently, it has been reported that miRNA is involved in pterygium, however the exact underlying mechanism in pterygium is unrevealed and require further investigation. METHODS: The differential expression of miRNA in pterygium was profiled using microarray and validated with quantitative real-time polymerase chain reaction (qRT-PCR). Human conjunctival epithelial cells (HCEs) were cultured and treated with transforming growth factor ß (TGF-ß) and epidermal growth factor (EGF) and transfected with miR-199a-3p/5p mimic and inhibitor. Markers of epithelial-mesenchymal transition (EMT) in HCEs were detected using western blot and immunohistochemistry. Cell migration ability was determined using wound healing and transwell assay, while apoptosis was determined by flow cytometry. The target genes of miR-199a were confirmed by the dual-luciferase reporter assay. RESULTS: TGF-ß and EGF could induced EMT in HCEs and increase miR-199a-3p/5p but suppress target genes, DUSP5 and MAP3K11. With the occurrence of EMT, cell migration ability was enhanced, and apoptosis was impeded. Promoting miR-199a-3p/5p expression could induce EMT in HCEs without TGF-ß and EGF, while suppressing miR-199a-3p/5p could inhibit EMT in TGF-ß and EGF induced HCEs. In a word, TGF-ß and EGF induced EMT could be regulated with miR-199a-3p/5p-DUSP5/MAP3K11 axes. The validated results in tissues showed that, compared with control conjunctival tissues, miR-199a-3p/5p were more overexpressed in pterygium, while DUSP5/MAP3K11 were lower expressed. In addition, bioinformatics analysis indicated the miR-199a-3p/5p-DUSP5/MAP3K11 was belong to MAPK signalling pathway. CONCLUSIONS: TGF-ß and EGF induce EMT of HCEs through miR-199a-3p/5p-DUSP5/MAP3K11 axes, which explains the pathogenesis of EMT in pterygium and may provide new targets for pterygium prevention and therapy.


Assuntos
MicroRNAs , Pterígio , Fosfatases de Especificidade Dupla , Fator de Crescimento Epidérmico/farmacologia , Transição Epitelial-Mesenquimal/genética , Humanos , MicroRNAs/genética , Pterígio/genética , Fator de Crescimento Transformador beta
11.
Cancer Sci ; 110(1): 107-117, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30387548

RESUMO

Gliomas are the most common central nervous system tumors. They show malignant characteristics indicating rapid proliferation and a high invasive capacity and are associated with a poor prognosis. In our previous study, p68 was overexpressed in glioma cells and correlated with both the degree of glioma differentiation and poor overall survival. Downregulating p68 significantly suppressed proliferation in glioma cells. Moreover, we found that the p68 gene promoted glioma cell growth by activating the nuclear factor-κB signaling pathway by a downstream molecular mechanism that remains incompletely understood. In this study, we found that dual specificity phosphatase 5 (DUSP5) is a downstream target of p68, using microarray analysis, and that p68 negatively regulates DUSP5. Upregulating DUSP5 in stably expressing cell lines (U87 and LN-229) suppressed proliferation, invasion, and migration in glioma cells in vitro, consistent with the downregulation of p68. Furthermore, upregulating DUSP5 inhibited ERK phosphorylation, whereas downregulating DUSP5 rescued the level of ERK phosphorylation, indicating that DUSP5 might negatively regulate ERK signaling. Additionally, we show that DUSP5 levels were lower in high-grade glioma than in low-grade glioma. These results suggest that the p68-induced negative regulation of DUSP5 promoted invasion by glioma cells and mediated the activation of the ERK signaling pathway.


Assuntos
Neoplasias Encefálicas/genética , RNA Helicases DEAD-box/genética , Fosfatases de Especificidade Dupla/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , RNA Helicases DEAD-box/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioma/metabolismo , Glioma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Invasividade Neoplásica , Fosforilação , Interferência de RNA
12.
Toxicol Appl Pharmacol ; 364: 45-54, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529164

RESUMO

Defective autophagy in vascular smooth muscle cells (VSMCs) is the principal cause of atherosclerosis. This study aimed to investigate the effect of astragaloside IV (AS-IV) on VSMCs autophagy. In vivo, ApoE-/- mice were fed with high-fat diet ad libitum for eight weeks, with or without AS-IV (25 mg/kg, daily). In vitro, human VSMCs were cultured and treated with ß-Glycerophosphate (10 mmol/L) and AS-IV (50 µg/ml). VSMCs autophagy, mineralization, expression of p-ERK1/2, p-mTOR, and autophagy-related proteins (LC3 II/I, p62, and Beclin 1) were detected. Increased autophagy and mineralization was observed in VSMCs in thoracic aorta of mice and in in vitro VSMCs model of atherosclerosis. AS-IV administration attenuated the autophagy and mineralization in VSMCs. Reverse expression profiles of H19 and DUSP5 were observed. AS-IV inhibited DUSP5 and autophagy-related proteins and increased expression of H19, level of p-ERK1/2 and p-mTOR. Further, autophagy and mineralization level in VSMCs were in line with DUSP5 expression level, but in contrast to H19, p-ERK1/2, and p-mTOR profiles. We demonstrated that AS-IV could attenuate autophagy and mineralization of VSMCs in atherosclerosis, which may be associated with H19 overexpression and DUSP5 inhibition.


Assuntos
Aterosclerose/prevenção & controle , Autofagia/efeitos dos fármacos , Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Calcificação Vascular/prevenção & controle , Animais , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Proteínas Relacionadas à Autofagia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Fosforilação , Placa Aterosclerótica , RNA Longo não Codificante/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Calcificação Vascular/enzimologia , Calcificação Vascular/genética , Calcificação Vascular/patologia
13.
Vasc Med ; 24(5): 395-404, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451089

RESUMO

Peripheral artery disease (PAD) is caused by atherosclerotic occlusions of vessels outside the heart, particularly those of the lower extremities. Angiogenesis is one critical physiological response to vessel occlusion in PAD, but our understanding of the molecular mechanisms involved in angiogenesis is incomplete. Dual specificity phosphatase 5 (DUSP5) has been shown to play a key role in embryonic vascular development, but its role in post-ischemic angiogenesis is not known. We induced hind limb ischemia in mice and found robust upregulation of Dusp5 expression in ischemic hind limbs. Moreover, in vivo knockdown of Dusp5 resulted in impaired perfusion recovery in ischemic limbs and was associated with increased limb necrosis. In vitro studies showed upregulation of DUSP5 in human endothelial cells exposed to ischemia, and knockdown of DUSP5 in these ischemic endothelial cells resulted in impaired endothelial cell proliferation and angiogenesis, but did not alter apoptosis. Finally, we show that these effects of DUSP5 on post-ischemic angiogenesis are a result of DUSP5-dependent decrease in ERK1/2 phosphorylation and p21 protein expression. Thus, we have identified a role of DUSP5 in post-ischemic angiogenesis and implicated a DUSP5-ERK-p21 pathway that may serve as a therapeutic target for the modulation of post-ischemic angiogenesis in PAD.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Neovascularização Fisiológica , Doença Arterial Periférica/enzimologia , Animais , Linhagem Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Doença Arterial Periférica/genética , Doença Arterial Periférica/fisiopatologia , Fosforilação , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Transdução de Sinais
14.
J Photochem Photobiol A Chem ; 375: 114-131, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31839699

RESUMO

Dual specific phosphatases (DUSPs) are an important class of mitogen-activated protein kinase (MAPK) regulators, and are drug targets for treating vascular diseases. Previously we had shown that DUSP5 plays a role in embryonic vertebrate vascular patterning. Herein, we screened a library of FDA-approved drugs and related compounds, using a para-nitrophenylphosphate substrate (pNPP)-based assay. This assay identified merbromin (also known as mercurochrome) as targeting DUSP5; and, we subsequently identified xanthene-ring based merbromin analogs eosin Y, erythrosin B, and rose bengal, all of which inhibit DUSP5 in vitro. Inhibition was time-dependent for merbromin, eosin Y, 2',7'-dibromofluorescein, and 2',7'-dichlorofluorescein, with enzyme inhibition increasing over time. Reaction progress curve data fit best to a slow-binding model of irreversible enzyme inactivation. Potency of the time-dependent compounds, except for 2',7'-dichlorofluorescein, was diminished when dithiothreitol (DTT) was present, suggesting thiol reactivity. Two additional merbromin analogs, erythrosin B and rose bengal also inhibit DUSP5, but have the therapeutic advantage of being less sensitive to DTT and exhibiting little time dependence for inhibition. Inhibition potency is correlated with the xanthene dye's LUMO energy, which affects ability to form light-activated radical anions, a likely active inhibitor form. Consistent with this hypothesis, rose bengal inhibition is light-dependent and demonstrates the expected red shifted spectrum upon binding to DUSP5, with a Kd of 690 nM. These studies provide a mechanistic foundation for further development of xanthene dyes for treating vascular diseases that respond to DUSP5 inhibition, with the following relative potencies: rose bengal > merbromin > erythrosin B > eosin Y.

15.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491992

RESUMO

Hepatocyte death is critical for the pathogenesis of liver disease progression, which is closely associated with endoplasmic reticulum (ER) stress responses. However, the molecular basis for ER stress-mediated hepatocyte injury remains largely unknown. This study investigated the effect of ER stress on dual-specificity phosphatase 5 (DUSP5) expression and its role in hepatocyte death. Analysis of Gene Expression Omnibus (GEO) database showed that hepatic DUSP5 levels increased in the patients with liver fibrosis, which was verified in mouse models of liver diseases with ER stress. DUSP5 expression was elevated in both fibrotic and acutely injured liver of mice treated with liver toxicants. Treatment of ER stress inducers enhanced DUSP5 expression in hepatocytes, which was validated in vivo condition. The induction of DUSP5 by ER stress was blocked by either treatment with a chemical inhibitor of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway, or knockdown of C/EBP homologous protein (CHOP), whereas it was not affected by the silencing of IRE1 or ATF6. In addition, DUSP5 overexpression decreased extracellular-signal-regulated kinase (ERK) phosphorylation, but increased cleaved caspase-3 levels. Moreover, the reduction of cell viability under ER stress condition was attenuated by DUSP5 knockdown. In conclusion, DUSP5 expression is elevated in hepatocytes by ER stress through the PERK-CHOP pathway, contributing to hepatocyte death possibly through ERK inhibition.


Assuntos
Fosfatases de Especificidade Dupla/genética , Estresse do Retículo Endoplasmático , Hepatócitos/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/metabolismo , Animais , Apoptose/genética , Morte Celular/genética , Expressão Gênica , Hepatócitos/patologia , Humanos , Hepatopatias/etiologia , Hepatopatias/metabolismo , Camundongos
16.
Semin Cell Dev Biol ; 50: 125-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26791049

RESUMO

Dual-specificity MAP kinase (MAPK) phosphatases (MKPs or DUSPs) are well-established negative regulators of MAPK signalling in mammalian cells and tissues. By virtue of their differential subcellular localisation and ability to specifically recognise, dephosphorylate and inactivate different MAPK isoforms, they are key spatiotemporal regulators of pathway activity. Furthermore, as they are transcriptionally regulated as downstream targets of MAPK signalling they can either act as classical negative feedback regulators or mediate cross talk between distinct MAPK pathways. Because MAPKs and particularly Ras/ERK signalling are implicated in cancer initiation and development, the observation that MKPs are abnormally regulated in human tumours has been interpreted as evidence that these enzymes can either suppress or promote carcinogenesis. However, definitive evidence of such roles has been lacking. Here we review recent work based on the use of mouse models, biochemical studies and clinical data that demonstrate key roles for MKPs in modulating the oncogenic potential of Ras/ERK signalling and also indicate that these enzymes may play a role in the response of tumours to certain anticancer drugs. Overall, this work reinforces the importance of negative regulatory mechanisms in modulating the activity of oncogenic MAPK signalling and indicates that MKPs may provide novel targets for therapeutic intervention in cancer.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Proteínas ras/metabolismo , Animais , Humanos , Neoplasias/enzimologia
17.
Biochem Biophys Res Commun ; 495(1): 506-511, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29108992

RESUMO

Previous studies have demonstrated that microRNAs (miRNAs) play important roles in the pathogenesis of neuropathic pain. In the present study, we found that miR-32-5p was significantly upregulated in rats after spinal nerve ligation (SNL), specifically in the spinal microglia of rats with SNL. Functional assays showed that knockdown of miR-32-5p greatly suppressed mechanical allodynia and heat hyperalgesia, and decreased inflammatory cytokine (IL-1ß, TNF-α and IL-6) protein expression in rats after SNL. Similarly, miR-32-5p knockdown alleviated cytokine production in lipopolysaccharide (LPS)-treated spinal microglial cells, whereas its overexpression had the opposite effect. Mechanistic investigations revealed Dual-specificity phosphatase 5 (Dusp5) as a direct target of miR-32-5p, which is involved in the miR-32-5p-mediated effects on neuropathic pain and neuroinflammation. We demonstrated for the first time that miR-32-5p promotes neuroinflammation and neuropathic pain development through regulation of Dusp5. Our findings highlight a novel contribution of miR-32-5p to the process of neuropathic pain, and suggest possibilities for the development of novel therapeutic options for neuropathic pain.


Assuntos
Regulação para Baixo , Fosfatases de Especificidade Dupla/genética , MicroRNAs/genética , Neuralgia/genética , Animais , Células Cultivadas , Citocinas/análise , Inflamação/genética , Inflamação/patologia , Microglia/patologia , Neuralgia/patologia , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/patologia , Nervos Espinhais/metabolismo , Nervos Espinhais/patologia
18.
Pulm Pharmacol Ther ; 48: 53-61, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28899709

RESUMO

Accumulating evidence indicates that epidermal growth factor receptor (EGFR) is desensitized by phosphorylation of serine 1047 (Ser1047). We and other groups have reported that stimulation of a receptor of tumor-necrosis factor α (TNFα) and Toll-like receptor 5 (TLR5) induced the phosphorylation of Ser1047 through activation of p38 mitogen-activated protein kinase (p38 MAPK) in cultured lung alveolar epithelial A549 cells. However, phosphorylation of EGFR at Ser1047 by stimulation of any G-protein coupled receptors (GPCRs) has not been reported in any cultured cells. In the present study, we first confirmed that A549 cells expressed bradykinin (BK) B2 receptor, and then, we examined whether BK treatment of A549 cells activated MAPKs and induced the phosphorylation of EGFR at Ser1047. Immunoblotting analysis and reporter gene assays indicated that BK activated the pathways of extracellular signal-regulated kinase (ERK) and p38 MAPK. Inhibitor studies suggested that Gq/11 was mainly involved in the activation of ERK and p38 MAPK. We found that stimulation of the BK B2 receptor, but not the BK B1 receptor, induced phosphorylation of EGFR at Ser1047. Pharmacological experiments indicated that both ERK and p38 MAPK were involved in the phosphorylation of EGFR. These results strongly suggested that BK regulates EGFR functions in lung alveolar epithelial cells. In addition, we found that BK treatment increased the mRNA level of dual specificity MAPK phosphatase 5 (DUSP5) in an ERK-dependent manner, which suggested that a negative feedback mechanism of ERK existed in the cells.


Assuntos
Células Epiteliais Alveolares/metabolismo , Bradicinina/farmacologia , Receptores ErbB/metabolismo , Receptor B2 da Bradicinina/metabolismo , Células A549 , Animais , Linhagem Celular , Fosfatases de Especificidade Dupla/genética , Humanos , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Int J Med Sci ; 15(7): 738-747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910679

RESUMO

Basal-like breast cancer (BLBC) is resistant to endocrinotherapy and targeted therapy and new molecular therapies are needed for BLBC. In this study, we evaluated the role of DUSP1 and DUSP5, negative regulators of mitogen-activated protein kinase pathway, in the aggressiveness of BLBC. MDA-MB-231 cells were given paclitaxel (PTX) treatment and subsequently PTX resistant cell clones were established. Microarray analysis, real-time quantitative reverse transcription PCR (qRT-PCR), and online analysis of large cohorts of breast cancer patients were performed. The PTX resistant cells showed stronger cell proliferation ability by exhibiting the upregulation of CENPF, CDC6, MCM3, CLSPN and SMC1A expression. Furthermore, DUSP1 and DUSP5 expression was significantly downregulated in PTX resistant cells. In addition, in large breast cancer patients' database, both DUSP1 and DUSP5 correlated negatively with higher histological grade. DUSP1 low expression was obvious in HER2 positive and basal like while DUSP5 low expression was peculiar for basal like compared with other subtypes. Remarkably, low expression of DUSP5, but not DUSP1, was significantly correlated with poor survival of BLBC patients. In conclusion, our data suggest that loss of DUSP5 expression results in PTX resistance and tumor progression, providing a rationale for a therapeutic agent that restores DUSP5 in BLBC.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fosfatases de Especificidade Dupla/metabolismo , Paclitaxel/farmacologia , Antineoplásicos Fitogênicos , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Humanos , Prognóstico , Regulação para Cima
20.
Clin Sci (Lond) ; 131(15): 1841-1857, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533215

RESUMO

Inhibition of total histone deacetylases (HDACs) was phenomenally associated with the prevention of diabetic cardiomyopathy (DCM). However, which specific HDAC plays the key role in DCM remains unclear. The present study was designed to determine whether DCM can be prevented by specific inhibition of HDAC3 and to elucidate the mechanisms by which inhibition of HDAC3 prevents DCM. Type 1 diabetes OVE26 and age-matched wild-type (WT) mice were given the selective HDAC3 inhibitor RGFP966 or vehicle for 3 months. These mice were then killed immediately or 3 months later for cardiac function and pathological examination. HDAC3 activity was significantly increased in the heart of diabetic mice. Administration of RGFP966 significantly prevented DCM, as evidenced by improved diabetes-induced cardiac dysfunction, hypertrophy, and fibrosis, along with diminished cardiac oxidative stress, inflammation, and insulin resistance, not only in the mice killed immediately or 3 months later following the 3-month treatment. Furthermore, phosphorylated extracellular signal-regulated kinases (ERK) 1/2, a well-known initiator of cardiac hypertrophy, was significantly increased, while dual specificity phosphatase 5 (DUSP5), an ERK1/2 nuclear phosphatase, was substantially decreased in diabetic hearts. Both of these changes were prevented by RGFP966. Chromatin immunoprecipitation (ChIP) assay showed that HDAC3 inhibition elevated histone H3 acetylation on the DUSP5 gene promoter at both two time points. These findings suggest that diabetes-activated HDAC3 inhibits DUSP5 expression through deacetylating histone H3 on the primer region of DUSP5 gene, leading to the derepression of ERK1/2 and the initiation of DCM. The present study indicates the potential application of HDAC3 inhibitor for the prevention of DCM.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/efeitos dos fármacos , Acrilamidas/uso terapêutico , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Fosfatases de Especificidade Dupla/metabolismo , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos Transgênicos , Miocárdio/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Fenilenodiaminas/uso terapêutico , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA