Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2247-2261, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38812239

RESUMO

This study employed microcirculation visualization and metabolomics methods to explore the effect and possible mechanism of Dalbergia cochinchinensis in ameliorating coronary microvascular dysfunction(CMD) induced by microsphere embolization in rats. Sixty SPF-grade male SD rats were randomized into sham, model, and low-, medium-, and high-dose [1.5, 3.0, and 6.0 g·kg~(-1)·d~(-1), respectively] D. cochinchinensis water extract groups. The rats in sham and model groups were administrated with equal volume of normal saline by gavage once a day for 7 consecutive days. The rat model of CMD was prepared by injecting polyethylene microspheres into the left ventricle, while the sham group was injected with an equal amount of normal saline. A blood flow meter was used to measure blood flow, and a blood rheometer to measure blood viscosity and fibrinogen content. An automatic biochemical analyzer and reagent kits were used to measure the serum levels of myocardial enzymes, glucose, and nitric oxide(NO). Hematoxylin-eosin(HE) staining was used to observe the pathological changes of myocardial tissue. DiI C12/C18 perfusion was used to infuse coronary microvessels, and the structural and morphological changes were observed using a confocal laser scanning microscope. AngioTool was used to analyze the vascular area, density, radius, and mean E lacunarity in the microsphere embolization area, and vascular blood flow resistance was calculated based on Poiseuille's law. Non-targeted metabolomics based on high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed screen potential biomarkers and differential metabolites regulated by D. cochinchinensis and the involved metabolic pathways were enriched. The pharmacodynamic results showed that compared with the model group, D. cochinchinensis significantly increased mean blood flow, reduced plasma fibrinogen content, lowered the levels of myocardial enzymes such as creatine kinase(CK), creatine kinase-MB(CK-MB), and lactate dehydrogenase(LDH), alleviate myocardial injury, and protect damaged myocardium. In addition, D. cochinchinensis significantly increased serum NO content, promoted vascular smooth muscle relaxation, dilated blood vessels, lowered serum glucose(GLU) level, improved myocardial energy metabolism, and alleviated pathological changes in myocardial fibrosis and inflammatory cell infiltration. The results of coronary microcirculation perfusion showed that D. cochinchinensis improved the vascular morphology, increased the vascular area, density, and radius, reduced vascular mean E lacunarity and blood flow resistance, and alleviated vascular endothelial damage in CMD rats. The results of metabolomics identified 45 differential metabolites between sham and model groups, and D. cochinchinensis recovered the levels 25 differential metabolites, which were involved in 8 pathways including arachidonic acid metabolism, arginine biosynthesis, and sphingolipids metabolism. D. cochinchinensis can ameliorate coronary microcirculation dysfunction caused by microsphere embolization in rats, and it may alleviate the pathological changes of CMD rats by regulating inflammatory reaction, endothelial damage, and phospholipid metabolism.


Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Metabolômica , Microcirculação , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Microcirculação/efeitos dos fármacos , Dalbergia/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Miocárdio/metabolismo , Vasos Coronários/fisiopatologia , Humanos
2.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1043-1053, 2023 Feb.
Artigo em Zh | MEDLINE | ID: mdl-36872275

RESUMO

This paper aimed to study the effect of Dalbergia cochinchinensis heartwood on plasma endogenous metabolites in rats with ligation of the left anterior descending coronary artery, and to analyze the mechanism of D. cochinchinensis heartwood in improving acute myocardial ischemic injury. The stability and consistency of the components in the D. cochinchinensis heartwood were verified by the establishment of fingerprint, and 30 male SD rats were randomly divided into a sham group, a model group, and a D. cochinchinensis heartwood(6 g·kg~(-1)) group, with 10 rats in each group. The sham group only opened the chest without ligation, while the other groups established the model of ligation. Ten days after administration, the hearts were taken for hematoxylin-eosin(HE) staining, and the content of heart injury indexes in the plasma creatine kinase isoenzyme(CK-MB) and lactate dehydrogenase(LDH), energy metabolism-related index glucose(Glu) content, and vascular endothelial function index nitric oxide(NO) was determined. The endogenous metabolites were detected by ultra-high-performance liquid chromatography-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS). The results showed that the D. cochinchinensis heartwood reduced the content of CK-MB and LDH in the plasma of rats to relieve myocardial injury, reduced the content of Glu in the plasma, improved myocardial energy metabolism, increased the content of NO, cured the vascular endothelial injury, and promoted vasodilation. D. cochinchinensis heartwood improved the increase of intercellular space, myocardial inflammatory cell infiltration, and myofilament rupture caused by ligation of the left anterior descending coronary artery. The metabolomic study showed that the content of 26 metabolites in the plasma of rats in the model group increased significantly, while the content of 27 metabolites decreased significantly. Twenty metabolites were significantly adjusted after the administration of D. cochinchinensis heartwood. D. cochinchinensis heartwood can significantly adjust the metabolic abnormality in rats with ligation of the left anterior descending coronary artery, and its mechanism may be related to the regulation of cardiac energy metabolism, NO production, and inflammation. The results provide a corresponding basis for further explaining the effect of D. cochinchinensis on the acute myocardial injury.


Assuntos
Dalbergia , Traumatismos Cardíacos , Isquemia Miocárdica , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Metabolômica , Coração , Creatina Quinase Forma MB
3.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209110

RESUMO

Dalbergia cochinchinensis has been widely used in traditional medicine because of its flavonoids; however, the impact of the flavonoids to modulate the inflammatory response to oral cells remains to be described. For this aim, we isolated 4,7,2'-trihydroxy-4'-methoxyisoflavanol (472T4MIF) and 6,4'-dihydroxy-7-methoxyflavane (64D7MF) from the heartwood of D. cochinchinensis and confirmed the chemical structure by nuclear magnetic resonance. We show here that both flavonoids are inhibitors of an inflammatory response of murine RAW 264.7 inflammatory macrophages stimulated by LPS. This is indicated by interleukin (IL)1, IL6, and chemokine CCL2 production besides the phosphorylation of p65. Consistently, in primary murine macrophages, both flavonoids decreased the inflammatory response by lowering LPS-induced IL1 and IL6 expression. To introduce oral cells, we have used human gingival fibroblasts and provoked the inflammatory response by exposing them to IL1ß and TNFα. Under these conditions, 472T4MIF, but not 64D7MF, reduced the expression of chemokines CXCL1 and CXCL2. Taken together, we identified two flavonoids that can reduce the expression of cytokines and chemokines in macrophages and fibroblastic cells.


Assuntos
Quimiocinas/genética , Citocinas/genética , Dalbergia/química , Flavonoides/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Madeira/química , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flavonoides/química , Flavonoides/isolamento & purificação , Camundongos , Estrutura Molecular , Fosforilação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
4.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6696-6708, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36604920

RESUMO

Dalbergia cochinchinensis(DC) is chemically similar to the valuable and scarce Chinese herb Dalbergiae Odoriferae Lignum, and both of them belong to the Dalbergia Leguminosae. DC is used for treating cardiovascular diseases and cancer. However, its potent active ingredient groups and molecular mechanisms in anti-myocardial ischemia are not fully clarified. In this study, the active ingredient groups, targets, and signaling pathways of DC heartwood for the treatment of myocardial ischemia were screened out based on network pharmacology and molecular docking technology, and the effects were verified by the rat model of acute myocardial ischemia induced by isoprenaline(ISO). The molecular mechanism of DC heartwood was elucidated based on the target of multi-ingredient and multi-target pathways. The crossing targets of DC heartwood for the treatment of myocardial ischemia were identified through the screening of active ingredients in DC heartwood and the prediction of targets. The Kyoto Encyclopedia of Genomes(KEGG) pathway enrichment and Gene Ontology(GO) functional annotation were performed. AutoDock was used to bind the active ingredient groups to the pathway targets. Finally, the molecular mechanism of myocardial ischemia treatment by DC heartwood extracts in the treatment of myocardial ischemia was revealed through the rat model of ISO-induced acute myocardial ischemia by performing electrocardiogram(ECG), hemodynamic, cardiac enzymes, hematoxylin-eosin(HE) staining, high-energy phosphate compounds, reverse transcription polymerase chain reaction(RT-PCR), and Western blot pharmacodynamic experiments, based on the multi-ingredient and multi-target action of active ingredient groups and pathway targets. The network pharmacology showed that the 18 ingredients of DC heartwood corresponded to 510 targets, 629 myocardial ischemia-related targets, and 101 cross-targets. GO and KEGG enrichment analyses showed that DC heartwood was involved in the hypoxic response, vasoconstriction, and nitric oxide biosynthesis, and had effects on the molecular functions of hemoglobin binding, protein binding, and adenosine triphosphate(ATP) binding. It regulated the signaling pathways such as hypoxia-inducible factor 1(HIF-1), vascular endothelial growth factor(VEGF), and phosphatidylinositol-3-kinase/protein kinase B(PI3 K/AKT) to act on myocardial ischemia. Experimental studies showed that DC heartwood slowed down the heart rate and ST segment change(ΔST), and increased systolic blood pressure(SBP), diastolic blood pressure(DBP), and mean arterial pressure(MBP) in rats with ISO-induced acute myocardial ischemia. It also reduced plasma lactate dehydrogenase(LDH), creatine kinase isoenzyme MB(CK-MB), and glutamate transaminase(AST) levels, relieved myocardial fiber disorders and inflammatory cell infiltration, and increased ATP and cellular energy(EC) levels. DC heartwood increased the mRNA expressions of calmodulin-dependent protein kinase kinase(CAMKK) in the myocardial tissue, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3(PFKFB3), mammalian target of rapamycin(mTOR), PI3 K, VEGF, endothelial nitric oxide synthase(eNOS), HIF-1α in the myocardial tissue. It decreased the mRNA expression of pyruvate dehydrogenase(PDH), and increased the protein expressions of PFKFB3, VEGFA, and eNOS. Molecular docking showed that liquiritigenin, stigmasterol, isodalbergin, latifolin, 4-methoxydalbergione, dibutyl terephthalate, 2,4-dihydroxy-5-methoxybenzophenone in DC heartwood produced bio-binding activities with epidermal growth factor receptor(EGFR), HIF-1α, CAMKK, PI3 K, mTOR, and PDH, respectively. Therefore, the active ingredient groups of DC heartwood act on the HIF-1 signaling pathway, regulate cardiomyocyte energy metabolism, and increase ATP energy charge in a multi-ingredient and multi-target manner, improving cardiac function and histopathological changes to protect rats with acute myocardial ischemia induced by ISO.


Assuntos
Doença da Artéria Coronariana , Dalbergia , Medicamentos de Ervas Chinesas , Isquemia Miocárdica , Animais , Ratos , Trifosfato de Adenosina , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético , Isquemia , Simulação de Acoplamento Molecular , Isquemia Miocárdica/tratamento farmacológico , Farmacologia em Rede , RNA Mensageiro , Fator A de Crescimento do Endotélio Vascular
5.
J Sep Sci ; 41(23): 4315-4322, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30299576

RESUMO

Volatile components in Dalbergia cochinchinensis Pierre were analysed using a comprehensive two-dimensional gas chromatography with mass spectrometry method featuring a new solid-state modulator. Compared to one-dimensional gas chromatography, the number of detected peaks were significantly increased. A total of 45 major compounds were identified in this study and the forward and reverse match factors of these compounds were both above 800. The results showed that the volatile components in Dalbergia cochinchinensis Pierre were primarily aldehyde and ketone compounds such as benzaldehyde, cinnamaldehyde, 4-chromanone, 1-(2-hydroxyphenyl)ethanone and acetophenone. In addition, a semi-quantitative analysis was conducted to determine the contents of the detected compounds based on peak area percentage. Moreover, the repeatability of the comprehensive two-dimensional gas chromatography-mass spectrometry analysis in this study was quite satisfactory with relative standard deviations less than 12.7% for intraday and 17.3% for interday measurements.


Assuntos
Dalbergia/química , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Tamanho da Partícula , Propriedades de Superfície
6.
J Dent Sci ; 18(1): 112-119, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36643234

RESUMO

Background/purpose: Dalbergia cochinchinensi has been widely used in traditional medicine because of its flavonoids. This study examined which components in D. cochinchinensis were capable of reducing or even stimulating the formation of bone-resorbing osteoclasts. Materials and methods: We have isolated subfamilies of chalcones (isoliquiritigenin, butein), flavones (7-hydroxy-6-methoxyflavone) and neoflavanoids (5-methoxylatifolin), and performed an in vitro bioassay on osteoclastogenesis. The flavonoids were tested for their potential to change the expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK) in murine bone marrow cultures being exposed to RANKL, M-CSF and TGF-ß1 using RT-PCR, histochemistry and immunoassay. Results: We could confirm that isoliquiritigenin and butein significantly lower the expression of TRAP and CTSK in this setting. Moreover, histochemistry supported the decrease of TRAP by the chalcones. We further observed a trend towards an increase of osteoclastogenesis in the presence of 5-methoxylatifolin and 7-hydroxy-6-methoxyflavone, particular in bone marrow cultures being exposed to RANKL and M-CSF. Consistently, the anti-inflammatory activity was restricted to isoliquiritigenin and butein in murine RAW 264.7 inflammatory macrophages stimulated by lipopolysaccharide (LPS). With respect to osteoblastogenesis, neither of the flavonoids but butyrate, a short chain fatty acid, increased the osteogenic differentiation marker alkaline phosphatase activity in ST2 murine mesenchymal cells. Conclusion: We have identified two flavonoids from D. cochinchinensis with a potential pro-osteoclastogenic activity and confirm the anti-osteoclastogenic activity of isoliquiritigenin and butein.

7.
Fitoterapia ; 170: 105663, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37652268

RESUMO

A novel discovery of two hybrid benzodioxepin-dalbergiphenol epimers, named cochindalbergiphenols A-B (1-2), and a benzofuran-dalbergiphenol hybrid, named cochindalbergiphenol C (3), were isolated and identified from the heartwood of Dalbergia cochinchinensis. The structures of all the isolated compounds were identified through NMR and HRESIMS techniques, while the absolute configurations were determined by comparing the experimental and calculated ECD spectra. Compounds 1-3 exhibited potential protective effects against hypoxia/reoxygenation (H/R) induced injury in H9c2 cells.


Assuntos
Dalbergia , Estrutura Molecular , Dalbergia/química , Extratos Vegetais/química , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA