RESUMO
We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from â¼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.
Assuntos
Sistemas CRISPR-Cas , Cromatina , Epigênese Genética , Edição de Genes , Humanos , Cromatina/metabolismo , Cromatina/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Código das HistonasRESUMO
DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.
Assuntos
Reparo do DNA , Poli(ADP-Ribose) Polimerase-1 , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , HumanosRESUMO
Mutations in the BRCA1 and BRCA2 genes predispose afflicted individuals to breast, ovarian, and other cancers. The BRCA-encoded products form complexes with other tumor suppressor proteins and with the recombinase enzyme RAD51 to mediate chromosome damage repair by homologous recombination and also to protect stressed DNA replication forks against spurious nucleolytic attrition. Understanding how the BRCA tumor suppressor network executes its biological functions would provide the foundation for developing targeted cancer therapeutics, but progress in this area has been greatly hampered by the challenge of obtaining purified BRCA complexes for mechanistic studies. In this article, we review how recent effort begins to overcome this technical challenge, leading to functional and structural insights into the biochemical attributes of these complexes and the multifaceted roles that they fulfill in genome maintenance. We also highlight the major mechanistic questions that remain.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Redes Reguladoras de Genes , Rad51 Recombinase/genética , Reparo de DNA por Recombinação , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , DNA/química , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Feminino , Genoma Humano , Instabilidade Genômica , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.
Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Proteínas Mad2/antagonistas & inibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.
Assuntos
Melanoma , Humanos , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Dano ao DNA , Instabilidade Genômica/genética , DNARESUMO
Sexual reproduction culminates in a totipotent zygote with the potential to produce a whole organism. Sperm chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications generate a totipotent embryo. Active DNA demethylation of the paternal genome has been proposed to involve base excision and DNA repair-based mechanisms. The nature and consequence of DNA lesions generated during reprogramming are not known. Using mouse genetics and chemical biology, we discovered that Tet3-dependent zygotic reprogramming generates paternal DNA lesions that are monitored by a surveillance mechanism. In vivo structure-function rescue assays revealed that cohesin-dependent repair of paternal DNA lesions prevents activation of a Chk1-dependent checkpoint that delays mitotic entry. Culturing conditions affect checkpoint stringency, which has implications for human in vitro fertilization. We propose the zygotic checkpoint senses DNA lesions generated during paternal DNA demethylation and ensures reprogrammed loci are repaired before mitosis to prevent chromosome fragmentation, embryo loss, and infertility.
Assuntos
Reparo do DNA , Zigoto/citologia , Zigoto/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Reprogramação Celular , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , CoesinasRESUMO
Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.
Assuntos
Dano ao DNA , Neoplasias , Humanos , Neoplasias/genética , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia/genéticaRESUMO
Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.
Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , DNA Helicases/genética , Replicação do DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Nucleossomos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genéticaRESUMO
Phosphorylated IKKα(p45) is a nuclear active form of the IKKα kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-κB signaling. Insights into the sources of IKKα(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKα(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKα activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKα or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKα kinases in the DDR and reveal a combination strategy for cancer treatment.
Assuntos
Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Quinase I-kappa B/metabolismo , Irinotecano/farmacologia , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias , Neoplasias , Animais , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Humanos , Quinase I-kappa B/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Células MCF-7 , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Telômero/genética , Telômero/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.
Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Proteína Homóloga a MRE11/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Hidrolases Anidrido Ácido/genética , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Proteína Homóloga a MRE11/genética , Proteínas Mitocondriais/genética , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Estabilidade Proteica , Células Sf9 , SpodopteraRESUMO
Breast Cancer Type 1 Susceptibility Protein (BRCA1) is a tumor-suppressor protein that regulates various cellular pathways, including those that are essential for preserving genome stability. One essential mechanism involves a BRCA1-A complex that is recruited to double-strand breaks (DSBs) by RAP80 before initiating DNA damage repair (DDR). How RAP80 itself is recruited to DNA damage sites, however, is unclear. Here, we demonstrate an intrinsic correlation between a methyltransferase DOT1L-mediated RAP80 methylation and BRCA1-A complex chromatin recruitment that occurs during cancer cell radiotherapy resistance. Mechanistically, DOT1L is quickly recruited onto chromatin and methylates RAP80 at multiple lysines in response to DNA damage. Methylated RAP80 is then indispensable for binding to ubiquitinated H2A and subsequently triggering BRCA1-A complex recruitment onto DSBs. Importantly, DOT1L-catalyzed RAP80 methylation and recruitment of BRCA1 have clinical relevance, as inhibition of DOT1L or RAP80 methylation seems to enhance the radiosensitivity of cancer cells both in vivo and in vitro. These data reveal a crucial role for DOT1L in DDR through initiating recruitment of RAP80 and BRCA1 onto chromatin and underscore a therapeutic strategy based on targeting DOT1L to overcome tumor radiotherapy resistance.
Assuntos
Proteína BRCA1 , Reparo do DNA , Chaperonas de Histonas , Histona-Lisina N-Metiltransferase , Animais , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Metilação , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Tolerância a Radiação/genéticaRESUMO
Over the course of multiple divisions, cells accumulate diverse nongenetic, somatic damage including misfolded and aggregated proteins and cell wall defects. If the rate of damage accumulation exceeds the rate of dilution through cell growth, a dedicated mitigation strategy is required to prevent eventual population collapse. Strategies for somatic damage control can be divided into two categories, asymmetric allocation and repair, which are not, in principle, mutually exclusive. We explore a mathematical model to identify the optimal strategy, maximizing the total cell number, over a wide range of environmental and physiological conditions. The optimal strategy is primarily determined by extrinsic, damage-independent mortality and the physiological model for damage accumulation that can be either independent (linear) or increasing (exponential) with respect to the prior accumulated damage. Under the linear regime, the optimal strategy is either exclusively repair or asymmetric allocation, whereas under the exponential regime, the optimal strategy is a combination of asymmetry and repair. Repair is preferred when extrinsic mortality is low, whereas at high extrinsic mortality, asymmetric damage allocation becomes the strategy of choice. We hypothesize that at an early stage of life evolution, optimization over repair and asymmetric allocation of somatic damage gave rise to r and K selection strategists.
Assuntos
Modelos Biológicos , Evolução Biológica , Seleção GenéticaRESUMO
Mutations in BRCA1 and BARD1 predispose carriers to breast and ovarian cancers. The BRCA1 and BARD1 proteins form a heterodimeric complex (BRCA1/BARD1) that regulates many biological processes, including transcription and DNA double-stranded break repair. These functions are mediated by the only known enzymatic activity of BRCA1/BARD1 in its capacity as an E3 ubiquitin ligase and its role as a central hub for many large protein complexes. But the mechanisms by which BRCA1/BARD1 interfaces with chromatin, where it exerts its major functions, have remained unknown. Here, we review recent advancements in structural and cellular biology that have provided critical insights into how BRCA1/BARD1 serves as both a nucleosome reader and writer to facilitate transcriptional regulation and DNA repair by homologous recombination.
Assuntos
Nucleossomos , Proteínas Supressoras de Tumor , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The plasma membrane is crucial to the survival of animal cells, and damage to it can be lethal, often resulting in necrosis. However, cells possess multiple mechanisms for repairing the membrane, which allows them to maintain their integrity to some extent, and sometimes even survive. Interestingly, cells that survive a near-necrosis experience can recognize sub-lethal membrane damage and use it as a signal to secrete chemokines and cytokines, which activate the immune response. This review will present evidence of necrotic cell survival in both in vitro and in vivo systems, including in C. elegans, mouse models, and humans. We will also summarize the various membrane repair mechanisms cells use to maintain membrane integrity. Finally, we will propose a mathematical model to illustrate how near-death experiences can transform dying cells into innate immune modulators for their microenvironment. By utilizing their membrane repair activity, the biological effects of cell death can extend beyond the mere elimination of the cells.
Assuntos
Caenorhabditis elegans , Imunidade Inata , Humanos , Animais , Camundongos , Necrose/metabolismo , Morte Celular , Membrana Celular/metabolismoRESUMO
The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double-strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double-strand breaks, hampering DSB repair. DIS3-inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro-inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid-dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.
Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Ribonucleases/metabolismo , Reparo de DNA por Recombinação , Recombinação Homóloga , Instabilidade Genômica , Reparo do DNA , DNA/metabolismo , RNA , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismoRESUMO
DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.
Assuntos
Doença de Charcot-Marie-Tooth , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , RNA Helicases DEAD-box/genética , Diclorodifenil Dicloroetileno , DNA Helicases , Mamíferos , Proteínas de Neoplasias/genéticaRESUMO
The hydrogen peroxide-induced small RNA OxyS has been proposed to originate from the 3' UTR of a peroxide mRNA. Unexpectedly, phylogenetic OxyS targetome predictions indicate that most OxyS targets belong to the category of "cell cycle," including cell division and cell elongation. Previously, we reported that Escherichia coli OxyS inhibits cell division by repressing expression of the essential transcription termination factor nusG, thereby leading to the expression of the KilR protein, which interferes with the function of the major cell division protein, FtsZ. By interfering with cell division, OxyS brings about cell-cycle arrest, thus allowing DNA damage repair. Cell division and cell elongation are opposing functions to the extent that inhibition of cell division requires a parallel inhibition of cell elongation for the cells to survive. In this study, we report that in addition to cell division, OxyS inhibits mepS, which encodes an essential peptidoglycan endopeptidase that is responsible for cell elongation. Our study indicates that cell-cycle arrest and balancing between cell division and cell elongation are important and conserved functions of the oxidative stress-induced sRNA OxyS.
Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Filogenia , Fatores de Transcrição/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Divisão Celular/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismoRESUMO
The tandem Tudor-like domain-containing protein Spindlin1 (SPIN1) is a transcriptional coactivator with critical functions in embryonic development and emerging roles in cancer. However, the involvement of SPIN1 in DNA damage repair has remained unclear. Our study shows that SPIN1 is recruited to DNA lesions through its N-terminal disordered region that binds to Poly-ADP-ribose (PAR), and facilitates homologous recombination (HR)-mediated DNA damage repair. SPIN1 promotes H3K9me3 accumulation at DNA damage sites and enhances the interaction between H3K9me3 and Tip60, thereby promoting the activation of ATM and HR repair. We also show that SPIN1 increases chemoresistance. These findings reveal a novel role for SPIN1 in the activation of H3K9me3-dependent DNA repair pathways, and suggest that SPIN1 may contribute to cancer chemoresistance by modulating the efficiency of double-strand break (DSB) repair.
Assuntos
Proteínas de Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Histonas , Lisina Acetiltransferase 5 , Fosfoproteínas , Ligação Proteica , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Histonas/metabolismo , Lisina Acetiltransferase 5/metabolismo , Lisina Acetiltransferase 5/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Poli Adenosina Difosfato Ribose/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Proteínas Associadas aos MicrotúbulosRESUMO
Resistance to DNA-damaging agents is a major unsolved challenge for breast cancer patients undergoing chemotherapy. Here, we show that elevated expression of transcriptional repressor GATA binding 1 (TRPS1) is associated with lower drug sensitivity, reduced response rate, and poor prognosis in chemotherapy-treated breast cancer patients. Mechanistically, elevated TRPS1 expression promotes hyperactivity of DNA damage repair (DDR) in breast cancer cells. We provide evidence that TRPS1 dynamically localizes to DNA breaks in a Ku70-and Ku80-dependent manner and that TRPS1 is a new member of the DDR protein family. We also discover that the dynamics of TRPS1 assembly at DNA breaks is regulated by its reversible PARylation in the DDR, and that mutations of the PARylation sites on TRPS1 lead to increased sensitivity to chemotherapeutic drugs. Taken together, our findings provide new mechanistic insights into the DDR and chemoresistance in breast cancer patients and identify TRPS1 as a critical DDR protein. TRPS1 may also be considered as a target to improve chemo-sensitization strategies and, consequently, clinical outcomes for breast cancer patients.
Assuntos
Neoplasias da Mama , Reparo do DNA , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Proteínas Repressoras , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição GATA/metabolismo , Fatores de Transcrição GATA/genética , Regulação Neoplásica da Expressão Gênica , Dano ao DNARESUMO
DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.