Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(4): 1765-1779, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32789689

RESUMO

Maintaining the integrity of the mitotic spindle in metaphase is essential to ensure normal cell division. We show here that depletion of microtubule-associated protein ATIP3 reduces metaphase spindle length. Mass spectrometry analyses identified the microtubule minus-end depolymerizing kinesin Kif2A as an ATIP3 binding protein. We show that ATIP3 controls metaphase spindle length by interacting with Kif2A and its partner Dda3 in an Aurora kinase A-dependent manner. In the absence of ATIP3, Kif2A and Dda3 accumulate at spindle poles, which is consistent with reduced poleward microtubule flux and shortening of the spindle. ATIP3 silencing also limits Aurora A localization to the poles. Transfection of GFP-Aurora A, but not kinase-dead mutant, rescues the phenotype, indicating that ATIP3 maintains Aurora A activity on the poles to control Kif2A targeting and spindle size. Collectively, these data emphasize the pivotal role of Aurora kinase A and its mutual regulation with ATIP3 in controlling spindle length.


Assuntos
Aurora Quinase A/genética , Cinesinas/genética , Fosfoproteínas/genética , Fuso Acromático/genética , Proteínas Supressoras de Tumor/genética , Células HeLa , Humanos , Metáfase , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Mitose/genética
2.
J Cell Sci ; 129(14): 2719-25, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284004

RESUMO

Active turnover of spindle microtubules (MTs) for the formation of a bi-orientated spindle, chromosome congression and proper chromosome segregation is regulated by MT depolymerases such as the kinesin-13 family and the plus-end-tracking proteins (+TIPs). However, the control mechanisms underlying the spindle MT dynamics that are responsible for poleward flux at the minus end of MTs are poorly understood. Here, we show that Mdp3 (also known as MAP7D3) forms a complex with DDA3 (also known as PSRC1) and controls spindle dynamics at the minus end of MTs by inhibiting DDA3-mediated Kif2a recruitment to the spindle. Aberrant Kif2a activity at the minus end of spindle MTs in Mdp3-depleted cells decreased spindle stability and resulted in unaligned chromosomes in metaphase, lagging chromosomes in anaphase, and chromosome bridges in telophase and cytokinesis. Although they play opposing roles in minus-end MT dynamics, acting as an MT destabilizer and an MT stabilizer, respectively, DDA3 and Mdp3 did not affect the localization of each other. Thus, the DDA3 complex orchestrates MT dynamics at the MT minus end by fine-tuning the recruitment of Kif2a to regulate minus-end MT dynamics and poleward MT flux at the mitotic spindle.


Assuntos
Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Fosfoproteínas/metabolismo , Fuso Acromático/metabolismo , Cromossomos Humanos/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Polimerização , Ligação Proteica
3.
Biochem Biophys Res Commun ; 470(3): 484-491, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26820536

RESUMO

Spindle dynamics drives chromosome movement and mitotic progression during mitosis. Microtubule (MT)-associated proteins (MAPs) regulate MT stabilization/destabilization and MT polymerization/depolymerization for congression of sister chromatids at the mitotic equator and subsequent segregation toward the spindle poles. Here, we identified ANKRD53 as a novel DDA3-interacting protein through proteomic analysis. Based on expression profiles, ANKRD53 is phosphorylated by mitotic kinases during mitosis. In ANKRD53-depleted HeLa cells, the progression of mitosis was delayed and the number of unaligned chromosomes increased substantially. In addition, spindle MT polymerization decreased and the spindle assembly checkpoint (SAC) was concomitantly activated by the decreased spindle dynamics in ANKRD53-depleted cells. Although ANKRD53 is recruited to the mitotic spindle by DDA3, it counteracts the activity of DDA3 for spindle MT polymerization. Furthermore, ANKRD53 depletion increased the number of bi-nuclei and polylobed nuclei. Thus, ANKRD53 is recruited to the mitotic spindle by DDA3 and acts as a regulator of spindle dynamics and cytokinesis.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/fisiologia , Cromossomos/fisiologia , Mitose/fisiologia , Fosfoproteínas/metabolismo , Fuso Acromático/fisiologia , Núcleo Celular/ultraestrutura , Cromossomos/ultraestrutura , Regulação da Expressão Gênica/fisiologia , Células HeLa , Humanos , Fuso Acromático/ultraestrutura
4.
Biochem Biophys Res Commun ; 470(3): 586-592, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26797278

RESUMO

Spindle microtubules (MTs) capture kinetochores (KTs) on the centromere sequence of sister chromatids to align at the mitotic equator and segregate toward spindle poles during mitosis. For efficient chromosome capture, KTs initially attach to the lateral surface of a MT, providing a considerably larger contact surface than the MT tip. A sequential change of KT composition upon spindle attachment enables a conversion from lateral to stable end-on attachment. However, the molecular link between spindle dynamics and KT composition is not fully understood. Here, we report that Ska1 and DDA3 act as molecular linkers in the interplay between KTs and spindle dynamics. After recruitment of Kif2a onto the mitotic spindle by DDA3, Ska1 targets Kif2a to the minus-end of spindle MTs and facilitates spindle dynamics. Furthermore, DDA3 targets Ska1 to KTs to stabilize end-on attachment. Thus, our findings identified a definite regulatory mechanism of the search and capture process for stable spindle attachment through cross-talk between spindle dynamics and KT composition mediated by DDA3 and Ska1.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Mitose/fisiologia , Proteínas Motores Moleculares/metabolismo , Fosfoproteínas/metabolismo , Fuso Acromático/fisiologia , Células HeLa , Humanos , Ligação Proteica
5.
Biochem Biophys Res Commun ; 463(1-2): 88-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25998387

RESUMO

The centrosome is an important cellular organelle which nucleates microtubules (MTs) to form the cytoskeleton during interphase and the mitotic spindle during mitosis. The Cep290 is one of the centrosomal proteins and functions in cilia formation. Even-though it is in the centrosome, the function of Cep290 in mitosis had not yet been evaluated. In this study, we report a novel function of Cep290 that is involved in spindle positioning. Cep290 was identified as an interacting partner of DDA3, and we confirmed that Cep290 specifically localizes in the mitotic centrosome. Depletion of Cep290 caused a reduction of the astral spindle, leading to misorientation of the mitotic spindle. MT polymerization also decreased in Cep290-depleted cells, suggesting that Cep290 is involved in spindle nucleation. Furthermore, DDA3 stabilizes and transports Cep290 to the centrosome. Therefore, we concluded that DDA3 controls astral spindle formation and spindle positioning by targeting Cep290 to the centrosome.


Assuntos
Antígenos de Neoplasias/metabolismo , Centrossomo/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fuso Acromático/metabolismo , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Estabilidade Proteica , Transporte Proteico , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Mol Cells ; 42(12): 840-849, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31722512

RESUMO

The spatiotemporal mitotic processes are controlled qualitatively by phosphorylation and qualitatively by ubiquitination. Although the SKP1-CUL1-F-box protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) mainly mediate ubiquitin-dependent proteolysis of mitotic regulators, the E3 ligase for a large portion of mitotic proteins has yet to be identified. Here, we report c-Cbl as an E3 ligase that degrades DDA3, a protein involved in spindle dynamics. Depletion of c-Cbl led to increased DDA3 protein levels, resulting in increased recruitment of Kif2a to the mitotic spindle, a concomitant reduction in spindle formation, and chromosome alignment defects. Furthermore, c-Cbl depletion induced centrosome over-duplication and centriole amplification. Therefore, we concluded that c-Cbl controls spindle dynamics and centriole duplication through its E3 ligase activity against DDA3.


Assuntos
Centríolos/metabolismo , Mitose , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Fuso Acromático/metabolismo , Ciclo Celular , Centrossomo/metabolismo , Células HeLa , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA