Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(6): e0014924, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38808978

RESUMO

Glucaric acid (GA) is a value-added chemical and can be used to manufacture food additives, anticancer drugs, and polymers. The non-genetic cell-to-cell variations in GA biosynthesis are naturally inherent, indicating the presence of both high- and low-performance cells in culture. Low-performance cells can lead to nutrient waste and inefficient production. Furthermore, myo-inositol oxygenase (MIOX) is a key rate-limiting enzyme with the problem of low stability and activity in GA production. Therefore, eliminating cell-to-cell variations and increasing MIOX stability can select high-performance cells and improve GA production. In this study, an in vivo GA bioselector was constructed based on GA biosensor and tetracycline efflux pump protein TetA to continuously select GA-efficient production strains. Additionally, the upper limit of the GA biosensor was improved to 40 g/L based on ribosome-binding site optimization, achieving efficient enrichment of GA high-performance cells. A small ubiquitin-like modifier (SUMO) enhanced MIOX stability and activity. Overall, we used the GA bioselector and SUMO-MIOX fusion in fed-batch GA production and achieved a 5.52-g/L titer in Escherichia coli, which was 17-fold higher than that of the original strain.IMPORTANCEGlucaric acid is a non-toxic valuable product that was mainly synthesized by chemical methods. Due to the problems of non-selectivity, inefficiency, and environmental pollution, GA biosynthesis has attracted significant attention. The non-genetic cell-to-cell variations and MIOX stability were both critical factors for GA production. In addition, the high detection limit of the GA biosensor was a key condition for performing high-throughput screening of GA-efficient production strains. To increase GA titer, this work eliminated the cell-to-cell variations by GA bioselector constructed based on GA biosensor and TetA, and improved the stability and activity of MIOX in the GA biosynthetic pathway through fusing the SUMO to MIOX. Finally, these approaches improved the GA production by 17-fold to 5.52 g/L at 65 h. This study represents a significant step toward the industrial application of GA biosynthetic pathways in E. coli.


Assuntos
Escherichia coli , Ácido Glucárico , Inositol Oxigenase , Inositol , Escherichia coli/genética , Escherichia coli/metabolismo , Inositol/metabolismo , Inositol Oxigenase/metabolismo , Inositol Oxigenase/genética , Ácido Glucárico/metabolismo , Engenharia Metabólica , Técnicas Biossensoriais
2.
BMC Microbiol ; 24(1): 51, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326759

RESUMO

BACKGROUND: S. pyogenes, is a primary pathogen that leads to pharyngitis and can also trigger severe conditions like necrotizing fasciitis and streptococcal toxic shock syndrome (STSS), often resulting in high mortality rates. Therefore, prompt identification and appropriate treatment of S. pyogenes infections are crucial in preventing the worsening of symptoms and alleviating the disease's impact. RESULTS: In this study, a newly developed technique called multiple cross displacement amplification (MCDA) was employed to detect S. pyogenes,specifically targeting the speB gene, at a temperature of 63°C within 30 min. Then, an easily portable and user-friendly nanoparticles-based lateral flow biosensor (LFB) assay was introduced for the rapid analysis of MCDA products in just 2 min. The results indicated that the LFB offers greater objectivity compared to Malachite Green and is simpler than electrophoresis. The MCDA-LFB assay boasts a low detection limit of 200 fg and exhibits no cross-reaction with non-S. pyogenes strains. Among 230 clinical swab throat samples, the MCDA-LFB method identified 27 specimens as positive, demonstrating higher sensitivity compared to 23 samples detected positive by qPCR assay and 18 samples by culture. The only equipment needed for this assay is a portable dry block heater. Moreover, each MCDA-LFB test is cost-effective, priced at approximately $US 5.5. CONCLUSION: The MCDA-LFB assay emerges as a straightforward, specific, sensitive, portable, and user-friendly method for the rapid diagnosis of S. pyogenes in clinical samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Streptococcus pyogenes/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , Temperatura , Sensibilidade e Especificidade
3.
Stat Med ; 43(4): 674-688, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043523

RESUMO

Measures of substance concentration in urine, serum or other biological matrices often have an assay limit of detection. When concentration levels fall below the limit, exact measures cannot be obtained, and thus are left censored. The problem becomes more challenging when the censored data come from heterogeneous populations consisting of exposed and non-exposed subjects. If the censored data come from non-exposed subjects, their measures are always zero and hence censored, forming a latent class governed by a distinct censoring mechanism compared with the exposed subjects. The exposed group's censored measurements are always greater than zero, but less than the detection limit. It is very often that the exposed and non-exposed subjects may have different disease traits or different relationships with outcomes of interest, so we need to disentangle the two different populations for valid inference. In this article, we aim to fill the methodological gaps in the literature by developing a novel joint modeling approach to not only address the censoring issue in predictors, but also untangle different relationships of exposed and non-exposed subjects with the outcome. Simulation studies are performed to assess the numerical performance of our proposed approach when the sample size is small to moderate. The joint modeling approach is also applied to examine associations between plasma metabolites and blood pressure in Bogalusa Heart Study, and identify new metabolites that are highly associated with blood pressure.


Assuntos
Modelos Estatísticos , Humanos , Limite de Detecção , Simulação por Computador , Estudos Longitudinais
4.
Environ Sci Technol ; 58(25): 10941-10955, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865299

RESUMO

The recent regulatory spotlight on continuous monitoring (CM) solutions and the rapid development of CM solutions have demanded the characterization of solution performance through regular, rigorous testing using consensus test protocols. This study is the second known implementation of such a protocol involving single-blind controlled testing of 9 CM solutions. Controlled releases of rates (6-7100 g) CH4/h over durations (0.4-10.2 h) under a wind speed range of (0.7-9.9 m/s) were conducted for 11 weeks. Results showed that 4 solutions achieved method detection limits (DL90s) within the tested emission rate range, with all 4 solutions having both the lowest DL90s (3.9 [3.0, 5.5] kg CH4/h to 6.2 [3.7, 16.7] kg CH4/h) and false positive rates (6.9-13.2%), indicating efforts at balancing low sensitivity with a low false positive rate. These results are likely best-case scenario estimates since the test center represents a near-ideal upstream field natural gas operation condition. Quantification results showed wide individual estimate uncertainties, with emissions underestimation and overestimation by factors up to >14 and 42, respectively. Three solutions had >80% of their estimates within a quantification factor of 3 for controlled releases in the ranges of [0.1-1] kg CH4/h and > 1 kg CH4/h. Relative to the study by Bell et al., current solutions performance, as a group, generally improved, primarily due to solutions from the study by Bell et al. that were retested. This result highlights the importance of regular quality testing to the advancement of CM solutions for effective emissions mitigation.


Assuntos
Monitoramento Ambiental , Monitoramento Ambiental/métodos , Método Simples-Cego , Metano/análise , Poluentes Atmosféricos/análise
5.
J Fluoresc ; 34(1): 149-157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37178421

RESUMO

In this study, a simple Schiff base sensor 1-(((4-nitrophenyl)imino)methyl)naphthalen-2-ol(NNM) has been used for chemosensing of metal ions. The metal sensing properties of sensor NNM have been investigated using UV-visible and fluorescence spectroscopic approaches. The spectral investigations revealed a red shift in absorption spectra and quenching in the emission band of the ligand molecule in the presence of Cu2+ and Ni2+ ions. The binding stoichiometry of sensor NNM for the analyte (Cu2+ and Ni2+ ions) has been investigated by the Job's plot analysis and found to be 1:1 (NNM:Analyte). The data of the Benesi-Hildebrand plot demonstrated that NNM detected Cu2+ and Ni2+ ions in nanomolar quantity. The binding insights among NNM and analytes (Cu2+ and Ni2+ ions) have been confirmed by shifted IR signals. Moreover, the reusabilty of the sensor has been investigated using an EDTA solution. In addition, the sensor NNM also successfully applied to real water samples for the identification and measurement of Cu2+ and Ni2+ ions. Hence, this system could be highly applicable in environmental and biological applications.

6.
J Fluoresc ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990455

RESUMO

This review provides a thorough examination of small molecule-based fluorescence chemosensors tailored for bioimaging applications, showcasing their unique ability to visualize biological processes with exceptional sensitivity and selectivity. It explores recent advancements, methodologies, and applications in this domain, focusing on various designs rooted in anthracene, benzothiazole, naphthalene, quinoline, and Schiff base. Structural modifications and molecular engineering strategies are emphasized for enhancing sensor performance, including heightened sensitivity, selectivity, and biocompatibility. Additionally, the review offers valuable insights into the ongoing development and utilization of these chemosensors, addressing current challenges and charting future directions in this rapidly evolving field.

7.
J Fluoresc ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285156

RESUMO

Fluorescent and colorimetric chemosensors for selective detection of various biologically important analytes have been widely applied in different areas such as biology, physiology, pharmacology, and environmental sciences. The research area based on fluorescent chemosensors has been in existence for about 150 years with the development of large number of fluorescent chemosensors for selective detection of cations as metal ions, anions, reactive species, neutral molecules and different gases etc. Despite the progress made in this field, several problems and challenges still exist. The most important part of sensing is limit of detection (LOD) which is the lowest concentration that can be measured (detected) with statistical significance by means of a given analytical procedure. Although there are so many reports available for detection of millimolar to micromolar range but the development of chemosensors for the detection of analytes in nanomolar range is still a challenging task. Therefore, in our current review we have focused the history and a general overview of the development in the research of fluorescent sensors for selective detection of various analytes at nanomolar level only. The basic principles involved in the design of chemosensors for specific analytes, binding mode, photophysical properties and various directions are also covered here. Summary of physiochemical properties, mechanistic view and type of different chemosensors has been demonstrated concisely in the tabular forms.

8.
J Endocrinol Invest ; 47(3): 557-570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37584897

RESUMO

PURPOSE: Human Papillomavirus (HPV) in semen represents a controversial topic. Recent evidence suggests a correlation with poor semen quality, but its detection is still unstandardized in this biological fluid. Thus, the aims of this study were to verify the ability of nested PCR to reveal HPV-DNA in semen; to evaluate association of seminal HPV with sperm parameters and risk factors for infection; to investigate the rate of HPV-DNA positivity in patients with and without risk factors; to assess HPV transcriptional activity. METHODS: We enrolled sexually active men and collected clinical and anamnestic data during andrological and sexually transmitted infections (STIs) evaluation. For each patient, we performed semen analysis and nested PCR to detect HPV-DNA in semen. In positive semen samples, we proceeded with genotyping and RNA quantification to detect HPV transcriptional activity. RESULTS: We enrolled 185 men (36.0 ± 8.3 years), of which 85 with (Group A) and 100 without HPV risk factors (Group B). Nested PCR was able to reveal HPV-DNA in semen, discovering a prevalence of 8.6% (11.8% in Group A and 6% in Group B, respectively). We observed no correlation between sperm quality and seminal HPV. Genital warts and previous anogenital infection were significantly associated with the risk of HPV positivity in semen. Moreover, no viral transcriptional activity was detected in positive semen samples. CONCLUSIONS: Our study suggests that searching for seminal HPV could be important in patients both with and without risk factors, especially in assisted reproduction where the risk of injecting sperm carrying HPV-DNA is possible.


Assuntos
Infecções por Papillomavirus , Sêmen , Humanos , Masculino , Papillomavirus Humano , Análise do Sêmen , Infecções por Papillomavirus/epidemiologia , DNA
9.
Luminescence ; 39(3): e4712, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481369

RESUMO

In this study, a novel fluorescent chemosensor 1 based on chromone-3-carboxaldehyde Schiff base was synthesized and featured through nuclear magnetic resonance (NMR) and mass spectra. Spectroscopic investigation indicated that the fluorescent sensor showed high selectivity toward Zn2+ over other metal ions and that the detection limit of 1 could reach 10-7  M. These indicated that 1 acted as a highly selective and sensitive fluorescence chemosensor for Zn2+ .


Assuntos
Corantes Fluorescentes , Bases de Schiff , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Bases de Schiff/química , Cromonas , Zinco
10.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931582

RESUMO

Synchronous fluorescence spectroscopy (SFS) is a technique that involves the simultaneous detection of fluorescence excitation and emission at a constant wavelength difference. The spectrum yields bands that are narrower and less complex than the original excitation and emission bands. The SFS bands correspond uniquely to the fluorescing molecule. Our investigation focuses on evaluating the sensitivity of the SFS technique for the detection and quantitation of PAHs relevant to astrochemistry. Results are presented for naphthalene, anthracene, and pyrene in three different solvents: n-hexane, water, and ethanol. SF bands are obtained with a constant wavelength difference between the peak excitation and emission wavelength (Δλ = λex - λem) at a concentration ranging from 10-4 to 10-10 M. Limit of detection (LOD) and limit of quantitation (LOQ) calculations are based on integrated SF band areas at different concentrations. Spectra of 23 pg/g of anthracene, 16 pg/g, and 2.6 pg/g of pyrene are recorded using ethanol as the solvent. The PAHs exhibit detection limits in the fractions of parts-per-billion (ng/g) range. Through comparison with similar prior studies employing fluorescence emission, our findings reveal a better detectability limit, demonstrating the effectiveness and applicability of the SFS technique.

11.
Small ; 19(1): e2205316, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394201

RESUMO

Recently, flexible stretchable sensors have been gaining attention for their excellent adaptability for electronic skin applications. However, the preparation of stretchable strain sensors that achieve dual-mode sensing while still retaining ultra-low detection limit of strain, high sensitivity, and low cost is a pressing task. Herein, a high-performance dual-mode stretchable strain sensor (DMSSS) based on biomimetic scorpion foot slit microstructures and multi-walled carbon nanotubes (MWCNTs)/graphene (GR)/silicone rubber (SR)/Fe3 O4 nanocomposites is proposed, which can accurately sense strain and magnetic stimuli. The DMSSS exhibits a large strain detection range (≈160%), sensitivity up to 100.56 (130-160%), an ultra-low detection limit of strain (0.16% strain), and superior durability (9000 cycles of stretch/release). The sensor can accurately recognize sign language movement, as well as realize object proximity information perception and whole process information monitoring. Furthermore, human joint movements and micro-expressions can be monitored in real-time. Therefore, the DMSSS of this work opens up promising prospects for applications in sign language pose recognition, non-contact sensing, human-computer interaction, and electronic skin.


Assuntos
Nanocompostos , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Movimento , Fenômenos Físicos , Fenômenos Magnéticos
12.
Small ; 19(45): e2303814, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415552

RESUMO

Halide hybrid perovskites are a kind of intriguing contenders for X-ray detection, and their low detection limits (LoDs) have played a crucial part in X-ray safety inspection and medical examination. However, there is still a significant challenge in manufacturing perovskite X-ray detectors with low LoDs. Herein, attributed to the bulk photovoltaic effect (BPVE) of a Dion-Jacobson (DJ) type 2D halide hybrid perovskite polar structure (3-methylaminopropylamine)PbBr4 (1), self-powered X-ray detection with low detection limit is successfully realized. Specifically, the crystal-based detector of 1 exhibits a low dark current at zero bias, which reduces the noise current (0.34 pA), leading to a low detection limit (58.3 nGyair s-1 ) which is two orders of magnitude lower than that of under external voltage bias. The combination of BPVE and LoDs of halide hybrid perovskite provides an efficient strategy to achieve passive X-ray detection with low doses.

13.
Small ; 19(50): e2304201, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658508

RESUMO

2D Ruddlesden-Popper (RP) perovskites have been intensively investigated due to their superior stability and outstanding optoelectrical properties. However, investigations on 2D RP perovskites are mainly focused on A-site substituted perovskites and few reports are on X-site substituted perovskites especially in X-ray detection field. Here, X-site substituted 2D RP perovskite Cs2 Pb(SCN)2 Br2 polycrystalline wafers are prepared and systematically studied for X-ray detection. The obtained wafers show a large resistivity of 2.0 × 1010 Ω cm, a high ion activation energy of 0.75 eV, a small current drift of 2.39 × 10-6 nA cm-1 s-1 V-1 , and charge carrier mobility-lifetime product under X-ray as high as 1.29 × 10-4 cm2 V-1 . These merits enable Cs2 Pb(SCN)2 Br2 wafer detectors with a sensitivity of 216.3 µC Gyair -1 cm-2 , a limit of detection of 42.4 nGyair s-1 , and good imaging ability with high spatial resolution of 1.08 lp mm-1 . In addition, Cs2 Pb(SCN)2 Br2 wafer detectors demonstrate excellent operational stability under high working field up to 2100 V cm-1 after continuous X-ray irradiation with a total dose of 45.2 Gyair . The promising features such as short octahedral spacing and weak ion migration will open up a new perspective and opportunity for SCN-based 2D perovskites in X-ray detection.

14.
Chemistry ; 29(15): e202203595, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36592116

RESUMO

Palladium is a key element in fuel cells, electronic industries, and organic catalysis. At the same time, chromium is essential in leather, electroplating, and metallurgical industries. However, their unpremeditated leakage into aquatic systems has caused human health and environmental apprehensions. Herein, we reported the development of an sp2 carbon-conjugated fluorescent covalent organic framework with a guanidine moiety (sp2 c-gCOF) that showed excellent thermal and chemical stability. The sp2 c-gCOF showed effective sensing, capture, and recovery/removal of Pd(II) and Cr(VI) ions, which could be due to the highly accessible pore walls decorated with guanidine moieties. The fluorescent sp2 c-gCOF showed higher selectivity for Pd(II) and Cr(VI) ions, with an ultra-low detection limit of 2.7 and 3.2 nM, respectively. The analysis of the adsorption properties with a pseudo-second-order kinetic model showed that sp2 c-gCOF could successfully and selectively remove both Pd(II) and Cr(VI) ions from aqueous solutions. The polymer also showed excellent capture efficacy even after seven consecutive adsorption-desorption cycles. Hence, this study reveals the potential of fluorescent sp2 c-gCOF for detecting, removing, and recovering valuable metals and hazardous ions from wastewater, which would be useful for economic benefit, environmental safety, human health, and sustainability. The post-synthetic modification of sp2 c-COF with suitable functionalities could also be useful for sensing and extracting other water pollutants and valuable materials from an aqueous system.

15.
Environ Sci Technol ; 57(14): 5794-5805, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36977200

RESUMO

Continuous emission monitoring (CM) solutions promise to detect large fugitive methane emissions in natural gas infrastructure sooner than traditional leak surveys, and quantification by CM solutions has been proposed as the foundation of measurement-based inventories. This study performed single-blind testing at a controlled release facility (release from 0.4 to 6400 g CH4/h) replicating conditions that were challenging, but less complex than typical field conditions. Eleven solutions were tested, including point sensor networks and scanning/imaging solutions. Results indicated a 90% probability of detection (POD) of 3-30 kg CH4/h; 6 of 11 solutions achieved a POD < 6 kg CH4/h, although uncertainty was high. Four had true positive rates > 50%. False positive rates ranged from 0 to 79%. Six solutions estimated emission rates. For a release rate of 0.1-1 kg/h, the solutions' mean relative errors ranged from -44% to +586% with single estimates between -97% and +2077%, and 4 solutions' upper uncertainty exceeding +900%. Above 1 kg/h, mean relative error was -40% to +93%, with two solutions within ±20%, and single-estimate relative errors were from -82% to +448%. The large variability in performance between CM solutions, coupled with highly uncertain detection, detection limit, and quantification results, indicates that the performance of individual CM solutions should be well understood before relying on results for internal emissions mitigation programs or regulatory reporting.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metano/análise , Gás Natural/análise , Método Simples-Cego
16.
J Fluoresc ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971608

RESUMO

Here, we developed a novel isoniazid based fluorescent probe (E)-N'-(thiophen-2-ylmethylene)isonicotinohydrazide (TINH) through simple condensation reaction and employed for selective detection of Pd2+ ions with a low detection limit of 4.102 × 10-11 M. Among the many existing cations, TINH bound Pd2+ ions with an association affinity of 9.794 × 105 M-1. Adding Pd2+ ions to ligand solution increased the absorption intensity in UV-Visible and quenched the emission intensity in fluorescence spectroscopic experiments. More importantly, this TINH complexed to Pd2+ ions in 1:1 stoichiometric ratio. To evaluate the stability of complexed system, pH experiments has been performed. The binding insights among the ligand and Pd2+ ions has been confirmed by IR spectroscopic and MASS spectrometric methods. Additionally, TINH also applied to real water samples for the identification and measurement of Pd2+ ions. Hence, this system could be highly applicable for detection of Pd2+ ions in environmental and industrial samples with in low detection range.

17.
J Fluoresc ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707709

RESUMO

In this study, a new Schiff base, (E)-2-(2-aminophenylthio)-N-(thiophen-2-yl-methylene) benzenamine was synthesized for selective detection of Hg2+. This Schiff base was characterized by proton nuclear magnetic resonance (1HNMR), carbon-13 nuclear magnetic resonance (13CNMR), and Fourier-transform infrared (FTIR) spectroscopy. Binding interaction between (E)-2-(2-aminophenylthio)-N-(thiophen-2-yl-methylene)benzenamine and various metal ions has been studied by UV-Vis spectroscopic measurements and shows promising coordination towards Hg2+ and almost no interference from other metal ions (Ag+, Mn2+, Fe3+, Al3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Fe2+ and Cr3+).This Schiff base exhibiting detection limit of 3.8 × 10- 8 M. The Schiff base newly synthesized in this study was successfully applied to the determination of Hg2+ in water samples. In addition to the experimental study, a theoretical study was conducted using Gaussian 09 program to support the experimental findings. FTIR, NMR, bond angle, bond length, torsional angles, and structural approximation were studied using theoretical consideration.

18.
J Fluoresc ; 33(3): 859-893, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36633727

RESUMO

Metal cations such as Zn2+, Al3+, Hg2+, Cd2+, Sn2+, Fe2+, Fe3+ and Cu2+ play important roles in biology, medicine, and the environment. However, when these are not maintained in proper concentration, they can be lethal to life. Therefore, selective sensing of metal cations is of great importance in understanding various metabolic processes, disease diagnosis, checking the purity of environmental samples, and detecting toxic analytes. Schiff base probes have been largely used in designing fluorescent sensors for sensing metal ions because of their easy processing, availability, fast response time, and low detection limit. Herein, an in-depth report on metal ions recognition by some Schiff base fluorescent sensors, their sensing mechanism, their practical applicability in cell imaging, building logic gates, and analysis of real-life samples has been presented. The metal ions having biological, industrial, and environmental significance are targeted. The compiled information is expected to prove beneficial in designing and synthesis of the related Schiff base fluorescent sensors.


Assuntos
Corantes Fluorescentes , Mercúrio , Bases de Schiff , Metais/análise , Cátions , Mercúrio/análise , Espectrometria de Fluorescência/métodos
19.
J Fluoresc ; 33(2): 539-551, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36449227

RESUMO

Qualitative and quantitative analysis of mercury at concentration levels as low as parts per billion (ppb) is a basic and practical concern. The vast majority of research in this field has centered on the development of potent chemosensor to monitor mercuric (Hg2+) ions. Mercury exists in three oxidation states, + 2, + 1 and 0, all of which are highly poisonous. In this study, (N1E,N2E)-N1,N2-bis(pyrene-1-ylmethylene)benzene-1,2-diamine (PAPM), a novel photoluminescent sensor based on pyrene platform was synthesized. Over the tested metal ions (Cd2+, Co2+, Cu2+, Mg2+, Mn2+, Ni2+, K+, Na+, Zn2+, Sr2+, Pb2+, Al3+, Cr3+ and Fe3+) the sensor responds only to Hg2+ by showing high selectivity and sensitivity. After treatment with mercuric ions at room temperature, the luminescence intensity of probe was quenched at 456 nm. The quenching of fluorescence intensity of probe upon addition of mercury is due to the effect of "turn-off" chelation enhanced quenching (CHEQ) by the formation of 1:1 complex. The ESI-MS spectrum and the Job's experimental results confirm the formation of 1:1 complex between PAPM and Hg2+. The detection limit and association constant of sensor for mercury is computed using fluorescence titration data and were found to be 9.0 × 10-8 M and 1.29 × 105 M-1 respectively. The practical application of sensor towards recognition of mercury(II) ions was explored through economically viable test strips and also using cell imaging studies.


Assuntos
Mercúrio , Mercúrio/análise , Corantes Fluorescentes/análise , Luminescência , Bases de Schiff , Íons/análise , Pirenos
20.
J Fluoresc ; 33(3): 1089-1099, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574186

RESUMO

In the current research work "4-{[1-(2,5-dihydroxyphenyl)ethylidene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one" chemosensor (C1) synthesized by condensation reaction using "4-amino-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one" and "2,5-dihydroxy actophenone" was used as the effective sensor of metal ion. The C1 shows absorption peak at 326 nm due to the C = C bond (π-π* transition), while the absorption peak at 364 nm is caused by the C = O bond (n-π* transition). In the presence of copper, C1 only demonstrated a redshift in absorption peak from 364 to 425 nm. Even in the presence of other competing metal ions, the hypsochromic shift of the absorption band and the quenching of the fluorescence emission intensity were different for detecting Cu2+, in CH3OH-H2O (v/v = 6:4). The capacity of the C1 to bind with Cu2+ was further proved using DFT simulations. The complex C1 + Cu2+ has a HOMO-LUMO energy gap of 2.8002 eV, which is lesser than C1 (2.9991 eV) showing improvement in the stability of the C1 + Cu2+ complex. Using the Benesi-Hildebrand and Scatchard plots, calculated Kb values were to be 47,340 and 48369 M-1 respectively, showing the creation of stable complexation between Cu2+ and C1 with 1:1 stoichiometry. The limit of detection (LOD) for Cu2+ ion was 649 nM. Strip sheets were also built and tested to detect varying amounts of Cu2+ in aqueous solution, and their color change suggested that they might be used for on-site Cu2+ detection in polluted water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA