Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Br J Clin Pharmacol ; 90(4): 933-941, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369772

RESUMO

AIMS: The objective of this meta-analysis was to determine whether maternal exposure to folate antagonists is associated with increased rates of congenital heart disease in offspring. METHODS: A comprehensive search for articles in the MEDLINE (PubMed) and EMBASE databases published up to 21 August 2023 was performed. The search strategy was not limited by study design but only for articles in the English language. RESULTS: Analysis of 6 cohort studies and 5 cross-sectional studies, published between 1976 and 2020, showed significant increase in rate of congenital heart disease (odds ratio 1.55, 95% confidence interval, 1.28-1.87) when exposed to folate antagonists compared with the control. Further subgroup analysis showed the increased rate for exposure to both dihydrofolate reductase inhibitors and antiepileptic drugs separately. No differences were observed when analyses were stratified by timing of study. CONCLUSION: Administration of folate antagonists within the 12-week period preceding conception and throughout the second and third months of gestation exhibited a statistically significant elevation in the susceptibility to congenital heart diseases. Notably, the protective effect of folic acid supplementation was reported in cases of congenital heart disease linked to dihydrofolate reductase inhibitors but not that associated with antiepileptic drugs.

2.
Molecules ; 26(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771128

RESUMO

In this work, co-crystal screening was carried out for two important dihydrofolate reductase (DHFR) inhibitors, trimethoprim (TMP) and pyrimethamine (PMA), and for 2,4-diaminopyrimidine (DAP), which is the pharmacophore of these active pharmaceutical ingredients (API). The isomeric pyridinecarboxamides and two xanthines, theophylline (THEO) and caffeine (CAF), were used as co-formers in the same experimental conditions, in order to evaluate the potential for the pharmacophore to be used as a guide in the screening process. In silico co-crystal screening was carried out using BIOVIA COSMOquick and experimental screening was performed by mechanochemistry and supported by (solid + liquid) binary phase diagrams, infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD). The in silico prediction of low propensities for DAP, TMP and PMA to co-crystallize with pyridinecarboxamides was confirmed: a successful outcome was only observed for DAP + nicotinamide. Successful synthesis of multicomponent solid forms was achieved for all three target molecules with theophylline, with DAP co-crystals revealing a greater variety of stoichiometries. The crystalline structures of a (1:2) TMP:THEO co-crystal and of a (1:2:1) DAP:THEO:ethyl acetate solvate were solved. This work demonstrated the possible use of the pharmacophore of DHFR inhibitors as a guide for co-crystal screening, recognizing some similar trends in the outcome of association in the solid state and in the molecular aggregation in the co-crystals, characterized by the same supramolecular synthons.


Assuntos
Inibidores Enzimáticos/farmacologia , Pirimetamina/farmacologia , Pirimidinas/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/farmacologia , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Pirimetamina/química , Pirimidinas/química , Trimetoprima/química
3.
Bioorg Med Chem ; 27(24): 115158, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31685330

RESUMO

The series of des-Cl (unsubstituted) and m-Cl phenyl analogues of PYR with various flexible 6-substituents were synthesized and studied for the binding affinities with highly resistant quadruple mutant (QM) DHFR. The derivatives carrying 4 atoms linker with a terminal carboxyl substituted on the aromatic ring exhibited good inhibition to the QM enzyme and also showed effective antimalarial activities against resistant P. falciparum bearing the mutant enzymes with relatively low cytotoxicity to mammalian cells. The X-ray crystallographic analysis of the enzyme-inhibitor complexes suggested that the hydrophobic substituent at 6-position was accommodated well in the hydrophobic pocket and the optimal length of the flexible linker could effectively promote the binding of the terminal carboxyl group to the key amino acid residues, Arg59 and Arg122.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/análogos & derivados , Animais , Antimaláricos/química , Chlorocebus aethiops , Desenho de Fármacos , Resistência a Medicamentos , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Pirimetamina/química , Pirimetamina/farmacologia , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Células Vero
4.
Artigo em Inglês | MEDLINE | ID: mdl-28289036

RESUMO

We previously reported a series of N2,N4-disubstituted quinazoline-2,4-diamines as dihydrofolate reductase inhibitors with potent in vitro and in vivo antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. In this work, we extended our previous study to the Gram-negative pathogen Acinetobacter baumannii We determined that optimized N2,N4-disubstituted quinazoline-2,4-diamines are strongly antibacterial against multidrug-resistant A. baumannii strains when the 6-position is replaced with a halide or an alkyl substituent. Such agents display potent antibacterial activity, with MICs as low as 0.5 µM, while proving to be strongly bactericidal. Interestingly, these compounds also possess the potential for antibiofilm activity, eradicating 90% of cells within a biofilm at or near MICs. Using serial passage assays, we observed a limited capacity for the development of resistance toward these molecules (4-fold increase in MIC) compared to existing folic acid synthesis inhibitors, such as trimethoprim (64-fold increase) and sulfamethoxazole (128-fold increase). We also identified limited toxicity toward human cells, with 50% lethal doses (LD50s) of ≤23 µM for lead agents 4 and 5. Finally, we demonstrated that our lead agents have excellent in vivo efficacy, with lead agent 5 proving more efficacious than tigecycline in a murine model of A. baumannii infection (90% survival versus 66%), despite being used at a lower dose (2 versus 30 mg kg-1). Together, our results demonstrate that N2,N4-disubstituted quinazoline-2,4-diamines have strong antimicrobial and antibiofilm activities against both Gram-positive organisms and Gram-negative pathogens, suggesting strong potential for their development as antibacterial agents.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Diaminas/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Quinazolinas/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diaminas/química , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Células Hep G2 , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Peritonite/tratamento farmacológico , Peritonite/microbiologia , Quinazolinas/química , Tetra-Hidrofolato Desidrogenase/efeitos dos fármacos
5.
Bioorg Med Chem Lett ; 26(16): 4030-5, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397497

RESUMO

A series of novel dihydropyrimidine derivatives bearing an imidazole nucleus at C-4 position were synthesized in excellent yields via Biginelli multi-component reaction. The newly synthesized compounds were characterized by IR, (1)H NMR, (13)C NMR and Mass spectroscopy. In vitro antitubercular evaluation of all the newly synthesized compounds 4a-p against Mycobacterium tuberculosis (Mtb) H37Rv showed, 4j (MIC: 0.39µg/mL; SI: >25.64), 4m (MIC: 0.78µg/mL; SI: >12.82) and 4p (MIC: 0.39µg/mL; SI: 24.10) as the most promising lead analogues. Compounds 4j, 4m and 4p displayed effective reduction in residual Mtb growth within the tuberculosis-infected macrophage model. Further, molecular docking study of active molecules 4j, 4m and 4p against Mycobacterium tuberculosis dihydrofolate reductase (Mtb DHFR) proved their potency as Mtb DHFR inhibitors acting as potential leads for further development. Pharmacokinetic properties leading to drug-likeness were also predicted for most active molecules 4j, 4m and 4p.


Assuntos
Antituberculosos/síntese química , Antagonistas do Ácido Fólico/química , Pirimidinas/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Antituberculosos/farmacologia , Sítios de Ligação , Domínio Catalítico , Desenho de Fármacos , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/farmacologia , Imidazóis/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química
6.
ACS Infect Dis ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953453

RESUMO

Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.

7.
Expert Opin Ther Pat ; 32(10): 1079-1095, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36189616

RESUMO

INTRODUCTION: Dihydrofolate reductase (DHFR) plays an important role in the biosynthesis of amino acid and folic acid. It participates by reducing dihydrofolate to tetrahydrofolate, in the presence of nicotinamide dinucleotide phosphate cofactor, and has been verified by various clinical studies to use DHFR as a target for the treatment of cancer and various bacterial infections. AREA COVERED: In this review, we have disclosed patents of synthetics and natural DHFR inhibitors with diaminopyrimidine and quinazoline nucleus from 2001. Additionally, this review highlights the clinical progression of numerous DHFR inhibitors received from the last five years. EXPERT OPINION: From 2001 to 2021, numerous active chemical scaffolds have been introduced and are exposed as lead candidates that have entered clinical trials as potent DHFR inhibitors. Moreover, researchers have paid considerable attention to the development of a new class of DHFR inhibitors with higher selectivity and potency. This development includes synthesis of synthetic as well as natural compounds that are potent DHFR inhibitors. On the basis of literature review, we can anticipate that there are a huge number of novel active molecules available for the future that could possess superior abilities to target this enzyme with a profound pharmacological profile.


Assuntos
Antagonistas do Ácido Fólico , Humanos , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Patentes como Assunto , Ácido Fólico , Aminoácidos , Tetra-Hidrofolatos , Quinazolinas , Niacinamida , Fosfatos
8.
Microorganisms ; 8(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019171

RESUMO

Antimicrobial agents are currently the mainstay of treatment for bacterial infections worldwide. However, due to the increased use of antimicrobials in both human and animal medicine, pathogens have now evolved to possess high levels of multi-drug resistance, leading to the persistence and spread of difficult-to-treat infections. Several current antibacterial agents active against Gram-positive bacteria will be rendered useless in the face of increasing resistance rates. There are several emerging antibiotics under development, some of which have been shown to be more effective with an improved safety profile than current treatment regimens against Gram-positive bacteria. We will extensively discuss these antibiotics under clinical development (phase I-III clinical trials) to combat Gram-positive bacteria, such as Staphylococcus aureus, Enterococcus faecium and Streptococcus pneumoniae. We will delve into the mechanism of actions, microbiological spectrum, and, where available, the pharmacokinetics, safety profile, and efficacy of these drugs, aiming to provide a comprehensive review to the involved stakeholders.

9.
Eur J Med Chem ; 163: 169-182, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508666

RESUMO

The emergence of various drug-resistant Mycobacterium tuberculosis (Mtb) strains has necessitated the exploration of new drugs that lack cross-resistance with existing therapeutics. By screening the MedChemExpress bioactive compound library, ceritinib was identified as a compound with activity against Mtb H37Ra. Ceritinib had a MIC value of 9.0 µM in vitro and demonstrated in vivo efficacy in a BALB/c mouse model infected with autoluminescent H37Ra. Then, 32 novel ceritinib derivatives were synthesized, and their antimycobacterial activities were evaluated in vitro. The antimycobacterial activities of the synthesized compounds were drastically affected by substitutions at position 4 of the pyrimidine nucleus and were enhanced by the presence of 2-isopropoxy-5-methyl-4-(piperidin-4-yl)aniline at position 2 of the pyrimidine nucleus. The in vivo antitubercular activities of the three most potent compounds were evaluated. 5-Chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl) phenyl)-N4-(naph thalen-1-yl) pyrimidine-2,4-diamine (16j) remarkably reduced the Mtb burden of mice. This result suggested the potential of 16j as a novel drug with superior antitubercular activities. The results of experiments on the combination of sulfamethoxazole with 16j and in silico modeling suggest that dihydrofolate reductase is the potential molecular target of 16j.


Assuntos
Antituberculosos/síntese química , Desenho de Fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Pirimidinas/síntese química , Sulfonas/síntese química , Animais , Antituberculosos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/efeitos dos fármacos
10.
Int J Mycobacteriol ; 5 Suppl 1: S96, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28043639

RESUMO

OBJECTIVES/BACKGROUND: Dihydrofolate reductase (DHFR) is one of the validated drug targets in Mycobacterium tuberculosis (Mtb) infection. DHFR inhibitors have been used to treat various life-threatening diseases such as cancer, malaria, and several bacterial infections. However, all clinically effective DHFR inhibitors are non-selective, and inhibit both human and pathogenic DHFRs more or less to a similar extent. The crystal structure of various DHFRs complexed with nicotinamide adenine dinucleotide phosphate and different inhibitors is available in the protein data bank. The crystal structures are validated and have been used for new drug designing. M. tuberculosis DHFRs and human (h) DHFRs show 26% structure similarity, but their active sites are not identical and this characteristic forms the basis of this study. Because most of the reported inhibitors of M. tuberculosis DHFR are pteridine based and nonselective in nature, that is, they inhibit both microbial and host DHFRs, this study aimed to design and develop selective nonpteridine M. tuberculosis DHFR inhibitors. METHOD: In the ternary complex of methotrexate with M. tuberculosis DHFR, whose structure is also available in the protein data bank, the side of the aminopterin ring is accessible to the solvent; additionally, a glycerol "A" molecule is found in a depression nearby. This glycerol molecule interacts with the side chains of Trp22, Asp27, and Gln28, which form a pocket in M. tuberculosis DHFR; by contrast, glycerol is absent in h-DHFR. In the h-DHFRs (complexed with folate or N-(4-carboxy-{-[(2, 4-diamino pteridine-6-yl methyl)-amino]-benzoyl amino} -butyl) pthalamic acid (COP)), the site is well packed with three hydrophobic residue side chains, Leu22, Pro26, and Phe31, which correspond to Leu20, Arg23, and Gln28, respectively, found in M. tuberculosis DHFR. Therefore, compounds with side chain, which could mimic the binding mode of glycerol to protein, may bind to M. tuberculosis DHFR selectively. Such a derivative should be sterically and chemically hindered from forming a complex with h-DHFR. This assumption forms the basis of this study and this understanding has been used for designing selective inhibitors of M. tuberculosis DHFR. RESULTS: A number of novel nonpteridine-based molecules have been identified after the virtual screening of three databases (MDPI, NCI and inhouse databases). The best molecules identified after screening the three databases have been synthesized and tested for antitubercular activity. The results are promising and require further work in this direction. CONCLUSION: Structure based drug design can be used as an effective tool for the design of new cheiocal entity. Number of novel agents have been identified as antitubercular agents whose mechanism of action needs to be ascertained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA