Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 167, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098485

RESUMO

BACKGROUND: CRISPR-Cas-Docker is a web server for in silico docking experiments with CRISPR RNAs (crRNAs) and Cas proteins. This web server aims at providing experimentalists with the optimal crRNA-Cas pair predicted computationally when prokaryotic genomes have multiple CRISPR arrays and Cas systems, as frequently observed in metagenomic data. RESULTS: CRISPR-Cas-Docker provides two methods to predict the optimal Cas protein given a particular crRNA sequence: a structure-based method (in silico docking) and a sequence-based method (machine learning classification). For the structure-based method, users can either provide experimentally determined 3D structures of these macromolecules or use an integrated pipeline to generate 3D-predicted structures for in silico docking experiments. CONCLUSION: CRISPR-Cas-Docker addresses the need of the CRISPR-Cas community to predict RNA-protein interactions in silico by optimizing multiple stages of computation and evaluation, specifically for CRISPR-Cas systems. CRISPR-Cas-Docker is available at www.crisprcasdocker.org as a web server, and at https://github.com/hshimlab/CRISPR-Cas-Docker as an open-source tool.


Assuntos
Sistemas CRISPR-Cas , RNA , RNA/genética , Internet
2.
BMC Bioinformatics ; 23(Suppl 3): 172, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35610585

RESUMO

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR) and their spacers are important components of prokaryotic CRISPR-Cas systems. In order to analyze the CRISPR loci of multiple genomes more intuitively and comparatively, here we propose a visualization analysis tool named CrisprVi. RESULTS: CrisprVi is a Python package consisting of a graphic user interface (GUI) for visualization, a module for commands parsing and data transmission, local SQLite and BLAST databases for data storage and a functions layer for data processing. CrisprVi can not only visually present information of CRISPR direct repeats (DRs) and spacers, such as their orders on the genome, IDs, start and end coordinates, but also provide interactive operation for users to display, label and align the CRISPR sequences, which help researchers investigate the locations, orders and components of the CRISPR sequences in a global view. In comparison to other CRISPR visualization tools such as CRISPRviz and CRISPRStudio, CrisprVi not only improves the interactivity and effects of the visualization, but also provides basic statistics of the CRISPR sequences, and the consensus sequences of DRs/spacers across the input strains can be inspected from a clustering heatmap based on the BLAST results of the CRISPR sequences hitting against the genomes. CONCLUSIONS: CrisprVi is a convenient tool for visualizing and analyzing the CRISPR sequences and it would be helpful for users to inspect novel CRISPR-Cas systems of prokaryotes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Software , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Células Procarióticas
3.
Lett Appl Microbiol ; 75(1): 126-134, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35366350

RESUMO

CRISPR-Cas system contributes adaptive immunity to protect the bacterial and archaeal genome against invading mobile genetic elements. In this study, an attempt was made to characterize the CRISPR-Cas system in Staphylococcus coagulans, the second most prevalent coagulase positive staphylococci causing skin infections in dogs. Out of 45 S. coagulans isolates, 42/45 (93·33%) strains contained CRISPR-Cas system and 45 confirmed CRISPR system was identified in 42 S. coagulans isolates. The length of CRISPR loci ranged from 167 to 2477 bp, and the number of spacers in each CRISPR was varied from two spacers to as high as 37 numbers. Direct repeat (DR) sequences were between 30 and 37, but most (35/45) of the DRs contained 36 sequences. The predominant S. coagulans strains 29/45 did not possess any antimicrobial resistant genes (ARG); 26/29 strains contained Type IIC CRISPR-Cas system. Three isolates from Antarctica seals neither contain CRISPR-Cas system nor ARG. Only 15/45 S. coagulans strains (33·33%) harboured at least one ARG and 13/15 of them were having mecA gene. All the methicillin susceptible S. coagulans isolates contained Type IIC CRISPR-Cas system. In contrast, many (10/13) S. coagulans isolates which were methicillin resistant had Type IIIA CRISPR-Cas system, and this Type IIIA CRISPR-Cas system was present within the SCCmec mobile genetic element. Hence, this study suggests that Type II CRISPR-Cas in S. coagulans isolates might have played a possible role in preventing acquisition of plasmid/phage invasion and Type IIIA CRISPR-Cas system may have an insignificant role in the prevention of horizontal gene transfer of antimicrobial resistance genes in S. coagulans species.


Assuntos
Antibacterianos , Sistemas CRISPR-Cas , Animais , Antibacterianos/farmacologia , Cães , Farmacorresistência Bacteriana , Staphylococcus
4.
Planta ; 254(2): 36, 2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34302538

RESUMO

MAIN CONCLUSION: We assembled the complete mitochondrial genome of Scutellaria tsinyunensis in this study. Repeat-mediated recombination resulted in the formation of two conformations of the mitochondrial genome in S. tsinyunensis. Scutellaria tsinyunensis belongs to the family Lamiaceae, distributed only in the Jinyun Mountain, Chongqing, China. As a valuable endemic and small population species, it is regarded as a natural resource potentially with significant economic and ecological importance. In this study, we assembled a complete and gap-free mitochondrial genome of S. tsinyunensis. This genome had a length of 354,073 bp and the base composition of the genome was A (27.44%), T (27.30%), C (22.58%), and G (22.68%). This genome encodes 59 genes, including 32 protein-coding genes, 24 tRNA genes, and 3 rRNA genes. The Sanger sequencing and Oxford Nanopore sequencing confirmed a pair of direct repeats had mediated genome recombination, resulting in the formation of two conformations. The gene conversation between plastome and mitochondrial genome was also observed in S. tsinyunensis by detecting gene migration, including six tRNA genes (namely, trnW-CCA, trnI-CAU, trnH-UUU, trnD-GUC, trnN-GUU, and trnM-CAU), five protein-coding gene fragments, and the fragments from 2 rRNA genes. Moreover, the dN/dS analysis revealed the atp9 gene had undergone strong negative selection, and four genes (atp4, mttB, ccmFc, and ccmB) probably had undergone positive selection during evolution in Lamiales. This work reported the first mitochondrial genome of S. tsinyunensis, which could be used as a reference genome for the important medicinal plants of the genus Scutellaria, and also provide much-desired information for molecular breeding.


Assuntos
Genoma Mitocondrial , Scutellaria , Composição de Bases , China , Genoma Mitocondrial/genética , Recombinação Genética/genética
5.
J Basic Microbiol ; 61(10): 874-882, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34486151

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) is a prokaryotic adaptive immune system that checks invasion by mobile genetic elements through nuclease targeting. In this study, we investigated the occurrence, diversity, and features of the CRISPR system in the genus Aeromonas using bioinformatics tools. Only 13 out of 122 complete genomes (10.66%) of the genus Aeromonas from the NCBI GenBank database harbored the CRISPR system. The Type I-F system was the most prevalent CRISPR system among the Aeromonads, followed by the Type I-E system. Only one strain harbored a Type I-C CRISPR system. Among the Aeromonads, Aeromonas caviae (22.7%) and Aeromonas veronii (20%) had a higher prevalence rate of the complete CRISPR system. The analysis of direct repeat (DR) sequences showed that all could form stable RNA secondary structures. A phylogenetic tree generated for the Cas1 protein classified CRISPR subtypes into three distinct clusters. Among the 748 spacers investigated, 41.98% and 17.25% showed perfect homology to phage and plasmid sequences, respectively. Some arrays had duplicated spacers. The CRISPR loci are closely linked to antibiotic resistance genes in most strains. Collectively, our results would contribute to research on antibiotic resistance in the Aeromonas group, and provide new insights into the diversity and evolution of the CRISPR-Cas system.


Assuntos
Aeromonas/genética , Sistemas CRISPR-Cas , Bacteriófagos/genética , Biologia Computacional/métodos , Genoma Bacteriano , Filogenia , Plasmídeos , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA
6.
BMC Genomics ; 20(1): 484, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185895

RESUMO

BACKGROUND: It is hypothesized that the highly conserved inverted repeats (IR) structure of land plant plastid genomes (plastomes) is beneficial for stabilizing plastome organization, whereas the mechanism of the occurrence and stability maintenance of the recently reported direct repeats (DR) structure is yet awaiting further exploration. Here we describe the DR structure of the Selaginella vardei (Selaginellaceae) plastome, to elucidate the mechanism of DR occurrence and stability maintenance. RESULTS: The plastome of S. vardei is 121,254 bp in length and encodes 76 genes, of which 62 encode proteins, 10 encode tRNAs, and four encode rRNAs. Unexpectedly, the two identical rRNA gene regions (13,893 bp) are arranged in a direct orientation (DR), rather than inverted. Comparing to the IR organization in Isoetes flaccida (Isoetaceae, Lycopodiopsida) plastome, a ca. 50-kb trnN-trnF inversion that spans one DR copy was found in the plastome of S. vardei, which might cause the orientation change. In addition, we find extremely rare short dispersed repeats (SDRs) in the plastomes of S. vardei and its closely related species S. indica. CONCLUSIONS: We suggest that the ca. 50-kb inversion resulted in the DR structure, and the reduction in SDRs plays a key role in maintaining the stability of plastomes with DR structure by avoiding potential secondary recombination. We further confirmed the presence of homologous recombination between DR regions, which are able to generate subgenomes and form diverse multimers. Our study deepens the understanding of Selaginella plastomes and provides new insights into the diverse plastome structures in land plants.


Assuntos
Genomas de Plastídeos/genética , Sequências Repetitivas Dispersas/genética , Selaginellaceae/genética , Evolução Molecular , Filogenia , Especificidade da Espécie
7.
Mol Genet Genomics ; 294(1): 253-262, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30357478

RESUMO

Vibrio parahaemolyticus, a ubiquitous bacterium of the marine environment is an important food-borne pathogen responsible for gastroenteritis worldwide. In this study, we aimed to investigate the occurrence and diversity of the CRISPR-Cas system in V. parahaemolyticus genomes using a bioinformatics approach. The CRISPR-Cas system functions as an adaptive immune system in prokaryotes that provides immunity against foreign genetic elements. In total, 570 genomes V. parahaemolyticus genomes were analyzed of which 200 confirmed for the presence of CRISPR-Cas system. The CRISPR-Cas loci were further analyzed for their repeats, spacers and associated Cas proteins. Among the 200 V. parahaemolyticus strains analyzed, 16 (8%) strains possessed the CRISPR-Cas system of complete subtype I-F, while the remaining 184 (92%) harbored the minimalistic type, a subtype I-F variant. Orphan CRISPR repeats and Cas genes were found in one strain each. The CRISPR-associated direct repeat had an unit length of 28 bases. The number of repeat units in each array ranged from 3 to 5 or 5-41 depending on whether they belonged to the minimalistic or complete subtype-IF CRISPR-Cas system, respectively. Of the 768 spacers analyzed in this study, 295 were found to be unique to V. parahaemolyticus. Homology analysis of the conserved spacers revealed matches to plasmids, phages and gut viruses and self chromosomes. Among the CRISPR-associated proteins, Cas5 and Cas7 proteins were found to be conserved. However, variations were seen in the Cas6 protein, which could be grouped into four different types based on their protein length as well as amino acid composition. We present here the diversity and main features of the CRISPR-Cas system in V. parahaemolyticus, which could provide valuable insights in elucidating the role and mechanism of CRISPR/Cas elements in this pathogen.


Assuntos
Sistemas CRISPR-Cas , Biologia Computacional/métodos , Vibrio parahaemolyticus/genética , Imunidade Adaptativa , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Intergênico , Genoma Bacteriano , Vibrio parahaemolyticus/imunologia
8.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491155

RESUMO

Quantitative PCR is a diagnostic pillar for clinical virology testing, and reference materials are necessary for accurate, comparable quantitation between clinical laboratories. Accurate quantitation of human herpesvirus 6A/B (HHV-6A/B) is important for detection of viral reactivation and inherited chromosomally integrated HHV-6A/B in immunocompromised patients. Reference materials in clinical virology commonly consist of laboratory-adapted viral strains that may be affected by the culture process. We performed next-generation sequencing to make relative copy number measurements at single nucleotide resolution of eight candidate HHV-6A and seven HHV-6B reference strains and DNA materials from the HHV-6 Foundation and Advanced Biotechnologies Inc. Eleven of 17 (65%) HHV-6A/B candidate reference materials showed multiple copies of the origin of replication upstream of the U41 gene by next-generation sequencing. These large tandem repeats arose independently in culture-adapted HHV-6A and HHV-6B strains, measuring 1,254 bp and 983 bp, respectively. The average copy number measured was between 5 and 10 times the number of copies of the rest of the genome. We also report the first interspecies recombinant HHV-6A/B strain with a HHV-6A backbone and a >5.5-kb region from HHV-6B, from U41 to U43, that covered the origin tandem repeat. Specific HHV-6A reference strains demonstrated duplication of regions at U1/U2, U87, and U89, as well as deletion in the U12-to-U24 region and the U94/U95 genes. HHV-6A/B strains derived from cord blood mononuclear cells from different laboratories on different continents with fewer passages revealed no copy number differences throughout the viral genome. These data indicate that large origin tandem duplications are an adaptation of both HHV-6A and HHV-6B in culture and show interspecies recombination is possible within the Betaherpesvirinae.IMPORTANCE Anything in science that needs to be quantitated requires a standard unit of measurement. This includes viruses, for which quantitation increasingly determines definitions of pathology and guidelines for treatment. However, the act of making standard or reference material in virology can alter its very accuracy through genomic duplications, insertions, and rearrangements. We used deep sequencing to examine candidate reference strains for HHV-6, a ubiquitous human virus that can reactivate in the immunocompromised population and is integrated into the human genome in every cell of the body for 1% of people worldwide. We found large tandem repeats in the origin of replication for both HHV-6A and HHV-6B that are selected for in culture. We also found the first interspecies recombinant between HHV-6A and HHV-6B, a phenomenon that is well known in alphaherpesviruses but to date has not been seen in betaherpesviruses. These data critically inform HHV-6A/B biology and the standard selection process.


Assuntos
Variações do Número de Cópias de DNA/genética , Herpesvirus Humano 6/genética , Origem de Replicação/genética , Sequências de Repetição em Tandem/genética , Sequência de Bases , Linhagem Celular , DNA Viral/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Roseolovirus/genética , Infecções por Roseolovirus/virologia , Análise de Sequência de DNA
9.
Mol Ther ; 26(11): 2650-2657, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30274789

RESUMO

FnCpf1-mediated genome-editing technologies have enabled a broad range of research and medical applications. Recently, we reported that FnCpf1 possesses activity in human cells and recognizes a more compatible PAM (protospacer adjacent motif, 5'-KYTV-3'), compared with the other two commonly used Cpf1 enzymes (AsCpf1 and LbCpf1), which requires a 5'-TTTN-3' PAM. However, due to the efficiency and fidelity, FnCpf1-based clinical and basic applications remain a challenge. The direct repeat (DR) sequence is one of the key elements for FnCpf1-mediated genome editing. In principle, its engineering should influence the corresponding genome-editing activity and fidelity. Here we showed that the DR mutants [G(-9)A and U(-7)A] could modulate FnCpf1 performance in human cells, enabling enhancement of both genome-editing efficiency and fidelity. These newly identified features will facilitate the design and optimization of CRISPR-Cpf1-based genome-editing strategies.


Assuntos
Sistemas CRISPR-Cas/genética , Endonucleases/genética , Francisella/enzimologia , Edição de Genes/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/uso terapêutico , Endonucleases/química , Endonucleases/uso terapêutico , Genoma Humano/genética , Células HEK293 , Humanos
10.
BMC Genomics ; 18(1): 168, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28201993

RESUMO

BACKGROUND: CRISPR and CRISPR-flanking genomic regions are important for molecular epidemiology of Mycobacterium tuberculosis complex (MTBC) strains, and potentially for adaptive immunity to phage and plasmid DNA, and endogenous roles in the bacterium. Genotyping in the Israel National Mycobacterium Reference Center Tel-Aviv of over 1500 MTBC strains from 2008-2013 showed three strains with validated negative 43-spacer spoligotypes, that is, with putatively deleted direct repeat regions (deleted-DR/CRISPR regions). Two isolates of each of three negative spoligotype MTBC (a total of 6 isolates) were subjected to Next Generation Sequencing (NGS). As positive controls, NGS was performed for three intact-DR isolates belonging to T3_Eth, the largest multiple-drug-resistant (MDR)-containing African-origin cluster in Israel. Other controls consisted of NGS reads and complete whole genome sequences from GenBank for 20 intact-DR MTBC and for 1 deleted-DR MTBC strain recognized as CAS by its defining RD deletion. RESULTS: NGS reads from negative spoligotype MTBC mapped to reference H37Rv NC_000962.3 suggested that the DR/CRISPR regions were completely deleted except for retention of the middle IS6110 mobile element. Clonally specific deletion of CRISPR-flanking genes also was observed, including deletion of at least cas2 and cas1 genes. Genomic RD deletions defined lineages corresponding to the major spoligotype families Beijing, EAI, and Haarlem, consistent with 24 loci MIRU-VNTR profiles. Analysis of NGS reads, and analysis of contigs obtained by manual PCR confirmed that all 43 gold standard DR/CRISPR spacers were missing in the deleted-DR genomes. CONCLUSIONS: Although many negative spoligotype strains are recorded as spoligotype-international-type (SIT) 2669 in the SITVIT international database, this is the first time to our knowledge that it has been shown that negative spoligotype strains are found in at least 4 different 24 loci MIRU-VNTR and RD deletion families. We report for the first time negative spoligotype-associated total loss of CRISPR region spacers and repeats, with accompanying clonally specific loss of flanking genes, including at least CRISPR-associated genes cas2 and cas1. Since cas1 deleted E.coli shows increased sensitivity to DNA damage and impaired chromosomal segregation, we discussed the possibility of a similar phenotype in the deleted-DR strains and Beijing family strains as both lack the cas1 gene.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genes Bacterianos/genética , Variação Genética , Mycobacterium tuberculosis/genética , Sequências Repetitivas de Ácido Nucleico/genética , Deleção de Sequência , Dano ao DNA/genética , Reparo do DNA/genética , Mutação INDEL , Sequências Repetitivas Dispersas/genética
11.
Mol Cell Biochem ; 430(1-2): 139-147, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28210900

RESUMO

Renilla luciferase reporter is a widely used internal control in dual luciferase reporter assay system, where its transcription is driven by a constitutively active promoter. However, the authenticity of the Renilla luciferase response in some experimental settings has recently been questioned. Testicular receptor 4 (TR4, also known as NR2C2) belongs to the subfamily 2 of nuclear receptors. TR4 binds to a direct repeat regulatory element in the promoter of a variety of target genes and plays a key role in tumorigenesis, lipoprotein regulation, and central nervous system development. In our experimental system using murine pituitary corticotroph tumor AtT20 cells to investigate TR4 actions on POMC transcription, we found that overexpression of TR4 resulted in reduced Renilla luciferase expression whereas knockdown TR4 increased Renilla luciferase expression. The TR4 inhibitory effect was mediated by the TR4 DNA-binding domain and behaved similarly to the GR and its agonist, Dexamethasone. We further demonstrated that the chimeric intron, commonly present in various Renilla plasmid backbones such as pRL-Null, pRL-SV40, and pRL-TK, was responsible for TR4's inhibitory effect. The results suggest that an intron-free Renilla luciferase reporter may provide a satisfactory internal control for TR4 at certain dose range. Our findings advocate caution on the use of Renilla luciferase as an internal control in TR4-directed studies to avoid misleading data interpretation.


Assuntos
Dexametasona/farmacologia , Genes Reporter , Luciferases de Renilla/biossíntese , Proteínas de Neoplasias/metabolismo , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Neoplasias Hipofisárias/metabolismo , Animais , Linhagem Celular Tumoral , Reações Falso-Positivas , Luciferases de Renilla/genética , Camundongos , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/agonistas , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Pró-Opiomelanocortina/biossíntese , Pró-Opiomelanocortina/genética
12.
J Basic Microbiol ; 56(6): 645-53, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26871258

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) system is a novel type of innate defense system in prokaryotes for destruction of exogenous elements. To gain further insight into behavior and organization of the system, the extensive analysis of the available sequenced genomes is necessary. The dynamic nature of CRISPR loci is possibly valuable for typing and relative analyses of strains and microbial population. There are a few orderly bioinformatics investigations about the structure of CRISPR sequences in the Escherichia coli strains. In this study, 57 CRISPR loci were selected from 32 Escherichia coli strains to investigate their structural characteristics and potential functions using bioinformatics tools. Our results showed that most strains contained several loci that mainly included conserved direct repeats, while the spacers were highly variable. Moreover, RNA analysis of the sequences indicated that all loci could form stable RNA secondary structures and showed homology mostly with phages compared to plasmids. Only three strains included cas genes around their loci.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Bacteriano/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Bacteriófagos/genética , Biologia Computacional , DNA Intergênico/genética , DNA Viral/genética , Plasmídeos/genética
13.
J Fish Dis ; 38(6): 507-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24820532

RESUMO

A new cell line named CCF-K104 predominantly consisting of fibroblastic cells showed optimal growth at temperatures from 25 °C to 30 °C. Serial morphological changes in the cells induced by Cyprinid herpesvirus 3 (CyHV-3) included cytoplasmic vacuolar formation, cell rounding and detachment. Mature virions were purified from CyHV-3-infected CCF-K104 cells by sucrose gradient ultracentrifugation and had a typical herpesvirus structure on electron microscopy. Infectious CyHV-3 was produced stably in CCF-K104 cells over 30 viral passages. Our findings showed that CCF-K104 is a useful cell line for isolation and productive replication of CyHV-3. A temperature shift from 25 °C to 15 °C or 35 °C did not allow serial morphological changes as observed at 25 °C for 14 days. Under the same conditions, real-time PCR showed that CyHV-3 was present with low viral DNA loads, suggesting that CyHV-3 may establish latent infection in CCF-K104 cells. Amplification of the left and right terminal repeat sequences of the CyHV-3 genome arranged in a head-to-tail manner was detected by nested PCR following an upshift in temperature from 25 °C to 35 °C. The PCR results suggested that the circular genome may represent a latent form of CyHV-3.


Assuntos
Linhagem Celular , Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/fisiologia , Temperatura , Latência Viral/fisiologia , Animais , Carpas , Genoma Viral/genética , Herpesviridae/genética , Herpesviridae/crescimento & desenvolvimento , Herpesviridae/isolamento & purificação , Herpesviridae/ultraestrutura , Infecções por Herpesviridae/virologia , Dados de Sequência Molecular , Latência Viral/genética , Replicação Viral/fisiologia
14.
Biochim Biophys Acta ; 1829(10): 987-99, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23665043

RESUMO

Pyruvate carboxylase (PC) is the first regulatory enzyme of gluconeogenesis. Here we report that the proximal promoter of the murine PC gene contains three binding sites for hepatocyte nuclear factor 4α (HNF4α). These sites include the classical direct repeat 1 (DR1) (-386/-374), non-perfect DR1 (-118/-106) and HNF4α-specific binding motif (H4-SBM) (-26/-14). Under basal conditions, mutation of the non-perfect DR1 decreased promoter activity by 50%, whereas mutation of neither the DR1 nor the H4-SBM had any effect. In marked contrast, only mutation of the H4-SBM decreased HNF4α-transactivation of the promoter activity by 65%. EMSA revealed that HNF4α binds to the DR1site and H4-SBM with similar affinity while it binds poorly to the non-perfect DR1. Interestingly, this non-perfect DR1 also coincides with two E-boxes. Mutation of the non-perfect DR1 together with the nearby E-box reduced USF1- but not USF2-transactivation of promoter activity, suggesting that USF1 partly contributes to the basal activity of the promoter. Substitution of the H4-SBM with the DR1 marginally reduced the basal promoter activity but did not eliminate HNF4α-transactivation, suggesting that HNF4α can exert its effect via DR1 within this promoter context. ChIP-assay confirmed that HNF4α is associated with the H4-SBM. Suppression of HNF4α expression in AML12 cells down-regulated PC mRNA and PC protein by 60% and 50%, respectively, confirming that PC is a target of HNF4α. We also propose a model for differential regulation of P1 promoter of PC gene in adipose tissue and liver.


Assuntos
Regulação Enzimológica da Expressão Gênica , Fator 4 Nuclear de Hepatócito/metabolismo , Regiões Promotoras Genéticas/genética , Piruvato Carboxilase/genética , Fatores Estimuladores Upstream/genética , Animais , Sequência de Bases , Sítios de Ligação , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Piruvato Carboxilase/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Biochim Biophys Acta ; 1829(12): 1266-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185200

RESUMO

The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes.


Assuntos
Cromatina/genética , Leucemia Monocítica Aguda/genética , Receptores de Calcitriol/genética , Sequências Repetitivas de Ácido Nucleico/genética , Vitamina D/análogos & derivados , Acetilação , Western Blotting , Imunoprecipitação da Cromatina , Proteína do Grupo de Complementação E da Anemia de Fanconi/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Inibidores de Histona Desacetilases/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucemia Monocítica Aguda/tratamento farmacológico , Receptores de Lipopolissacarídeos/genética , Subunidade p50 de NF-kappa B/genética , Proteína 2 Ligante de Morte Celular Programada 1/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Vitamina D/farmacologia
16.
Biochem Biophys Res Commun ; 443(2): 477-82, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24321096

RESUMO

Sterol regulatory element-binding protein-2 (SREBP-2) is a basic helix-loop-helix-leucine zipper transcription factor that positively regulates transcription of target genes involved in cholesterol metabolism. In the present study, we have investigated a possible involvement of SREBP-2 in human intestinal expression of fibroblast growth factor (FGF)19, which is an endocrine hormone involved in the regulation of lipid and glucose metabolism. Overexpression of constitutively active SREBP-2 decreased FGF19 mRNA levels in human colon-derived LS174T cells. In reporter assays, active SREBP-2 overexpression suppressed GW4064/FXR-mediated increase in reporter activities in regions containing the IR-1 motif (+848 to +5200) in the FGF19 gene. The suppressive effect disappeared in reporter activities in the region containing the IR-1 motif when the mutation was introduced into the IR-1 motif. In electrophoretic mobility shift assays, binding of the FXR/retinoid X receptor α heterodimer to the IR-1 motif was attenuated by adding active SREBP-2, but SREBP-2 binding to the IR-1 motif was not observed. In chromatin immunoprecipitation assays, specific binding of FXR to the IR-1-containing region of the FGF19 gene (+3214 to +3404) was increased in LS174T cells by treatment with cholesterol and 25-hydroxycholesterol. Specific binding of SREBP-2 to FXR was observed in glutathione-S-transferase (GST) pull-down assays. These results suggest that SREBP-2 negatively regulates the FXR-mediated transcriptional activation of the FGF19 gene in human intestinal cells.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Linhagem Celular , Regulação para Baixo , Regulação da Expressão Gênica/fisiologia , Humanos , Ativação Transcricional
17.
J Hepatol ; 59(5): 1037-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23831118

RESUMO

BACKGROUND & AIMS: Accumulating data from epidemiological and experimental studies have suggested that retinoids, which are vitamin A derivatives, exert antitumor activity in various organs. We performed a gene screening based on in silico analysis of retinoic acid response elements (RAREs) to identify the genes facilitating the antitumor activity of retinoic acid (RA) and investigated their clinical significance in hepatocellular carcinoma (HCC). METHODS: In silico analysis of RAREs was performed in the 5-kb upstream region of EST clusters. Chromatin immunoprecipitation analysis of the retinoic acid receptors and gene expression analysis were performed in HuH7, HepG2, and MCF7 cells treated with all-trans RA (ATRA). mRNA expression of RA-responsive genes was investigated using tumor and non-tumor tissues of clinical HCC samples from 171 patients. The association between gene expression and survival of patients was examined by Cox regression analysis. RESULTS: We identified 201 candidate genes with promoter regions containing consensus RARE and finally selected 26 RA-responsive genes. Of these, downregulation of OTU domain-containing 7B (OTUD7B) gene, which was upregulated by ATRA, in tumor tissue was associated with a low cancer-specific survival of HCC patients. Functional analyses revealed that OTUD7B negatively regulates nuclear factor κB (NF-κB) signaling and decreases the survival of HCC cells. CONCLUSIONS: We identified RA-responsive genes which are regulated by retinoid signal and found that low-OTUD7B mRNA expression is associated with a poor prognosis for HCC patients. OTUD7B-mediated inhibition of NF-κB signaling may be an effective target for antitumor therapy for HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , Genes Neoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/genética , Elementos de Resposta/efeitos dos fármacos , Tretinoína/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Endopeptidases/efeitos dos fármacos , Endopeptidases/genética , Genes Neoplásicos/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , NF-kappa B/efeitos dos fármacos , Prognóstico , Elementos de Resposta/genética , Transdução de Sinais/efeitos dos fármacos , Tretinoína/uso terapêutico
18.
Ultrason Sonochem ; 92: 106270, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36543046

RESUMO

Low-lethality ultrasound technology has received more and more attention in regulating microorganisms of fermentation industry. Herein, two representative Ames tester strains TA97a and TA98 as model organisms were used to explore the effects of ultrasound on insertion-deletion (InDel) polymorphisms of microbial DNA and its underlying mechanisms. Results revealed that a promotion was observed in the reversion mutation of TA98 upon sonication. Sequencing results from 1752 TA98 revertants showed that there was a total of 127 InDels, of which the InDels unique to ultrasound were 36 more than that of the control. Compared with the control, ultrasound-mediated InDels of DNA displayed additional -29 bp deletion and +7 âˆ¼ +43 bp insertions of direct repeat sequences. Combined with the analysis of transcriptomics and prediction of secondary structure of single-stranded DNA from InDels core region (No. 832 âˆ¼ 915 bp) in hisD3052 gene of TA98 strain, ultrasound-mediated "thermal breathing" mechanism was proposed based on the formation of DNA hairpin structure with micro-homologous sequence. This finding implied that low-intensity ultrasound is expected to be developed a new low-lethal mutagenic technology for continuous mutagenesis.


Assuntos
DNA , Mutação INDEL , Ultrassonografia , Mutagênese
19.
Methods Mol Biol ; 2479: 85-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583734

RESUMO

This chapter describes two related recombineering-based techniques: "Duplication Insertion" (Dup-In) and "Direct- and Inverted Repeat stimulated excision" (DIRex). Dup-In is used for transferring existing mutations between strains, and DIRex for generating almost any type of mutation. Both techniques use intermediate insertions with counter-selectable cassettes, flanked by directly repeated sequences that enable exact and spontaneous excision of the cassettes. These constructs can be transferred to other strains using generalized transductions, and the final intended mutation is obtained following selection for spontaneous loss of the counter-selectable cassette, which leaves only the intended mutation behind in the final strain. The techniques have been used in several strains of Escherichia coli and Salmonella enterica, and should be readily adaptable to other organisms where λ Red recombineering or similar methods are available.


Assuntos
Engenharia Genética , Salmonella enterica , Escherichia coli/genética , Engenharia Genética/métodos , Mutagênese , Mutagênese Insercional , Mutação , Salmonella enterica/genética
20.
JHEP Rep ; 4(4): 100449, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35295767

RESUMO

Background & Aims: HBV infects over 257 million people worldwide and is associated with the development of hepatocellular carcinoma (HCC). Integration of HBV DNA into the host genome is likely a key driver of HCC oncogenesis. Here, we utilise targeted long-read sequencing to determine the structure of HBV DNA integrations as well as full isoform information of HBV mRNA with more accurate quantification than traditional next generation sequencing platforms. Methods: DNA and RNA were isolated from fresh frozen liver biopsies collected within the GS-US-174-0149 clinical trial. A pan-genotypic panel of biotinylated oligos was developed to enrich for HBV sequences from sheared genomic DNA (∼7 kb) and full-length cDNA libraries from poly-adenylated RNA. Samples were sequenced on the PacBio long-read platform and analysed using a custom bioinformatic pipeline. Results: HBV-targeted long-read DNA sequencing generated high coverage data spanning entire integrations. Strikingly, in 13 of 42 samples (31%) we were able to detect HBV sequences flanked by 2 different chromosomes, indicating a chromosomal translocation associated with HBV integration. Chromosomal translocations were unique to each biopsy sample, suggesting that each originated randomly, and in some cases had evidence of clonal expansion. Using targeted long-read RNA sequencing, we determined that upwards of 95% of all HBV transcripts in patients who are HBeAg-positive originate from cccDNA. In contrast, patients who are HBeAg-negative expressed mostly HBsAg from integrations. Conclusions: Targeted lso-Seq allowed for accurate quantitation of the HBV transcriptome and assignment of transcripts to either cccDNA or integration origins. The existence of multiple unique HBV-associated inter-chromosomal translocations in non-HCC CHB patient liver biopsies suggests a novel mechanism with mutagenic potential that may contribute to progression to HCC. Lay summary: Fresh frozen liver biopsies from patients infected with HBV were subjected to targeted long-read RNA and DNA sequencing. Long-read RNA sequencing captures entire HBV transcripts in a single read, allowing for resolution of overlapping transcripts from the HBV genome. This resolution allowed us to quantify the burden of transcription from integrations vs. cccDNA origin in individual patients. Patients who were HBeAg-positive had a significantly larger fraction of the HBV transcriptome originating from cccDNA compared with those who were HBeAg-negative. Long-read DNA sequencing captured entire integrated HBV sequences including multiple kilobases of flanking host sequence within single reads. This resolution allowed us to describe integration events flanked by 2 different host chromosomes, indicating that integrated HBV DNA are associated with inter-chromosomal translocations. This may lead to significant transcriptional dysregulation and drive progression to HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA