Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 588
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2322453121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470919

RESUMO

The phlebotomine sandfly, Lutzomyia longipalpis, a major vector of the Leishmania parasite, uses terpene pheromones to attract conspecifics for mating. Examination of the L. longipalpis genome revealed a putative terpene synthase (TPS), which-upon heterologous expression in, and purification from, Escherichia coli-yielded a functional enzyme. The TPS, termed LlTPS, converted geranyl diphosphate (GPP) into a mixture of monoterpenes with low efficiency, of which ß-ocimene was the major product. (E,E)-farnesyl diphosphate (FPP) principally produced small amounts of (E)-ß-farnesene, while (Z,E)- and (Z,Z)-FPP yielded a mixture of bisabolene isomers. None of these mono- and sesquiterpenes are known volatiles of L. longipalpis. Notably, however, when provided with (E,E,E)-geranylgeranyl diphosphate (GGPP), LlTPS gave sobralene as its major product. This diterpene pheromone is released by certain chemotypes of L. longipalpis, in particular those found in the Ceará state of Brazil. Minor diterpene components were also seen as products of the enzyme that matched those seen in a sandfly pheromone extract.


Assuntos
Diterpenos , Psychodidae , Animais , Feromônios/metabolismo , Psychodidae/metabolismo , Diterpenos/metabolismo , Terpenos , Monoterpenos
2.
Biochem J ; 481(12): 779-791, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38829839

RESUMO

ent-Kaurene is a biosynthetic intermediate diterpene of phytohormone gibberellins, and is biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP). The successive cyclization is catalyzed by two distinct diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS). Homologs of these diterpene synthase genes have been reported to be involved in the biosynthesis of specialized-metabolic diterpenoids for defense in several plant species, including rice (Oryza sativa). These diterpene synthases consist of three domains, αßγ domains. Active sites of ent-CPS exist at the interface of ß and γ domain, while those of KS are located within the α domain. We herein carried out domain-deletion experiments using several KSs and KS like enzymes (KSLs) to obtain insights into the roles of domains other than active-site domains. As previously reported in taxadiene synthase, deletion of γ or ßγ domains drastically decreased activities of specialized-metabolic OsKSL5, OsKSL8, OsKSL7 and OsKSL10 in O. sativa. However, unexpectedly, only α domains of several gibberellin-biosynthetic KSs, including OsKS1 in O. sativa, AtKS in Arabidopsis thaliana, TaKS in wheat (Triticum aestivum) and BdKS1 in Brachypodium distachyon, retained their original functions. Additionally, the specialized-metabolic OsKSL4, which is closely related to OsKS1, also functioned without its ßγ domains. Domain-swapping experiments showed that replacing ßγ domains in OsKSL7 with those from other KS/KSLs retained the OsKSL7 activity. Moreover, deletion of ßγ domains of bifunctional PpCPS/KS in moss (Physcomitrella patens) drastically impaired its KS-related activity. Thus, we demonstrate that monofunctional gibberellin-biosynthetic KSs are the unique diterpene synthases that retain their functions without ßγ domains.


Assuntos
Alquil e Aril Transferases , Giberelinas , Oryza , Proteínas de Plantas , Giberelinas/metabolismo , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/química , Oryza/enzimologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Domínio Catalítico , Diterpenos do Tipo Caurano/metabolismo , Diterpenos do Tipo Caurano/química , Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Diterpenos/metabolismo , Diterpenos/química , Domínios Proteicos , Catálise
3.
Proc Natl Acad Sci U S A ; 119(15): e2100361119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394876

RESUMO

As a midsized gene family conserved more by lineage than function, the typical plant terpene synthases (TPSs) could be a valuable tool to examine plant evolution. TPSs are pivotal in biosynthesis of gibberellins and related phytohormones as well as in formation of the extensive arsenal of specialized plant metabolites mediating ecological interactions whose production is often lineage specific. Yet the origin and early evolution of the TPS family is not well understood. Systematic analysis of an array of transcriptomes and sequenced genomes indicated that the TPS family originated after the divergence of land plants from charophytic algae. Phylogenetic and biochemical analyses support the hypothesis that the ancestral TPS gene encoded a bifunctional class I and II diterpene synthase producing the ent-kaurene required for phytohormone production in all extant lineages of land plants. Moreover, the ancestral TPS gene likely underwent duplication at least twice early in land plant evolution. Together these two gave rise to three TPS lineages leading to the extant TPS-c, TPS-e/f, and the remaining TPS (h/d/a/b/g) subfamilies, with the latter dedicated to secondary rather than primary metabolism while the former two contain those genes involved in ent-kaurene production. Nevertheless, parallel evolution from the ent-kaurene­producing class I and class II diterpene synthases has led to roles for TPS-e/f and -c subfamily members in secondary metabolism as well. These results clarify TPS evolutionary history and provide context for the role of these genes in producing the vast diversity of terpenoid natural products observed today in various land plant lineages.


Assuntos
Alquil e Aril Transferases , Embriófitas , Evolução Molecular , Proteínas de Plantas , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/genética , Embriófitas/enzimologia , Embriófitas/genética , Duplicação Gênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Terpenos/metabolismo
4.
Plant J ; 116(2): 375-388, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37395679

RESUMO

Scutellaria barbata is a traditional Chinese herb medicine and a major source of bioactive clerodane diterpenoids. However, barely clerodanes have been isolated from the closely related S. baicalensis. Here we assembled a chromosome-level genome of S. barbata and identified three class II clerodane diterpene synthases (SbarKPS1, SbarKPS2 and SbaiKPS1) from these two organisms. Using in vitro and in vivo assays, SbarKPS1 was characterized as a monofunctional (-)-kolavenyl diphosphate synthases ((-)-KPS), while SbarKPS2 and SbaiKPS1 produced major neo-cleroda-4(18),13E-dienyl diphosphate with small amount of (-)-KPP. SbarKPS1 and SbarKPS2 shared a high protein sequence identity and formed a tandem gene pair, indicating tandem duplication and sub-functionalization probably led to the evolution of monofunctional (-)-KPS in S. barbata. Additionally, SbarKPS1 and SbarKPS2 were primarily expressed in the leaves and flowers of S. barbata, which was consistent with the distribution of major clerodane diterpenoids scutebarbatine A and B. In contrast, SbaiKPS1 was barely expressed in any tissue of S. baicalensis. We further explored the downstream class I diTPS by functional characterizing of SbarKSL3 and SbarKSL4. Unfortunately, no dephosphorylated product was detected in the coupled assays with SbarKSL3/KSL4 and four class II diTPSs (SbarKPS1, SbarKPS2, SbarCPS2 and SbarCPS4) when a phosphatase inhibitor cocktail was included. Co-expression of SbarKSL3/KSL4 with class II diTPSs in yeast cells did not increase the yield of the corresponding dephosphorylated products, either. Together, these findings elucidated the involvement of two class II diTPSs in clerodane biosynthesis in S. barbata, while the class I diTPS is likely not responsible for the subsequent dephosphorylation step.

5.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38866718

RESUMO

AIM: Isolation, identification, structural and functional characterization of potent anti-Candida compound with specific antagonistic activities against significant human pathogens, Candida albicans and C. auris. METHODS AND RESULTS: The compound (55B3) was purified from the metabolites produced by Streptomyces chrestomyceticus ADP4 by employing column chromatography. The structure of 55B3 was determined from the analyses of spectral data that included LCMS, nuclear magnetic resonance, FTIR, and UV spectroscopies. It was identified as a novel derivative of diterpenic aromatic acid, 3-(dictyotin-11'-oate-15'α, 19'ß-olide)-4-(dictyotin-11'-oate-15″α, 19″ß-olide)-protocatechoic acid. The compound displayed potent antifungal and anti-biofilm activities against C. albicans ATCC 10231 (Minimum Inhibitory Concentration, MIC90:14.94 ± 0.17 µgmL-1 and MBIC90: 16.03 ± 1.1 µgmL-1) and against C. auris CBS 12372 (MIC90: 21.75 ± 1.5 µgmL-1 and Minimum Biofilm Inhibitory Concentration, MBIC90: 18.38 ± 1.78 µgmL-1). Further, pronounced inhibition of important virulence attributes of Candida spp., e.g. yeast-to-hyphae transition, secretory aspartyl proteinase and phospholipase B by 55B3 was noted at subinhibitory concentrations. A plausible mechanism of anti-Candida action of the compound appeared to be the inhibition of ergosterol biosynthesis, which was inhibited by 64 ± 3% at the MIC90 value. The non-cytotoxic attribute of the compound was noted in the liver cell line (HepG2 cells). CONCLUSION: The present work led to the discovery of a novel diterpenic derivative produced by S. chrestomyceticus ADP4. The compound displayed potent anti-Candida activity, particularly against the two most significant human pathogens, C. albicans and C. auris, which underlined its significance as a potential drug candidate for infections involving these pathogens.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Streptomyces , Fatores de Virulência , Biofilmes/efeitos dos fármacos , Streptomyces/metabolismo , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Humanos , Candida/efeitos dos fármacos
6.
Bioorg Chem ; 153: 107837, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39342892

RESUMO

The first examples of ent-atisane and ent-isopimarane diterpene lactones with an unusual 2,3-seco-2-nor-tetrahydro-2H-pyran-2-one nucleus, eufislactones A (1) and B (2), were isolated from the roots of Euphorbia fischeriana, together with a new (3) and fifteen known biosynthetic congeners (4-18). Their structures incorporating absolute configurations were elucidated via the comprehensive spectroscopic analyses, electronic circular dichroism (ECD) calculation, and single-crystal X-ray diffraction analyses. Biogenetically, compounds 1 and 2 were constructed by the plausible monomeric precursors, ent-atis-16-ene-3,14-dione (6) and ent-isopimara-8(14),15-dien-3-one (17), respectively, via key Baeyer-Villiger oxidation, decarboxylation, and semi-acetalization reactions to create a unique 2,3-seco-2-nor-tetrahydro-2H-pyran-2-one core. Our bioassays have revealed that eufislactone A (EFA, 1) displayed significant inhibitory effect on the osteogenic differentiation of human valvular interstitial cells (VICs), highlighting its potential as a preventive agent against the progression of human calcific aortic valve disease (CAVD).

7.
Bioorg Chem ; 145: 107190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377816

RESUMO

The fruits of Amomum villosum are often considered a medicinal and food homologous material and have been found to have therapeutic effects in chronic enteritis, gastroenteritis, and duodenal ulcer. The aim of this study is to discover the anti-inflammatory active ingredients from dried ripe fruits of A. villosum and to elucidate the molecular mechanisms. We verified that the inhibitory activity of the ethyl acetate extract was superior to Dexamethasone (Dex), so we ultimately chose to study the ethyl acetate extract from the fruits of A. villosum. A total of 33 compounds were isolated from its ethyl acetate extract, including nine known diterpenoids (compounds 1-9), twelve known sesquiterpenoids (compounds 10-21), ten known phenolics (compounds 22, 23, 25-29, 31-33) and two new phenolics (24 and 30). On the basis of chemical evidences and spectral data analysis (UV, ECD, Optical rotation data, 1D and 2D-NMR, HR-ESI-MS, NMR chemical shift calculations), the structures of new compounds were elucidated. Among these compounds, isocoronarin D (5) was found to have good anti-inflammatory activity. Further research has found that isocoronarin D can down-regulate the protein levels of COX2 and NOS2, activate Nrf2/Keap1 and suppress NF-κB signaling pathway in LPS-induced RAW264.7 cells. In addition, isocoronarin D inhibited inflammasome assembly during inflammasome activation by hampering the binding of NLRP3 and ASC. Further evidence revealed that isocoronarin D suppressed the assembly of the NLRP3 inflammasome via blocking the formation of ASC specks. From these results, isocoronarin D may be the important bioactive compound of A. villosum and exhibits anti-inflammatory effects by regulating the NF-κB/Nrf2/NLRP3 axis in macrophages.


Assuntos
Acetatos , Amomum , Diterpenos , Imidazóis , Sulfonamidas , Tiofenos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Amomum/química , Terpenos , NF-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Frutas/química , Fator 2 Relacionado a NF-E2/metabolismo , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia
8.
Bioorg Chem ; 147: 107377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653150

RESUMO

The first systematic acylated diversification of naturally scarce premyrsinane diterpenes, together with their biosynthetic precursors lathyrane diterpene were carried out. Two new series of premyrsinane derivates (1a-32a) and lathyrane derivates (1-32) were synthesized from the naturally abundant lathyrane diterpene Euphorbia factor L3 through a bioinspired approach. The cholinesterase inhibitory and neuroprotective activities of these diterpenes were investigated to explore potential anti-Alzheimer's disease (AD) bioactive lead compounds. In general, the lathyrane diterpenes showed the better acetylcholinesterase (AChE) inhibitory activity than that of premyrsinanes. The lathyrane derivative 17 bearing a 3-dimethylaminobenzoyl moiety showed the best AChE inhibition effect with the IC50 value of 7.1 µM. Molecular docking demonstrated that 17 could bond with AChE well (-8 kal/mol). On the other hand, premyrsinanes showed a better neuroprotection profile against H2O2-induced injury in SH-SY5Y cells. Among them, the premyrsinane diterpene 16a had significant neuroprotective effect with the cell viability rate of 113.5 % at 12.5 µM (the model group with 51.2 %). The immunofluorescence, western blot and reactive oxygen species (ROS) analysis were conducted to demonstrate the mechanism of 16a. Furthermore, a preliminary SAR analysis of the two categories of diterpenes was performed to provide the insights for anti-AD drug development.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Inibidores da Colinesterase , Diterpenos , Euphorbia , Fármacos Neuroprotetores , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/síntese química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Euphorbia/química , Humanos , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos
9.
Appl Microbiol Biotechnol ; 108(1): 275, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530470

RESUMO

Prenylation plays a pivotal role in the diversification and biological activities of natural products. This study presents the functional characterization of TolF, a multiple prenyltransferase from Tolypocladium inflatum. The heterologous expression of tolF in Aspergillus oryzae, coupled with feeding the transformed strain with paxilline, resulted in the production of 20- and 22-prenylpaxilline. Additionally, TolF demonstrated the ability to prenylated the reduced form of paxilline, ß-paxitriol. A related prenyltransferase TerF from Chaunopycnis alba, exhibited similar substrate tolerance and regioselectivity. In vitro enzyme assays using purified recombinant enzymes TolF and TerF confirmed their capacity to catalyze prenylation of paxilline, ß-paxitriol, and terpendole I. Based on previous reports, terpendole I should be considered a native substrate. This work not only enhances our understanding of the molecular basis and product diversity of prenylation reactions in indole diterpene biosynthesis, but also provides insights into the potential of fungal indole diterpene prenyltransferase to alter their position specificities for prenylation. This could be applicable for the synthesis of industrially useful compounds, including bioactive compounds, thereby opening up new avenues for the development of novel biosynthetic strategies and pharmaceuticals. KEY POINTS: • The study characterizes TolF as a multiple prenyltransferase from Tolypocladium inflatum. • TerF from Chaunopycnis alba shows similar substrate tolerance and regioselectivity compared to TolF. • The research offers insights into the potential applications of fungal indole diterpene prenyltransferases.


Assuntos
Dimetilaliltranstransferase , Diterpenos , Hypocreales , Dimetilaliltranstransferase/metabolismo , Prenilação , Indóis/metabolismo , Diterpenos/metabolismo , Especificidade por Substrato
10.
Exp Parasitol ; 262: 108771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723847

RESUMO

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.


Assuntos
Diterpenos , Fabaceae , Extratos Vegetais , Toxoplasma , Células HeLa , Humanos , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/química , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Fabaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular
11.
Mar Drugs ; 22(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667774

RESUMO

Five new biflorane-type diterpenoids, biofloranates E-I (1-5), and two new bicyclic diterpene glycosides, lemnaboursides H-I (6-7), along with the known lemnabourside, were isolated from the South China Sea soft coral Lemnalia bournei. Their chemical structures and stereochemistry were determined based on extensive spectroscopic methods, including time-dependent density functional theory (TDDFT) ECD calculations, as well as a comparison of them with the reported values. The antibacterial activities of the isolated compounds were evaluated against five pathogenic bacteria, and all of these diterpenes and diterpene glycosides showed antibacterial activities against Staphylococcus aureus and Bacillus subtilis, with MICs ranging from 4 to 64 µg/mL. In addition, these compounds did not exhibit noticeable cytotoxicities on A549, Hela, and HepG2 cancer cell lines, at 20 µM.


Assuntos
Antozoários , Antibacterianos , Bacillus subtilis , Diterpenos , Glicosídeos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Antozoários/química , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Animais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Staphylococcus aureus/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Células HeLa , Linhagem Celular Tumoral , Células Hep G2 , Estrutura Molecular , Células A549 , China
12.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34257153

RESUMO

Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.


Assuntos
Alquil e Aril Transferases/genética , Proteínas Fúngicas/genética , Proteínas Mutantes Quiméricas/genética , Alquil e Aril Transferases/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Evolução Molecular , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/enzimologia , Fungos/genética , Genoma Fúngico/genética , Estrutura Molecular , Proteínas Mutantes Quiméricas/metabolismo , Mutação , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesterterpenos/química , Sesterterpenos/metabolismo
13.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892087

RESUMO

Utilizing bioinformatics tools, this study expands our understanding of secondary metabolism in Botrytis cinerea, identifying novel genes within polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), sesquiterpene cyclase (STC), diterpene cyclase (DTC), and dimethylallyltryptophan synthase (DMATS) families. These findings enrich the genetic framework associated with B. cinerea's pathogenicity and ecological adaptation, offering insights into uncharted metabolic pathways. Significantly, the discovery of previously unannotated genes provides new molecular targets for developing targeted antifungal strategies, promising to enhance crop protection and advance our understanding of fungal biochemistry. This research not only broadens the scope of known secondary metabolites but also opens avenues for future exploration into B. cinerea's biosynthetic capabilities, potentially leading to novel antifungal compounds. Our work underscores the importance of integrating bioinformatics and genomics for fungal research, paving the way for sustainable agricultural practices by pinpointing precise molecular interventions against B. cinerea. This study sets a foundation for further investigations into the fungus's secondary metabolism, with implications for biotechnology and crop disease management.


Assuntos
Botrytis , Peptídeo Sintases , Policetídeo Sintases , Metabolismo Secundário , Botrytis/genética , Botrytis/patogenicidade , Metabolismo Secundário/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biologia Computacional/métodos , Família Multigênica , Genes Fúngicos
14.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893370

RESUMO

Kallopterolides A-I (1-9), a family of nine diterpenoids possessing either a cleaved pseudopterane or a severed cembrane skeleton, along with several known compounds were isolated from the Caribbean Sea plume Antillogorgia kallos. The structures and relative configurations of 1-9 were characterized by analysis of HR-MS, IR, UV, and NMR spectroscopic data in addition to computational methods and side-by-side comparisons with published NMR data of related congeners. An investigation was conducted as to the potential of the kallopterolides as plausible in vitro anti-inflammatory, antiprotozoal, and antituberculosis agents.


Assuntos
Antozoários , Diterpenos , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Animais , Antozoários/química , Antiprotozoários/química , Antiprotozoários/farmacologia , Antiprotozoários/isolamento & purificação , Região do Caribe , Estrutura Molecular , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Espectroscopia de Ressonância Magnética , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/isolamento & purificação
15.
Molecules ; 29(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611928

RESUMO

Diterpenes represent one of the most diverse and structurally complex families of natural products. Among the myriad of diterpenoids, grayanane diterpenes are particularly notable. These terpenes are characterized by their unique 5/7/6/5 tetracyclic system and are exclusive to the Ericaceae family of plants. Renowned for their complex structures and broad spectrum of bioactivities, grayanane diterpenes have become a primary focus in extensive phytochemical and pharmacological research. Recent studies, spanning from 2018 to January 2024, have reported a series of new grayanane diterpenes with unprecedented carbon skeletons. These compounds exhibit various biological properties, including analgesic, antifeedant, anti-inflammatory, and inhibition of protein tyrosine phosphatase 1B (PTP1B). This paper delves into the discovery of 193 newly identified grayanoids, representing 15 distinct carbon skeletons within the Ericaceae family. The study of grayanane diterpenes is not only a deep dive into the complexities of natural product chemistry but also an investigation into potential therapeutic applications. Their unique structures and diverse biological actions make them promising candidates for drug discovery and medicinal applications. The review encompasses their occurrence, distribution, structural features, and biological activities, providing invaluable insights for future pharmacological explorations and research.


Assuntos
Produtos Biológicos , Diterpenos , Ericaceae , Diterpenos/farmacologia , Terpenos , Produtos Biológicos/farmacologia , Carbono
16.
Bull Exp Biol Med ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340623

RESUMO

It was found that the diterpene alkaloid songorine administered per os to mice at a dose of 25 µg/kg provides a pronounced anxiolytic effect during elevated plus maze testing comparable to the effect of the benzodiazepine anxiolytic phenazepam. Recording of ultrasonic vocalizations of animals revealed an increase in the number of short high-frequency (50 kHz) signals under the action of songorine and the reference drug, which confirms their anti-anxiety properties.

17.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2410-2421, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38812142

RESUMO

Sequential catalysis by ent-copalyl diphosphate(CPS) and ent-kaurene synthase(KS) is a critical step for plants to initiate the biosynthesis of gibberellin with geranylgeranyl pyrophosphate(GGPP) as the substrate. This study mined the transcriptome data of Stellera chamaejasme and cloned two key diterpene synthase genes, SchCPS and SchKS, involved in the gibberellin pathway. The two genes had the complete open reading frames of 2 595 bp and 1 701 bp, encoding two hydrophilic proteins composed of 864 and 566 amino acid residues and with the relative molecular mass of 97.9 kDa and 64.6 kDa and the theoretical isoelectric points of 5.61 and 6.12, respectively. Sequence comparison and phylogenetic tree showed that SchCPS contained LHS, PNV, and DxDD motifs conserved in the CPS family and was categorized in the TPS-c subfamily, while SchKS contained DDxxD, NSE/DTE and PIx motifs conserved in the KS family and was categorized in the TPS-e subfamily. Functional validation showed that SchCPS catalyzed the protonation and cyclization of GGPP to ent-CPP, while SchKS acted on ent-CPP dephosphorylation and re-cyclization to ent-kaurene. In this study, the full-length sequences of SchCPS and SchKS were cloned and functionally verified for the first time, which not only enriched the existing CPS and KS gene libraries but also laid a foundation for the cloning and biosynthesis pathway analysis of more genes involved in the synthesis of active components in S. chamaejasme.


Assuntos
Alquil e Aril Transferases , Filogenia , Proteínas de Plantas , Thymelaeaceae , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/química , Thymelaeaceae/genética , Thymelaeaceae/enzimologia , Thymelaeaceae/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Sequência de Aminoácidos , Diterpenos do Tipo Caurano/metabolismo , Diterpenos do Tipo Caurano/química , Alinhamento de Sequência , Clonagem Molecular
18.
Beilstein J Org Chem ; 20: 852-858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655555

RESUMO

We confirm the previously revised stereochemistry of spiroviolene by X-ray crystallographically characterizing a hydrazone derivative of 9-oxospiroviolane, which is synthesized by hydroboration/oxidation of spiroviolene followed by oxidation of the resultant hydroxy group. An unexpected thermal boron migration occurred during the hydroboration process of spiroviolene that resulted in the production of a mixture of 1α-hydroxyspiroviolane, 9α- and 9ß-hydroxyspiroviolane after oxidation. The assertion of the cis-orientation of the 19- and 20-methyl groups provided further support for the revised cyclization mechanism of spiroviolene.

19.
Beilstein J Org Chem ; 20: 1320-1326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887579

RESUMO

Eunicellane diterpenoids are a unique family of natural products containing a foundational 6/10-bicyclic framework and can be divided into two main classes, cis and trans, based on the configurations of their ring fusion at C1 and C10. Previous studies on two bacterial diterpene synthases, Bnd4 and AlbS, revealed that these enzymes form cis- and trans-eunicellane skeletons, respectively. Although the structures of these diterpenes only differed in their configuration at a single position, C1, they displayed distinct chemical and thermal reactivities. Here, we used a combination of quantum chemical calculations and chemical transformations to probe their intrinsic properties, which result in protonation-initiated cyclization, Cope rearrangement, and atropisomerism. Finally, we exploited the reactivity of the trans-eunicellane skeleton to generate a series of 6/6/6 gersemiane-type diterpenes via electrophilic cyclization.

20.
New Phytol ; 238(4): 1351-1361, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727281

RESUMO

Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.


Assuntos
Alcaloides , Convolvulaceae , Alcaloides de Claviceps , Ipomoea , Animais , Convolvulaceae/metabolismo , Convolvulaceae/microbiologia , Swainsonina/metabolismo , Filogenia , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea/microbiologia , Alcaloides de Claviceps/metabolismo , Alcaloides/metabolismo , Alcaloides Diterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA