Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(33)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729186

RESUMO

Spin reorientation transition is an ubiquitous phenomenon observed in magnetic rare earth orthferrites RFeO3, which has garnered significant attention in recent years due to its potential applications in spintronics or magnetoelectric devices. Although a plenty of experimental works suggest that the magnetic interaction between R3+and Fe3+spins is at the heart of the spin reorientation, but a direct and conclusive theoretical support has been lacking thus far, primarily due to the challenging nature of handling R 4felectrons. In this paper, we explored DyFeO3as an example by means of comprehensive first principles calculations, and compared two different approaches, where the Dy 4felectrons were treated separately as core or valence states, aiming to elucidate the role of Dy 4felectrons, particularly in the context of the spin reorientation transition. The comparison provides a solid piece of evidence for the experimental argument that the Dy3+-Fe3+magnetic interactions play a vital role in triggering spin reorientation of Fe3+moments at low temperatures. The findings revealed here not only extend our understanding on the underlying mechanism for spin reorientation transition in RFeO3, but also highlight the importance of explicit description of R 4felectrons in rationally reproducing their structural, electronic and magnetic properties.

2.
J Phys Condens Matter ; 34(26)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35421851

RESUMO

High resolution and high intensity neutron powder diffraction is used to study the ground state magnetic order and the spin reorientation transition in the orthoferrite DyFeO3. The transition from the high temperaturek= 0 Γ4(GxAyFz) to the low temperature Γ1(AxGyCz) type order of the Fe-sublattice is found atTSR= 73 K and does not show any thermal hysteresis. BelowTN2= 4 K the Dy-sublattice orders in an incommensurate magnetic structure withk= [0, 0, 0.028] while the Fe-sublattice keeps its commensurate Γ1type order. DyFeO3is the first orthoferriteRFeO3to possess an incommensurate magnetic order of the rare earth sublattice under zero field conditions; an important piece of information neglected in the recent discussion of its multiferroic properties.

3.
Nanomaterials (Basel) ; 12(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144879

RESUMO

Magnetoelectric (ME) coupling is highly desirable for sensors and memory devices. Herein, the polarization (P) and magnetization (M) of the DyFeO3 single crystal were measured in pulsed magnetic fields, in which the ME behavior is modulated by multi-magnetic order parameters and has high magnetic-field sensitivity. Below the ordering temperature of the Dy3+-sublattice, when the magnetic field is along the c-axis, the P (corresponding to a large critical field of 3 T) is generated due to the exchange striction mechanism. Interestingly, when the magnetic field is in the ab-plane, ME coupling with smaller critical fields of 0.8 T (a-axis) and 0.5 T (b-axis) is triggered. We assume that the high magnetic-field sensitivity results from the combination of the magnetic anisotropy of the Dy3+ spin and the exchange striction between the Fe3+ and Dy3+ spins. This work may help to search for single-phase multiferroic materials with high magnetic-field sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA