Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904201

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous pathogen of humans that can cause several types of lymphoma and carcinoma. Like other herpesviruses, EBV has diversified through both coevolution with its host and genetic exchange between virus strains. Sequence analysis of the EBV genome is unusually challenging because of the large number and lengths of repeat regions within the virus. Here we describe the sequence assembly and analysis of the large internal repeat 1 of EBV (IR1; also known as the BamW repeats) for more than 70 strains. The diversity of the latency protein EBV nuclear antigen leader protein (EBNA-LP) resides predominantly within the exons downstream of IR1. The integrity of the putative BWRF1 open reading frame (ORF) is retained in over 80% of strains, and deletions truncating IR1 always spare BWRF1. Conserved regions include the IR1 latency promoter (Wp) and one zone upstream of and two within BWRF1. IR1 is heterogeneous in 70% of strains, and this heterogeneity arises from sequence exchange between strains as well as from spontaneous mutation, with interstrain recombination being more common in tumor-derived viruses. This genetic exchange often incorporates regions of <1 kb, and allelic gene conversion changes the frequency of small regions within the repeat but not close to the flanks. These observations suggest that IR1-and, by extension, EBV-diversifies through both recombination and breakpoint repair, while concerted evolution of IR1 is driven by gene conversion of small regions. Finally, the prototype EBV strain B95-8 contains four nonconsensus variants within a single IR1 repeat unit, including a stop codon in the EBNA-LP gene. Repairing IR1 improves EBNA-LP levels and the quality of transformation by the B95-8 bacterial artificial chromosome (BAC).IMPORTANCE Epstein-Barr virus (EBV) infects the majority of the world population but causes illness in only a small minority of people. Nevertheless, over 1% of cancers worldwide are attributable to EBV. Recent sequencing projects investigating virus diversity to see if different strains have different disease impacts have excluded regions of repeating sequence, as they are more technically challenging. Here we analyze the sequence of the largest repeat in EBV (IR1). We first characterized the variations in protein sequences encoded across IR1. In studying variations within the repeat of each strain, we identified a mutation in the main laboratory strain of EBV that impairs virus function, and we suggest that tumor-associated viruses may be more likely to contain DNA mixed from two strains. The patterns of this mixing suggest that sequences can spread between strains (and also within the repeat) by copying sequence from another strain (or repeat unit) to repair DNA damage.


Assuntos
Evolução Molecular , Variação Genética , Genoma Viral , Herpesvirus Humano 4/genética , Sequências Repetitivas de Ácido Nucleico , Códon de Terminação , Antígenos Nucleares do Vírus Epstein-Barr/genética , Conversão Gênica , Genes Virais , Herpesvirus Humano 4/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fases de Leitura Aberta , Regiões Promotoras Genéticas
2.
Curr Top Microbiol Immunol ; 391: 35-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26428371

RESUMO

While all herpesviruses can switch between lytic and latent life cycle, which are both driven by specific transcription programs, a unique feature of latent EBV infection is the expression of several distinct and well-defined viral latent transcription programs called latency I, II, and III. Growth transformation of B-cells by EBV in vitro is based on the concerted action of Epstein-Barr virus nuclear antigens (EBNAs) and latent membrane proteins(LMPs). EBV growth-transformed B-cells express a viral transcriptional program, termed latency III, which is characterized by the coexpression of EBNA2 and EBNA-LP with EBNA1, EBNA3A, -3B, and -3C as well as LMP1, LMP2A, and LMP2B. The focus of this review will be to discuss the current understanding of how two of these proteins, EBNA2 and EBNA-LP, contribute to EBV-mediated B-cell growth transformation.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas Virais/metabolismo , Animais , Linfócitos B/virologia , Transformação Celular Viral , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Proteínas Virais/genética
3.
Cancers (Basel) ; 10(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303964

RESUMO

The Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) acts as a co-activator of EBNA-2, a transcriptional activator essential for Epstein-Barr virus (EBV)-induced B-cell transformation. Burkitt's lymphoma (BL) cells harboring a mutant EBV strain that lacks both the EBNA-2 gene and 3' exons of EBNA-LP express Y1Y2-truncated isoforms of EBNA-LP (tEBNA-LP) and better resist apoptosis than if infected with the wild-type virus. In such BL cells, tEBNA-LP interacts with the protein phosphatase 2A (PP2A) catalytic subunit (PP2A C), and this interaction likely plays a role in resistance to apoptosis. Here, 28 cellular and four viral proteins have been identified by mass spectrometry as further possible interactors of tEBNA-LP. Three interactions were confirmed by immunoprecipitation and Western blotting, namely with the A structural subunit of PP2A (PP2A A), the structure-specific recognition protein 1 (SSRP1, a component of the facilitate chromatin transcription (FACT) complex), and a new form of the transcription factor EC (TFEC). Thus, tEBNA-LP appears to be involved not only in cell resistance to apoptosis through its interaction with two PP2A subunits, but also in other processes where its ability to co-activate transcriptional regulators could be important.

4.
BMC Res Notes ; 11(1): 139, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458410

RESUMO

OBJECTIVE: The function of Epstein-Barr virus (EBV) stable intronic sequence (sis)RNAs, non-coding RNAs transcribed from a region required for EBV-mediated cellular transformation, remain unknown. To better understand the function of ebv-sisRNA-1 and ebv-sisRNA-2 from the internal repeat (IR)1 region of EBV, we used a combination of bioinformatics and biochemistry to identify associated RNA binding proteins. The findings reported here are part of ongoing studies to determine the functions of non-coding RNAs from the IR1 region of EBV. RESULTS: Human regulatory proteins HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPC, HNRNPL, HuR (human antigen R), and protein LIN28A (lin-28 homolog A) were predicted to bind ebv-sisRNA-1 and/or ebv-sisRNA-2; FUS (fused in sarcoma) was predicted to associate with ebv-sisRNA-2. Protein interactions were validated using a combination of RNA immunoprecipitation and biotin pulldown assays. Both sisRNAs also precipitated with HNRNPD and NONO (non-POU domain-containing octamer-binding protein). Interestingly, each of these interacting proteins also precipitated non-spliced non-coding RNA sequences transcribed from the IR1 region. Our findings suggest interesting roles for sisRNAs (through their interactions with regulatory proteins) and provide further evidence for the existence of non-spliced stable non-coding RNAs.


Assuntos
Proteína Semelhante a ELAV 1 , Herpesvirus Humano 4 , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Íntrons , RNA não Traduzido , RNA Viral , Proteínas de Ligação a RNA , Ribonucleoproteínas , Proteína Semelhante a ELAV 1/genética , Herpesvirus Humano 4/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Humanos , Íntrons/genética , RNA não Traduzido/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética
5.
Protein Sci ; 26(6): 1231-1235, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383161

RESUMO

Epstein-Barr virus EBNA-LP protein is a transcriptional coactivator of EBNA2. Efficient nuclear localization of EBNA-LP is essential for cooperation with EBNA2. Here, we report the crystal structure of the nuclear import adaptor importin-α1 bound to the nuclear localization signal (NLS) of EBNA-LP that shows EBNA-LP residues 44-RRVRRR-49 binding to the major NLS-binding site at the P0-P5 positions. In contrast to previously characterized classical NLSs that invariably have a basic residue [either lysine (in the vast majority of cases) or arginine] at the P2 position, the EBNA-LP NLS is unique in that it has valine at the P2 position. The loss of the critical P2 lysine (or arginine) is compensated by arginine at the P0 position in the EBNA-LP NLS.


Assuntos
Herpesvirus Humano 4/química , Sinais de Localização Nuclear/química , Proteínas Virais/química , alfa Carioferinas/química , Cristalografia por Raios X , Herpesvirus Humano 4/metabolismo , Humanos , Sinais de Localização Nuclear/metabolismo , Estrutura Quaternária de Proteína , Proteínas Virais/metabolismo , alfa Carioferinas/metabolismo
6.
Virology ; 512: 113-123, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28950226

RESUMO

The Epstein-Barr virus (EBV) miR-BHRF1 microRNA (miRNA) cluster has been shown to facilitate B-cell transformation and promote the rapid growth of the resultant lymphoblastoid cell lines (LCLs). However, we find that expression of physiological levels of the miR-BHRF1 miRNAs in LCLs transformed with a miR-BHRF1 null mutant (∆123) fails to increase their growth rate. We demonstrate that the pri-miR-BHRF1-2 and 1-3 stem-loops are present in the 3'UTR of transcripts encoding EBNA-LP and that excision of pre-miR-BHRF1-2 and 1-3 by Drosha destabilizes these mRNAs and reduces expression of the encoded protein. Therefore, mutational inactivation of pri-miR-BHRF1-2 and 1-3 in the ∆123 mutant upregulates the expression of not only EBNA-LP but also EBNA-LP-regulated mRNAs and proteins, including LMP1. We hypothesize that this overexpression causes the reduced transformation capacity of the ∆123 EBV mutant. Thus, in addition to regulating cellular mRNAs in trans, miR-BHRF1-2 and 1-3 also regulate EBNA-LP mRNA expression in cis.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Herpesvirus Humano 4/metabolismo , MicroRNAs/metabolismo , Linhagem Celular , Herpesvirus Humano 4/genética , Humanos , MicroRNAs/genética , RNA Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA