Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2213638120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585463

RESUMO

High-Reynolds number homogeneous isotropic turbulence (HIT) is fully described within the Navier-Stokes (NS) equations, which are notoriously difficult to solve numerically. Engineers, interested primarily in describing turbulence at a reduced range of resolved scales, have designed heuristics, known as large eddy simulation (LES). LES is described in terms of the temporally evolving Eulerian velocity field defined over a spatial grid with the mean-spacing correspondent to the resolved scale. This classic Eulerian LES depends on assumptions about effects of subgrid scales on the resolved scales. Here, we take an alternative approach and design LES heuristics stated in terms of Lagrangian particles moving with the flow. Our Lagrangian LES, thus L-LES, is described by equations generalizing the weakly compressible smoothed particle hydrodynamics formulation with extended parametric and functional freedom, which is then resolved via Machine Learning training on Lagrangian data from direct numerical simulations of the NS equations. The L-LES model includes physics-informed parameterization and functional form, by combining physics-based parameters and physics-inspired Neural Networks to describe the evolution of turbulence within the resolved range of scales. The subgrid-scale contributions are modeled separately with physical constraints to account for the effects from unresolved scales. We build the resulting model under the differentiable programming framework to facilitate efficient training. We experiment with loss functions of different types, including physics-informed ones accounting for statistics of Lagrangian particles. We show that our L-LES model is capable of reproducing Eulerian and unique Lagrangian turbulence structures and statistics over a range of turbulent Mach numbers.

2.
Proc Natl Acad Sci U S A ; 120(42): e2301596120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812704

RESUMO

Carbon dioxide and water vapor exchanges between tropical forest canopies and the atmosphere through photosynthesis, respiration, and evapotranspiration (ET) influence carbon and water cycling at the regional and global scales. Their inter- and intra-annual variations are sensitive to seasonal rhythms and longer-timescale tropical climatic events. In the present study, we assessed the El Niño-Southern Oscillation (ENSO) influence on ET and on the net ecosystem exchange (NEE), using eddy-covariance flux observations in a Bornean rainforest over a 10-y period (2010-2019) that included several El Niño and La Niña events. From flux model inversions, we inferred ecophysiological properties, notably the canopy stomatal conductance and "big-leaf" maximum carboxylation rate (Vcmax25_BL). Mean ET values were similar between ENSO phases (El Niño, La Niña, and neutral conditions). Conversely, the mean net ecosystem productivity was highest during La Niña events and lowest during El Niño events. Combining Shapley additive explanation calculations for nine controlling factors with a machine-learning algorithm, we determined that the primary factors for ET and NEE in the La Niña and neutral phases were incoming shortwave solar radiation and Vcmax25_BL, respectively, but that canopy stomatal conductance was the most significant factor for both ET and NEE in the El Niño phase. A combined stomatal-photosynthesis model approach further indicated that Vcmax25_BL differences between ENSO phases were the most significant controlling factor for canopy photosynthesis, emphasizing the strong need to account for ENSO-induced ecophysiological factor variations in model projections of the long-term carbon balance in Southeast Asian tropical rainforests.


Assuntos
El Niño Oscilação Sul , Floresta Úmida , Ecossistema , Florestas , Clima Tropical
3.
Proc Natl Acad Sci U S A ; 119(41): e2206504119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191202

RESUMO

The expansive gyres of the subtropical ocean account for a significant fraction of global organic carbon export from the upper ocean. In the gyre interior, vertical mixing and the heaving of nutrient-rich waters into the euphotic layer sustain local productivity, in turn depleting the layers below. However, the nutrient pathways by which these subeuphotic layers are themselves replenished remain unclear. Using a global, eddy-permitting simulation of ocean physics and biogeochemistry, we quantify nutrient resupply mechanisms along and across density surfaces, including the contribution of eddy-scale motions that are challenging to observe. We find that mesoscale eddies (10 to 100 km) flux nutrients from the shallow flanks of the gyre into the recirculating interior, through time-varying motions along density surfaces. The subeuphotic layers are ultimately replenished in approximately equal contributions by this mesoscale eddy transport and the remineralization of sinking particles. The mesoscale eddy resupply is most important in the lower thermocline for the whole subtropical region but is dominant at all depths within the gyre interior. Subtropical gyre productivity may therefore be sustained by a nutrient relay, where the lateral transport resupplies nutrients to the thermocline and allows vertical exchanges to maintain surface biological production and carbon export.


Assuntos
Carbono , Água do Mar , Nutrientes , Oceanos e Mares
4.
Proc Natl Acad Sci U S A ; 119(38): e2118014119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095176

RESUMO

Emissions of biogenic volatile organic compounds (BVOCs) are a crucial component of biosphere-atmosphere interactions. In northern latitudes, climate change is amplified by feedback processes in which BVOCs have a recognized, yet poorly quantified role, mainly due to a lack of measurements and concomitant modeling gaps. Hence, current Earth system models mostly rely on temperature responses measured on vegetation from lower latitudes, rendering their predictions highly uncertain. Here, we show how tundra isoprene emissions respond vigorously to temperature increases, compared to model results. Our unique dataset of direct eddy covariance ecosystem-level isoprene measurements in two contrasting ecosystems exhibited Q10 (the factor by which the emission rate increases with a 10 °C rise in temperature) temperature coefficients of up to 20.8, that is, 3.5 times the Q10 of 5.9 derived from the equivalent model calculations. Crude estimates using the observed temperature responses indicate that tundra vegetation could enhance their isoprene emissions by up to 41% (87%)-that is, 46% (55%) more than estimated by models-with a 2 °C (4 °C) warming. Our results demonstrate that tundra vegetation possesses the potential to substantially boost its isoprene emissions in response to future rising temperatures, at rates that exceed the current Earth system model predictions.


Assuntos
Butadienos , Aquecimento Global , Hemiterpenos , Desenvolvimento Vegetal , Tundra , Compostos Orgânicos Voláteis , Butadienos/análise , Hemiterpenos/análise , Temperatura , Compostos Orgânicos Voláteis/análise
5.
Magn Reson Med ; 92(2): 573-585, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501914

RESUMO

PURPOSE: To evaluate the use of pre-excitation gradients for eddy current-nulled convex optimized diffusion encoding (Pre-ENCODE) to mitigate eddy current-induced image distortions in diffusion-weighted MRI (DWI). METHODS: DWI sequences using monopolar (MONO), ENCODE, and Pre-ENCODE were evaluated in terms of the minimum achievable echo time (TE min $$ {}_{\mathrm{min}} $$ ) and eddy current-induced image distortions using simulations, phantom experiments, and in vivo DWI in volunteers ( N = 6 $$ N=6 $$ ). RESULTS: Pre-ENCODE provided a shorter TE min $$ {}_{\mathrm{min}} $$ than MONO (71.0 ± $$ \pm $$ 17.7ms vs. 77.6 ± $$ \pm $$ 22.9ms) and ENCODE (71.0 ± $$ \pm $$ 17.7ms vs. 86.2 ± $$ \pm $$ 14.2ms) in 100 % $$ \% $$ of the simulated cases for a commercial 3T MRI system with b-values ranging from 500 to 3000 s/mm 2 $$ {}^2 $$ and in-plane spatial resolutions ranging from 1.0 to 3.0mm 2 $$ {}^2 $$ . Image distortion was estimated by intravoxel signal variance between diffusion encoding directions near the phantom edges and was significantly lower with Pre-ENCODE than with MONO (10.1 % $$ \% $$ vs. 22.7 % $$ \% $$ , p = 6 - 5 $$ p={6}^{-5} $$ ) and comparable to ENCODE (10.1 % $$ \% $$ vs. 10.4 % $$ \% $$ , p = 0 . 12 $$ p=0.12 $$ ). In vivo measurements of apparent diffusion coefficients were similar in global brain pixels (0.37 [0.28,1.45] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s vs. 0.38 [0.28,1.45] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s, p = 0 . 25 $$ p=0.25 $$ ) and increased in edge brain pixels (0.80 [0.17,1.49] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s vs. 0.70 [0.18,1.48] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s, p = 0 . 02 $$ p=0.02 $$ ) for MONO compared to Pre-ENCODE. CONCLUSION: Pre-ENCODE mitigated eddy current-induced image distortions for diffusion imaging with a shorter TE min $$ {}_{\mathrm{min}} $$ than MONO and ENCODE.


Assuntos
Algoritmos , Encéfalo , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Simulação por Computador , Artefatos , Adulto , Voluntários Saudáveis
6.
Magn Reson Med ; 91(3): 1067-1074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994235

RESUMO

PURPOSE: To minimize eddy current artifacts in periodic pulse sequences with balanced gradient moments as, for example, used for quantitative MRI. THEORY AND METHODS: Eddy current artifacts in balanced sequences result from large jumps in k-space. In quantitative MRI, one often samples some spin dynamics repeatedly while acquiring different parts of k-space. We swap individual k-space lines between different repetitions in order to minimize jumps in temporal succession without changing the overall trajectory. This reordering can be formulated as a traveling salesman problem and we tackle the discrete optimization with a simulated annealing algorithm. RESULTS: Compared to the default ordering, we observe a substantial reduction of artifacts in the reconstructed images and the derived quantitative parameter maps. Comparing two variants of our algorithm, one that resembles the pairing approach originally proposed by Bieri et al., and one that minimizes all k-space jumps equally, we observe slightly lower artifact levels in the latter. CONCLUSION: The proposed reordering scheme effectively reduces eddy current artifacts in sequences with balanced gradient moments. In contrast to previous approaches, we capitalize on the periodicity of the sampled signal dynamics, enabling both efficient k-space sampling and minimizing artifacts caused by eddy currents.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
7.
Magn Reson Med ; 92(5): 2261-2270, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39004827

RESUMO

PURPOSE: Driven by the Lorentz force, acoustic noise may arguably be the next physiological challenge associated with ultra-high field MRI scanners and powerful gradient coils. This work consisted of isolating and mitigating the main sound pathway in the NexGen 7 T scanner equipped with the investigational Impulse head gradient coil. METHODS: Sound pressure level (SPL) measurements were performed with and without the RF coil to assess its acoustic impact. Vibration measurements were carried out on the gradient coil, the RF coil, and on the patient table to distinguish the different vibration mechanisms and pathways. Vibrations of the RF coil were modified by either making contact with the patient bore liner with padding material or by changing directly the RF shield with phosphor bronze mesh material. RESULTS: SPL and vibration measurements demonstrated that eddy-currents induced in the RF shield were the primary cause of acoustic noise. Replacing the conventional solid copper shield with phosphor bronze mesh material altered the vibrations of the RF shield and decreased SPL by 6 to 8 dB at the highest frequencies in EPI, depending on the gradient axis, while boosting the transmit B1 + field by 15%. Padding led to slightly less sound reduction on the X and Z gradient axes, but with minimal impact for the Y axis. CONCLUSION: This study demonstrates the potential importance of eddy-current induced vibrations in the RF coil in terms of acoustic noise and opens new horizons for mitigation measures.


Assuntos
Acústica , Desenho de Equipamento , Imageamento por Ressonância Magnética , Ruído , Vibração , Imageamento por Ressonância Magnética/instrumentação , Humanos , Imagens de Fantasmas
8.
Magn Reson Med ; 91(2): 541-557, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37753621

RESUMO

PURPOSE: To investigate whether spatiotemporal magnetic field monitoring can correct pronounced eddy current-induced artifacts incurred by strong diffusion-sensitizing gradients up to 300 mT/m used in high b-value diffusion-weighted (DW) EPI. METHODS: A dynamic field camera equipped with 16 1 H NMR field probes was first used to characterize field perturbations caused by residual eddy currents from diffusion gradients waveforms in a 3D multi-shot EPI sequence on a 3T Connectom scanner for different gradient strengths (up to 300 mT/m), diffusion directions, and shots. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-gradient strength, submillimeter resolution whole-brain ex vivo diffusion MRI. A 3D multi-shot image reconstruction framework was developed that incorporated the nonlinear phase evolution measured with the dynamic field camera. RESULTS: Phase perturbations in the readout induced by residual eddy currents from strong diffusion gradients are highly nonlinear in space and time, vary among diffusion directions, and interfere significantly with the image encoding gradients, changing the k-space trajectory. During the readout, phase modulations between odd and even EPI echoes become non-static and diffusion encoding direction-dependent. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting reduction approaches such as navigator- and structured low-rank-based methods or MUSE followed by image-based distortion correction with the FSL tool "eddy." CONCLUSION: Strong eddy current artifacts characteristic of high-gradient strength DW-EPI can be well corrected with dynamic field monitoring-based image reconstruction.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Ecoplanar/métodos
9.
Magn Reson Med ; 91(3): 1225-1238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013214

RESUMO

PURPOSE: This paper presents a novel computational approach to optimize gradient array performance for a given pulse sequence. Specifically, we propose an electromagnetic (EM) approach that minimizes eddy losses within the cryostat while maintaining key performance parameters such as field linearity, gradient strength, and imaging region's dimension and position. METHODS: High-resolution EM simulations on the cryostat's surface are deployed to compute the net EM fields generated by each element of a gradient array coil at different frequencies. The computed fields are stored and combined for each frequency to form a quadratic vector-matrix-vector computation. The overall time-average eddy power loss within the cryostat assembly for arbitrary pulse sequences is computed using frequency domain superposition. RESULTS: The proposed approach estimates and regulates eddy power losses within the cryostat assembly. When compared to the stray field minimization approach, it can achieve over twice the reduction in eddy power loss. The proposed approach eliminates the need to sample the stray fields on the cryostat surface, which the number and position of the samples would be challenging when designing tunable array coils with capabilities that disrupt field symmetries. Additionally, the loss calculation considers the entire cryostat assembly rather than just the inner cylindrical surface of the warm shield. CONCLUSION: Our findings highlight the efficacy of an on-the-fly tuning method for the development of high-performance whole-body gradient array coils, effectively mitigating eddy losses within the cryostat and minimizing stray fields outside the coil assembly. This approach proves particularly advantageous for array coils with variable feeding currents.


Assuntos
Campos Eletromagnéticos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Desenho de Equipamento
10.
Magn Reson Med ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250435

RESUMO

PURPOSE: To develop a 3D spherical EPTI (sEPTI) acquisition and a comprehensive reconstruction pipeline for rapid high-quality whole-brain submillimeter T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification. METHODS: For the sEPTI acquisition, spherical k-space coverage is utilized with variable echo-spacing and maximum kx ramp-sampling to improve efficiency and signal incoherency compared to existing EPTI approaches. For reconstruction, an iterative rank-shrinking B0 estimation and odd-even high-order phase correction algorithms were incorporated into the reconstruction to better mitigate artifacts from field imperfections. A physics-informed unrolled network was utilized to boost the SNR, where 1-mm and 0.75-mm isotropic whole-brain imaging were performed in 45 and 90 s at 3 T, respectively. These protocols were validated through simulations, phantom, and in vivo experiments. Ten healthy subjects were recruited to provide sufficient data for the unrolled network. The entire pipeline was validated on additional five healthy subjects where different EPTI sampling approaches were compared. Two additional pediatric patients with epilepsy were recruited to demonstrate the generalizability of the unrolled reconstruction. RESULTS: sEPTI achieved 1.4 × $$ \times $$ faster imaging with improved image quality and quantitative map precision compared to existing EPTI approaches. The B0 update and the phase correction provide improved reconstruction performance with lower artifacts. The unrolled network boosted the SNR, achieving high-quality T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification with single average data. High-quality reconstruction was also obtained in the pediatric patients using this network. CONCLUSION: sEPTI achieved whole-brain distortion-free multi-echo imaging and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification at 0.75 mm in 90 s which has the potential to be useful for wide clinical applications.

11.
Glob Chang Biol ; 30(4): e17275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38624252

RESUMO

Solar radiation is scattered by cloud cover, aerosols and other particles in the atmosphere, all of which are affected by global changes. Furthermore, the diffuse fraction of solar radiation is increased by more frequent forest fires and likewise would be if climate interventions such as stratospheric aerosol injection were adopted. Forest ecosystem studies predict that an increase in diffuse radiation would result in higher productivity, but ecophysiological data are required to identify the processes responsible within the forest canopy. In our study, the response of a boreal forest to direct, diffuse and heterogeneous solar radiation conditions was examined during the daytime in the growing season to determine how carbon uptake is affected by radiation conditions at different scales. A 10-year data set of ecosystem, shoot and forest floor vegetation carbon and water-flux data was examined. Ecosystem-level carbon assimilation was higher under diffuse radiation conditions in comparison with direct radiation conditions at equivalent total photosynthetically active radiation (PAR). This was driven by both an increase in shoot and forest floor vegetation photosynthetic rate. Most notably, ecosystem-scale productivity was strongly related to the absolute amount of diffuse PAR, since it integrates both changes in total PAR and diffuse fraction. This finding provides a gateway to explore the processes by which absolute diffuse PAR enhances productivity, and the long-term persistence of this effect under scenarios of higher global diffuse radiation.


Assuntos
Ecossistema , Taiga , Florestas , Atmosfera , Carbono
12.
Glob Chang Biol ; 30(3): e17231, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481067

RESUMO

Leaf coloring and fall mark the end of the growing season (EOS), playing essential roles in nutrient cycling, resource allocation, ecological interactions, and as climate change indicators. However, understanding future changes in autumn phenology is challenging due to the multitude of likely environmental cues and substantial variations in timing caused by different derivation methods. Yet, it remains unclear whether these two factors are independent or if methodological uncertainties influence the environmental cues determined. We derived start of growing season (SOS) and EOS at a mixed beech forest in Central Germany for the period 2000-2020 based on four different derivation methods using a unique long-term data set of in-situ data, canopy imagery, eddy covariance measurements, and satellite remote sensing data and determined their influence on a predictor analysis of leaf senescence. Both SOS and EOS exhibited substantial ranges in mean onset dates (39.5 and 28.6 days, respectively) across the different methods, although inter-annual variations and advancing SOS trends were similar across methods. Depending on the data, EOS trends were advanced or delayed, but inter-annual patterns correlated well (mean r = .46). Overall, warm, dry, and less photosynthetically productive growing seasons were more likely to be associated with a delayed EOS, while colder, wetter, and more photosynthetically productive vegetation periods resulted in an earlier EOS. In addition, contrary to recent results, no clear influence of pre-solstice vegetation activity on the timing of senescence was detected. However, most notable were the large differences in sign and strength of potential drivers both in the univariate and multivariate analyses when comparing derivation methodologies. The results suggest that an ensemble analysis of all available phenological data sources and derivation methods is needed for general statements on autumn phenology and its influencing variables and correct implementation of the senescence process in ecosystem models.


Assuntos
Sinais (Psicologia) , Ecossistema , Estações do Ano , Temperatura , Florestas , Mudança Climática
13.
Glob Chang Biol ; 30(9): e17462, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39234688

RESUMO

Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre-industrial times. Wetlands account for a large share of global CH4 emissions, yet the magnitude and factors controlling CH4 fluxes in tidal wetlands remain uncertain. We synthesized CH4 flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4 emissions. This effort included creating an open-source database of chamber-based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4 m-2 year-1, with a median of 3.9 g CH4 m-2 year-1, and only 25% of sites exceeding 18 g CH4 m-2 year-1. The highest fluxes were observed at fresh-oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid-fresh-oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4 flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m-2 s-1 at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4 fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4 flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4 fluxes, with pulsed releases of stored CH4 at low to rising tide. This study provides data and methods to improve tidal marsh CH4 emission estimates, support blue carbon assessments, and refine national and global GHG inventories.


Assuntos
Gases de Efeito Estufa , Metano , Áreas Alagadas , Metano/análise , Metano/metabolismo , Estados Unidos , Gases de Efeito Estufa/análise , Temperatura , Monitoramento Ambiental , Estações do Ano
14.
Glob Chang Biol ; 30(9): e17509, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39323398

RESUMO

Monitoring the changes of ecosystem functioning is pivotal for understanding the global carbon cycle. Despite its size and contribution to the global carbon cycle, Africa is largely understudied in regard to ongoing changes of its ecosystem functioning and their responses to climate change. One of the reasons is the lack of long-term in situ data. Here, we use eddy covariance to quantify the net ecosystem exchange (NEE) and its components-gross primary production (GPP) and ecosystem respiration (Reco) for years 2010-2022 for a Sahelian semiarid savanna to study trends in the fluxes. Significant negative trends were found for NEE (12.7 ± 2.8 g C m2 year-1), GPP (39.6 ± 7.9 g C m2 year-1), and Reco (32.2 ± 8.9 g C m2 year-1). We found that NEE decreased by 60% over the study period, and this decrease was mainly caused by stronger negative trends in rainy season GPP than in Reco. Additionally, we observed strong increasing trends in vapor pressure deficit, but no trends in rainfall or soil water content. Thus, a proposed explanation for the decrease in carbon sink strength is increasing atmospheric dryness. The warming climate in the Sahel, coupled with increasing evaporative demand, may thus lead to decreased GPP levels across this biome, and lowering its CO2 sequestration.


Assuntos
Sequestro de Carbono , Mudança Climática , Pradaria , Estações do Ano , Ciclo do Carbono , Solo/química , Chuva
15.
Glob Chang Biol ; 30(1): e16995, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916642

RESUMO

Wildfires are increasing in frequency, intensity, and extent globally due to climate change and they can alter forest composition, structure, and function. The destruction and subsequent regrowth of young vegetation can modify the ecosystem evapotranspiration and downstream water availability. However, the response of forest recovery on hydrology is not well known with even the sign of evapotranspiration and water yield changes following forest fires being uncertain across the globe. Here, we quantify the effects of forest regrowth after catastrophic wildfires on evapotranspiration and runoff in the world's tallest angiosperm forest (Eucalyptus regnans) in Australia. We combine eddy covariance measurements including pre- and post-fire periods, mechanistic ecohydrological modeling and then extend the analysis spatially to multiple fires in eucalypt-dominated forests in south-eastern Australia by utilizing remote sensing. We find a fast recovery of evapotranspiration which reaches and exceeds pre-fire values within 2 years after the bushfire, a result confirmed by eddy covariance data, remote sensing, and modeling. Such a fast evapotranspiration recovery is likely generalizable to tall eucalypt forests in south-eastern Australia as shown by remote sensing. Once climate variability is discounted, ecohydrological modeling shows evapotranspiration rates from the recovering forest which reach peak values of +20% evapotranspiration 3 years post-fire. As a result, modeled runoff decreases substantially. Contrary to previous research, we find that the increase in modeled evapotranspiration is largely caused by the aerodynamic effects of a much shorter forest height leading to higher surface temperature, higher humidity gradients and therefore increased transpiration. However, increases in evapotranspiration as well as decreases in runoff caused by the young forest are constrained by energy and water limitations. Our result of an increase in evapotranspiration due to aerodynamic warming in a shorter forest after wildfires could occur in many parts of the world experiencing forest disturbances.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Água , Florestas
16.
Glob Chang Biol ; 30(9): e17486, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39215546

RESUMO

All ecosystems contain both sources and sinks for atmospheric carbon (C). A change in their balance of net and gross ecosystem carbon uptake, ecosystem-scale carbon use efficiency (CUEECO), is a change in their ability to buffer climate change. However, anthropogenic nitrogen (N) deposition is increasing N availability, potentially shifting terrestrial ecosystem stoichiometry towards phosphorus (P) limitation. Depending on how gross primary production (GPP, plants alone) and ecosystem respiration (RECO, plants and heterotrophs) are limited by N, P or associated changes in other biogeochemical cycles, CUEECO may change. Seasonally, CUEECO also varies as the multiple processes that control GPP and respiration and their limitations shift in time. We worked in a Mediterranean tree-grass ecosystem (locally called 'dehesa') characterized by mild, wet winters and summer droughts. We examined CUEECO from eddy covariance fluxes over 6 years under control, +N and + NP fertilized treatments on three timescales: annual, seasonal (determined by vegetation phenological phases) and 14-day aggregations. Finer aggregation allowed consideration of responses to specific patterns in vegetation activity and meteorological conditions. We predicted that CUEECO should be increased by wetter conditions, and successively by N and NP fertilization. Milder and wetter years with proportionally longer growing seasons increased CUEECO, as did N fertilization, regardless of whether P was added. Using a generalized additive model, whole ecosystem phenological status and water deficit indicators, which both varied with treatment, were the main determinants of 14-day differences in CUEECO. The direction of water effects depended on the timescale considered and occurred alongside treatment-dependent water depletion. Overall, future regional trends of longer dry summers may push these systems towards lower CUEECO.


Assuntos
Secas , Ecossistema , Nitrogênio , Fósforo , Estações do Ano , Nitrogênio/metabolismo , Fósforo/metabolismo , Fósforo/análise , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Poaceae/fisiologia , Árvores/metabolismo , Árvores/crescimento & desenvolvimento , Carbono/metabolismo , Carbono/análise , Mudança Climática , Ciclo do Carbono
17.
Environ Res ; 262(Pt 2): 119907, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251177

RESUMO

Reed (Phragmites australis) dominated wetlands are commonly known as strong carbon (C) sinks due to the high productivity of the reed plant and C fixation in the wetland soil. However, little is known about the effects of drought on reed-dominated wetlands and the possibility of Pannonian reed ecosystems being a source of greenhouse gases (GHG). The drought at Lake Neusiedl had a particular impact on the water level, but also had consequences for the reed belt. Therefore, we investigated the drought-influenced C fluxes and their drivers in the reed ecosystem of this subsaline lake over a period of 4.5 years (mid-2018 to 2022). We applied eddy covariance technique to continuously quantify the vertical turbulent GHG exchange between reed belt & atmosphere and used vegetation indices to account for reed growth. Methane emissions decreased by 76% from 9.2 g CH4-C m-2a-1 (2019) to 2.2 g CH4-C m-2 a-1 (2022), which can be explained by the falling water level, the associated drying out of the reed belt and its consequences. Carbon dioxide emissions initially decreased by 85% from 181 g CO2-C m-2 a-1 (2019) to 27 g CO2-C m-2 a-1 (2021), but then increased to twice the 2019 level in 2022 (391 g CO2-C m-2 a-1). Due to the drying reed belt, the reed initially grew into formerly water-covered areas within the reed belt, especially in 2021, leading to higher photosynthesis through 2021. This development stopped and even reversed in 2022 as a consequence of the sharp decrease in sediment water content from about 65 to 32 Vol-% in mid-2022. Overall, drought led to a decoupling of the reed ecosystem from the open lake area and developed the wetland into a strong C source.

18.
Int J Hyperthermia ; 41(1): 2391008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39205623

RESUMO

OBJECTIVES: Demonstrate the potential application of a novel, endoscope-like device to guide and focus an alternating magnetic field (AMF) for treating deep-seated cancers via magnetic nanoparticle hyperthermia (MNPH). METHODS: AMF delivery, MNP activation, and eddy current distribution characteristics are investigated through experimental studies in phantoms and computational simulations using a full 3-dimensional human model. The 3D simulations compare the novel device to traditional AMF designs, including a MagForce-like, two-coil system (used clinically) and a single surface-coil system. RESULTS: The results demonstrate that this approach can deliver the same magnetic field strength at the prostate's centroid as traditional AMF designs, while reducing eddy current heating by 2 to 6 times. At the same level of normal tissue heating, this method provides 5.0 times, 1.5 times, and 0.92 times the magnetic field strength to the nearest, centroid, and farthest regions of the prostate, respectively. CONCLUSIONS: These results demonstrate proof-of-concept for an endoscopic magnetic field guiding and focusing system capable of delivering clinically relevant AMF from a distance. This innovative approach offers a promising alternative to conventional field delivery methods by directing AMF through the body, concentrating it in the tumor region, reducing eddy currents in surrounding healthy tissue, and avoiding exposure of nearby metallic implants.


Assuntos
Hipertermia Induzida , Campos Magnéticos , Hipertermia Induzida/métodos , Humanos , Masculino , Neoplasias/terapia
19.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34373324

RESUMO

High-latitude and high-altitude regions contain vast stores of permafrost carbon. Climate warming may result in the release of CO2 from both the thawing of permafrost and accelerated autotrophic respiration, but it may also increase the fixation of CO2 by plants, which could relieve or even offset the CO2 losses. The Tibetan Plateau contains the largest area of alpine permafrost on Earth. However, the current status of the net CO2 balance and feedbacks to warming remain unclear, given that the region has recently experienced an atmospheric warming rate of over 0.3 °C decade-1 We examined 32 eddy covariance sites and found an unexpected net CO2 sink during 2002 to 2020 (26 of the sites yielded a net CO2 sink) that was four times the amount previously estimated. The CO2 sink peaked at an altitude of roughly 4,000 m, with the sink at lower and higher altitudes limited by a low carbon use efficiency and a cold, dry climate, respectively. The fixation of CO2 in summer is more dependent on temperature than the loss of CO2 than it is in the winter months, especially at higher altitudes. Consistently, 16 manipulative experiments and 18 model simulations showed that the fixation of CO2 by plants will outpace the loss of CO2 under a wetting-warming climate until the 2090s (178 to 318 Tg C y-1). We therefore suggest that there is a plant-dominated negative feedback to climate warming on the Tibetan Plateau.


Assuntos
Altitude , Dióxido de Carbono/metabolismo , Simulação por Computador , Modelos Biológicos , Pergelissolo , Plantas/metabolismo , Ciclo do Carbono , Mudança Climática , Ecossistema , Estações do Ano , Tibet
20.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547235

RESUMO

The Antarctic Ice Sheet loses about half its mass through ocean-driven melting of its fringing ice shelves. However, the ocean processes governing ice shelf melting are not well understood, contributing to uncertainty in projections of Antarctica's contribution to global sea level. We use high-resolution large-eddy simulation to examine ocean-driven melt, in a geophysical-scale model of the turbulent ice shelf-ocean boundary layer, focusing on the ocean conditions observed beneath the Ross Ice Shelf. We quantify the role of double-diffusive convection in determining ice shelf melt rates and oceanic mixed layer properties in relatively warm and low-velocity cavity environments. We demonstrate that double-diffusive convection is the first-order process controlling the melt rate and mixed layer evolution at these flow conditions, even more important than vertical shear due to a mean flow, and is responsible for the step-like temperature and salinity structure, or thermohaline staircase, observed beneath the ice. A robust feature of the multiday simulations is a growing saline diffusive sublayer that drives a time-dependent melt rate. This melt rate is lower than current ice-ocean parameterizations, which consider only shear-controlled turbulent melting, would predict. Our main finding is that double-diffusive convection is an important process beneath ice shelves, yet is currently neglected in ocean-climate models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA