Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(5): 1336-1351.e17, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318148

RESUMO

As a critical step during innate response, the cytoplasmic ß subunit (IFN-γR2) of interferon-γ receptor (IFN-γR) is induced and translocates to plasma membrane to join α subunit to form functional IFN-γR to mediate IFN-γ signaling. However, the mechanism driving membrane translocation and its significance remain largely unknown. We found, unexpectedly, that mice deficient in E-selectin, an endothelial cell-specific adhesion molecule, displayed impaired innate activation of macrophages upon Listeria monocytogenes infection yet had increased circulating IFN-γ. Inflammatory macrophages from E-selectin-deficient mice had less surface IFN-γR2 and impaired IFN-γ signaling. BTK elicited by extrinsic E-selectin engagement phosphorylates cytoplasmic IFN-γR2, facilitating EFhd2 binding and promoting IFN-γR2 trafficking from Golgi to cell membrane. Our findings demonstrate that membrane translocation of cytoplasmic IFN-γR2 is required to activate macrophage innate response against intracellular bacterial infection, identifying the assembly of functional cytokine receptors on cell membrane as an important layer in innate activation and cytokine signaling.


Assuntos
Selectina E/metabolismo , Imunidade Inata , Receptores de Interferon/metabolismo , Animais , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Selectina E/deficiência , Selectina E/genética , Complexo de Golgi/metabolismo , Interferon gama/sangue , Interferon gama/metabolismo , Listeria/patogenicidade , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Transporte Proteico , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Transdução de Sinais , Receptor de Interferon gama
2.
J Virol ; 98(1): e0117623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054609

RESUMO

The ubiquitin-proteasome system is one of the most important protein stability regulation systems. It can precisely regulate host immune responses by targeting signaling proteins. TRAF6 is a crucial E3 ubiquitin ligase in host antiviral signaling pathway. Here, we discovered that EF-hand domain-containing protein D2 (EFHD2) collaborated with the E3 ubiquitin ligase Smurf1 to potentiate the degradation of TRAF6, hence facilitating RNA virus Siniperca chuatsi rhabdovirus infection. The mechanism analysis revealed that EFHD2 interacted with Smurf1 and enhanced its protein stability by impairing K48-linked polyubiquitination of Smurf1, thereby promoting Smurf1-catalyzed degradation of TRAF6. This study initially demonstrated a novel mechanism by which viruses utilize host EFHD2 to achieve immune escape and provided a new perspective on the exploration of mammalian innate immunity.IMPORTANCEViruses induce host cells to activate several antiviral signaling pathways. TNF receptor-associated factor 6 (TRAF6) plays an essential role in these pathways. Numerous studies have been done on the mechanisms of TRAF6-mediated resistance to viral invasion. However, little is known about the strategies that viruses employ to antagonize TRAF6-mediated antiviral signaling pathway. Here, we discovered that EFHD2 functions as a host factor to promote viral replication. Mechanistically, EFHD2 potentiates Smurf1 to catalyze the ubiquitin-proteasomal degradation of TRAF6 by promoting the deubiquitination and stability of Smurf1, which in turn inhibits the production of proinflammatory cytokines and interferons. Our study also provides a new perspective on mammalian resistance to viral invasion.


Assuntos
Proteínas de Ligação ao Cálcio , Doenças dos Peixes , Rhabdoviridae , Fator 6 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Viroses , Animais , Antivirais , Mamíferos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Viroses/metabolismo , Viroses/virologia , Rhabdoviridae/metabolismo , Peixes , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Proteínas de Ligação ao Cálcio/metabolismo
3.
Genomics ; 115(5): 110702, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37673235

RESUMO

Glioblastoma has been extensively studied due to its high mortality and short survival. The evolution mechanism of tumor-associated macrophages (TAMs) to Glioma-associated microglia and macrophages (GAMs) in the tumor microenvironment (TME) remains to be elucidated. The tumor cell-to-cell interaction patterns have not been well defined yet. The EF-Hand Domain Family Member D2 (EFHD2) has been reported to be differentially expressed as an immunomodulatory molecule in a variety of cancers. But large-scale clinical data from multiple ethnic communities have not been used to investigate the role of EFHD2 in glioma. RNA-seq data from 313 or 657 glioma patients from the Chinese Glioma Genome Atlas (CGGA) database and 603 glioma patients from the Cancer Genome Atlas (TCGA) database were analyzed retrospectively. Cell localization was performed using single-cell sequencing data from the CGGA database and the GSE131928 dataset. Mouse glioma cell lines and primary macrophages isolated from Efhd2 knockout mice were co-cultured to validate the immunomodulatory effects of EFHD2 on macrophages and the remodeling of TME of glioblastoma. EFHD2 is enriched in high-grade gliomas, isocitrate dehydrogenase wild-type, and 1p/19q non-co-deficient gliomas. It is a potential biomarker of glioma-proneuronal subtypes and an independent prognostic factor for overall survival in patients with malignant glioblastoma. EFHD2 regulates the monocyte-macrophage system function and positively correlates with immunosuppressive checkpoints. Further experimental data demonstrates that Efhd2 influences the polarization state of GAMs and inhibits the secretion of TGF-ß1. In vitro experiments have revealed that macrophages lacking Efhd2 suppress the vitality of two glioma cell lines and decelerate the growth of glioma xenografts. In conclusion, EFHD2 promises to be a key target for TME-related immunotherapy.

4.
J Neurochem ; 159(6): 992-1007, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34543436

RESUMO

EFhd2 is a conserved calcium-binding protein that is highly expressed in the central nervous system. We have shown that EFhd2 interacts with tau protein, a key pathological hallmark in Alzheimer's disease and related dementias. However, EFhd2's physiological and pathological functions in the brain are still poorly understood. To gain insights into its physiological function, we identified proteins that co-immunoprecipitated with EFhd2 from mouse forebrain and hindbrain, using tandem mass spectrometry (MS). In addition, quantitative mass spectrometry was used to detect protein abundance changes due to the deletion of the Efhd2 gene in mouse forebrain and hindbrain regions. Our data show that mouse EFhd2 is associated with cytoskeleton components, vesicle trafficking modulators, cellular stress response-regulating proteins, and metabolic proteins. Moreover, proteins associated with the cytoskeleton, vesicular transport, calcium signaling, stress response, and metabolic pathways showed differential abundance in Efhd2(-/-) mice. This study presents, for the first time, an EFhd2 brain interactome that it is associated with different cellular and molecular processes. These findings will help prioritize further studies to investigate the mechanisms by which EFhd2 modulates these processes in physiological and pathological conditions of the nervous system.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Animais , Citoesqueleto/genética , Citoesqueleto/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico/fisiologia , Espectrometria de Massas em Tandem/métodos
5.
J Neurochem ; 154(4): 424-440, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31943210

RESUMO

Psychostimulants are widely abused drugs that may cause addiction in vulnerable individuals. While the reward circuitry of the brain is involved in addiction establishment, various pathways in the brain may provide protection at the molecular level that limits the acute and chronic effects of drugs. These targets may be used for strategies designed to prevent and treat addiction. Swiprosin-1/EF hand domain 2 (EFhd2) is a Ca2+ -binding cytoskeletal adaptor protein involved in sensation-seeking behaviour, anxiety and alcohol addiction. Here, we tested how EFhd2 contributes to the physiological and behavioural effects of the psychostimulant drugs methamphetamine (METH) and cocaine. An in vivo microdialysis study in EFhd2 knockout mice revealed that EFhd2 controls METH- and cocaine-induced changes in extracellular dopamine, serotonin and noradrenaline levels through different mechanisms in the nucleus accumbens and prefrontal cortex. Electrophysiological recordings in a slice preparation showed that a lack of EFhd2 increases dopaminergic neuronal activity in the ventral tegmental area and increases the sensitivity of neurons to stimulation. We report a role of EFhd2 in METH-induced locomotor activation and in the conditioned locomotor effects. No role, however, was observed in the establishment of METH- or cocaine-induced conditioned place preference. These findings may suggest that EFhd2 modulates the activity of the dopaminergic system and the neurochemical effects of METH and cocaine, which translate into a modulation of the behavioural effects of these drugs at the level of the acute and conditioned locomotor activity.


Assuntos
Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Locomoção/efeitos dos fármacos , Metanfetamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Anal Biochem ; 611: 113999, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33098768

RESUMO

E. coli is a common host for generating human recombinant proteins in in vitro studies that seek to understand the biochemical and structural properties of proteins and in drug discovery. Validation of this biological resource is crucial to avoid misinterpretations and assay interference. Here, we demonstrate the use of tandem mass spectrometry to detect inadvertent post-translational modifications on human recombinant proteins produced in E. coli. Additionally, we identified co-purified E. coli proteins orthologous to known human interacting proteins. The results confirmed the importance of mass spectrometry in validating bacterial purified recombinant proteins as part of authenticating this key biological resource.


Assuntos
Escherichia coli/química , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Neurosignals ; 27(S1): 1-19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31742960

RESUMO

BACKGROUND/AIMS: Swiprosin-1/ EF-hand domain 2 (EFhd2) is a Ca2+ sensor protein that plays an important role in the immune system. Its abundant expression in the brain, however, suggested also a role in neuronal circuits and behavior. METHODS: Here we review recent discoveries on the structure and molecular function, its role in immunity and its function in the brain regarding behavioral control and pathologies. RESULTS: While EFhd2 did not emerge as a vital protein for brain development, changes in its expression may nevertheless shape the adult behavioral repertoire significantly and contribute to adult personality traits. A defective function of EFhd2 may also render individuals more prone to the development of psychiatric disorders. Most prominently, EFhd2 proved to be a resilience factor protecting from fast establishment of drug addiction. Moreover, EFhd2 is critical for adult neurogenesis and as a modulator of monoaminergic systems. CONCLUSION: Dysregulated activity of EFhd2 is increasingly considered as a contributing factor for the development of numerous neurodegenerative disorders. Whether EFhd2 can be used as biomarker or in therapeutic approaches has to be addressed in future research.


Assuntos
Encefalopatias/imunologia , Encefalopatias/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/imunologia , Transtornos da Personalidade/imunologia , Transtornos da Personalidade/metabolismo , Animais , Encefalopatias/genética , Proteínas de Ligação ao Cálcio/genética , Humanos , Transtornos da Personalidade/genética
8.
Biochem Biophys Res Commun ; 483(1): 442-448, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28011271

RESUMO

EF-hand domain-containing protein D2/Swiprosin-1 (EFhd2) is an actin-binding protein mainly expressed in the central nervous and the immune systems of mammals. Intracellular events linked to EFhd2, such as membrane protrusion formation, cell adhesion, and BCR signaling, are triggered by the association of EFhd2 and F-actin. We previously reported that Ca2+ enhances the F-actin-bundling ability of EFhd2 through maintaining a rigid parallel EFhd2-homodimer structure. It was also reported that the F-actin-bundling ability of EFhd2 is regulated by a phosphorylation-dependent mechanism. EGF-induced phosphorylation at Ser183 of EFhd2 has been shown to inhibit F-actin-bundling, leading to irregular actin dynamics at the leading edges of cells. However, the underlying mechanism of this inhibition has remained elusive. Here, we report the crystal structure of a phospho-mimicking mutant (S183E) of the EFhd2 core domain, where the actin-binding sites are located. Although the overall structure of the phospho-mimicking mutant is similar to the one of the unphosphorylated form, we observed a conformational transition from ordered to disordered structure in the linker region at the C-terminus of the mutant. Based on our structural and biochemical analyses, we suggest that phosphorylation at Ser183 of EFhd2 causes changes in the local conformational dynamics and the surface charge distribution of the actin-binding site, resulting in a re-coordination of the actin-binding sites in the dimer structure and a reduction of F-actin-bundling activity without affecting the F-actin-binding capacity.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Actinas/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação , Fosforilação , Conformação Proteica , Multimerização Proteica , Serina/metabolismo
9.
Biochem J ; 473(16): 2429-37, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27515255

RESUMO

Synaptic dysfunction and dysregulation of Ca(2+) are linked to neurodegenerative processes and behavioural disorders. Our understanding of the causes and factors involved in behavioural disorders and neurodegeneration, especially Alzheimer's disease (AD), a tau-related disease, is on the one hand limited and on the other hand controversial. Here, we review recent data about the links between the Ca(2+)-binding EF-hand-containing cytoskeletal protein Swiprosin-1/EFhd2 and neurodegeneration. Specifically, we summarize the functional biochemical data obtained in vitro with the use of recombinant EFhd2 protein, and integrated them with in vivo data in order to interpret the emerging role of EFhd2 in synaptic plasticity and in the pathophysiology of neurodegenerative disorders, particularly involving the tauopathies. We also discuss its functions in actin remodelling through cofilin and small GTPases, thereby linking EFhd2, synapses and the actin cytoskeleton. Expression data and functional experiments in mice and in humans have led to the hypothesis that down-regulation of EFhd2, especially in the cortex, is involved in dementia.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Sistema Nervoso/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Neurônios/metabolismo , Transporte Proteico , Sinapses/metabolismo
10.
Eur J Immunol ; 44(11): 3206-19, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25092375

RESUMO

Activated B cells are selected for in germinal centers by regulation of their apoptosis. The Ca2+ -binding cytoskeletal adaptor protein Swiprosin-1/EFhd2 (EFhd2) can promote apoptosis in activated B cells. We therefore hypothesized that EFhd2 might limit humoral immunity by repressing both the germinal center reaction and the expected enhancement of immune responses in the absence of EFhd2. Here, we established EFhd2(-/-) mice on a C57BL/6 background, which revealed normal B- and T-cell development, basal Ab levels, and T-cell independent type 1, and T-cell independent type 2 responses. However, T cell-dependent immunization with sheep red blood cells and infection with the helminth Nippostrongylus brasiliensis (N.b) increased production of antibodies of multiple isotypes, as well as germinal center formation in EFhd2(-/-) mice. In addition, serum IgE levels and numbers of IgE+ plasma cells were strongly increased in EFhd2(-/-) mice, both after primary as well as after secondary N.b infection. Finally, mixed bone marrow chimeras unraveled an EFhd2-dependent B cell-intrinsic contribution to increased IgE plasma cell numbers in N.b-infected mice. Hence, we established a role for EFhd2 as a negative regulator of germinal center-dependent humoral type 2 immunity, with implications for the generation of IgE.


Assuntos
Linfócitos B/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Centro Germinativo/imunologia , Hipersensibilidade/imunologia , Animais , Formação de Anticorpos/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Transplante de Medula Óssea , Diferenciação Celular/imunologia , Eritrócitos/imunologia , Imunidade Humoral , Imunoglobulina E/sangue , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nippostrongylus/imunologia , Plasmócitos/citologia , Plasmócitos/imunologia , Linfócitos T/imunologia
11.
Front Neurosci ; 18: 1373410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765673

RESUMO

Tauopathies are characterized by the abnormal buildup of tau protein, with early oligomeric forms associated with neurodegeneration and the later neurofibrillary tangles possibly conferring neuroprotection. The molecular mechanisms governing the formation of these tau species are unclear. Lately, there has been an increased focus on examining the interactions between tau and other proteins, along with their influence on the aggregation of tau. Our previous work revealed EFhd2's association with pathological tau in animal models and tauopathy brains. Herein, we examined the impact of EFhd2 on monomeric and filamentous tau in vitro. The results demonstrated that EFhd2 incubation with monomeric full length human tau (hTau40) formed amorphous aggregates, where both EFhd2 and hTau40 colocalized. Moreover, EFhd2 is entangled with arachidonic acid (ARA)-induced filamentous hTau40. Furthermore, EFhd2-induced aggregation with monomeric and filamentous hTau40 is EFhd2 concentration dependent. Using sandwich ELISA assays, we assessed the reactivity of TOC1 and Alz50-two conformation-specific tau antibodies-to EFhd2-hTau40 aggregates (in absence and presence of ARA). No TOC1 signal was detected in EFhd2 aggregates with monomeric hTau40 whereas EFhd2 aggregates with hTau in the presence of ARA showed a higher signal compared to hTau40 filaments. In contrast, EFhd2 aggregates with both monomeric and filamentous hTau40 reduced Alz50 reactivity. Taken together, our results illustrate for the first time that EFhd2, a tau-associated protein, interacts with monomeric and filamentous hTau40 to form large aggregates that are starkly different from tau oligomers and filaments. Given these findings and previous research, we hypothesize that EFhd2 may play a role in the formation of tau aggregates. Nevertheless, further in vivo studies are imperative to test this hypothesis.

12.
Int Immunopharmacol ; 133: 112087, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669951

RESUMO

EFHD2 (EF-hand domain family, member D2) has been identified as a calcium-binding protein with immunomodulatory effects. In this study, we characterized the phenotype of Efhd2-deficient mice in sepsis and examined the biological functions of EFHD2 in peripheral T cell activation and T helper (Th) cell differentiation. Increased levels of EFHD2 expression accompanied peripheral CD4+ T cell activation in the early stages of sepsis. Transcriptomic analysis indicated that immune response activation was impaired in Efhd2-deficient CD4+ T cells. Further, Efhd2-deficient CD4+ T cells isolated from the spleen of septic mice showed impaired T cell receptor (TCR)-induced Th differentiation, especially Th1 and Th17 differentiation. In vitro data also showed that Efhd2-deficient CD4+ T cells exhibit impaired Th1 and Th17 differentiation. In the CD4+ T cells and macrophages co-culture model for antigen presentation, the deficiency of Efhd2 in CD4+ T cells resulted in impaired formation of immunological synapses. In addition, Efhd2-deficient CD4+ T cells exhibited reduced levels of phospho-LCK and phospho-ZAP70, and downstream transcription factors including Nfat, Nfκb and Nur77 following TCR engagement. In summary, EFHD2 may promote TCR-mediated T cell activation subsequent Th1 and Th17 differentiation in the early stages of sepsis by regulating the intensity of TCR complex formation.


Assuntos
Proteínas de Ligação ao Cálcio , Diferenciação Celular , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T , Sepse , Transdução de Sinais , Animais , Masculino , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Sepse/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Células Th17/imunologia
13.
IUCrJ ; 10(Pt 2): 233-245, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862489

RESUMO

EF-hand proteins, which contain a Ca2+-binding EF-hand motif, are involved in regulating diverse cellular functions. Ca2+ binding induces conformational changes that modulate the activities of EF-hand proteins. Moreover, these proteins occasionally modify their activities by coordinating metals other than Ca2+, including Mg2+, Pb2+ and Zn2+, within their EF-hands. EFhd1 and EFhd2 are homologous EF-hand proteins with similar structures. Although separately localized within cells, both are actin-binding proteins that modulate F-actin rearrangement through Ca2+-independent actin-binding and Ca2+-dependent actin-bundling activity. Although Ca2+ is known to affect the activities of EFhd1 and EFhd2, it is not known whether their actin-related activities are affected by other metals. Here, the crystal structures of the EFhd1 and EFhd2 core domains coordinating Zn2+ ions within their EF-hands are reported. The presence of Zn2+ within EFhd1 and EFhd2 was confirmed by analyzing anomalous signals and the difference between anomalous signals using data collected at the peak positions as well as low-energy remote positions at the Zn K-edge. EFhd1 and EFhd2 were also found to exhibit Zn2+-independent actin-binding and Zn2+-dependent actin-bundling activity. This suggests the actin-related activities of EFhd1 and EFhd2 could be regulated by Zn2+ as well as Ca2+.


Assuntos
Citoesqueleto de Actina , Actinas , Motivos EF Hand , Proteínas dos Microfilamentos , Zinco
14.
Methods Mol Biol ; 2551: 253-267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310208

RESUMO

Liquid-liquid phase separation (LLPS) is a reversible biological process that contributes to the formation of critical concentration of proteins, forming membraneless compartments that are physiologically and pathologically relevant. Several proteins have been shown to demix into liquid droplets under in vitro crowding conditions. These studies are mainly conducted in isolation using purified recombinant proteins. Recently, we used LLPS to study the association between two proteins that are co-aggregated in Alzheimer's disease brain, tau, and EFhd2. Here, we describe how we used LLPS to determine the molecular components that contribute to the transition of these two proteins from liquid droplets to solid-like structures.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas tau/metabolismo
15.
J Exp Clin Cancer Res ; 42(1): 66, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932446

RESUMO

BACKGROUND: Altered microRNA profiles have been observed not only in tumour tissues but also in biofluids, where they circulate in a stable form thus representing interesting biomarker candidates. This study aimed to identify a microRNA signature as a non-invasive biomarker and to investigate its impact on glioma biology. METHODS: MicroRNAs were selected using a global expression profile in preoperative serum samples from 37 glioma patients. Comparison between serum samples from age and gender-matched controls was performed by using the droplet digital PCR. The ROC curve and Kaplan-Meier survival analyses were used to evaluate the diagnostic/prognostic values. The functional role of the identified signature was assessed by gain/loss of function strategies in glioma cells. RESULTS: A three-microRNA signature (miR-1-3p/-26a-1-3p/-487b-3p) was differentially expressed in the serum of patients according to the isocitrate dehydrogenase (IDH) genes mutation status and correlated with both patient Overall and Progression Free Survival. The identified signature was also downregulated in the serum of patients compared to controls. Consistent with these results, the signature expression and release in the conditioned medium of glioma cells was lower in IDH-wild type cells compared to the mutated counterpart. Furthermore, in silico analysis of glioma datasets showed a consistent deregulation of the signature according to the IDH mutation status in glioma tumour tissues. Ectopic expression of the signature negatively affects several glioma functions. Notably, it impacts the glioma invasive phenotype by directly targeting the invadopodia-related proteins TKS4, TKS5 and EFHD2. CONCLUSIONS: We identified a three microRNA signature as a promising complementary or even an independent non-invasive diagnostic/prognostic biomarker. The signature displays oncosuppressive functions in glioma cells and impacts on proteins crucial for migration and invasion, providing potential targets for therapeutic intervention.


Assuntos
Neoplasias Encefálicas , MicroRNA Circulante , Glioma , MicroRNAs , Humanos , Neoplasias Encefálicas/patologia , Biomarcadores Tumorais/genética , Glioma/patologia , MicroRNAs/genética , Prognóstico , Isocitrato Desidrogenase/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação ao Cálcio
16.
Front Cell Dev Biol ; 11: 1171930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025173

RESUMO

The actin cytoskeleton represents a highly dynamic filament system providing cell structure and mechanical forces to drive a variety of cellular processes. The dynamics of the actin cytoskeleton are controlled by a number of conserved proteins that maintain the pool of actin monomers, promote actin nucleation, restrict the length of actin filaments and cross-link filaments into networks or bundles. Previous work has been established that cytoplasmic calcium is an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood. Here, we summarize new recent perspectives on how calcium fluxes are transduced to the actin cytoskeleton in a physiological context. In this mini-review we will focus on three calcium-binding EF-hand-containing actin cross-linking proteins, α-actinin, plastin and EFHD2/Swiprosin-1, and how these conserved proteins affect the cell's actin reorganization in the context of cell migration and wound closure in response to calcium.

17.
Redox Biol ; 34: 101571, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32446175

RESUMO

Recurrence and metastasis remain the major cause of cancer mortality. Even for early-stage lung cancer, adjuvant chemotherapy yields merely slight increase to patient survival. EF-hand domain-containing protein D2 (EFHD2) has recently been implicated in recurrence of patients with stage I lung adenocarcinoma. In this study, we investigated the correlation between EFHD2 and chemoresistance in non-small cell lung cancer (NSCLC). High expression of EFHD2 was significantly associated with poor overall survival of NSCLC patients with chemotherapy in in silica analysis. Ectopic EFHD2 overexpression increased cisplatin resistance, whereas EFHD2 knockdown improved chemoresponse. Mechanistically, EFHD2 induced the production of NADPH oxidase 4 (NOX4) and in turn the increase of intracellular reactive oxygen species (ROS), consequently activating membrane expression of the ATP-binding cassette subfamily C member 1 (ABCC1) for drug efflux. Non-steroidal anti-inflammatory drug (NSAID) ibuprofen suppressed EFHD2 expression by leading to the proteasomal and lysosomal degradation of EFHD2 through a cyclooxygenase (COX)-independent mechanism. Combining ibuprofen with cisplatin enhanced antitumor responsiveness in a murine xenograft model in comparison with the individual treatment. In conclusion, we demonstrate that EFHD2 promotes chemoresistance through the NOX4-ROS-ABCC1 axis and therefore developing EFHD2-targeting strategies may offer a new avenue to improve adjuvant chemotherapy of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Proteínas de Ligação ao Cálcio , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
18.
J Int Med Res ; 48(6): 300060520932801, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32567430

RESUMO

OBJECTIVE: Schizophrenia is a severe neurodevelopmental disorder with a complex genetic and environmental etiology. The gene encoding EF-hand domain-containing protein D2 (EFHD2) may be a genetic risk locus for schizophrenia. METHODS: We genotyped four EFHD2 single-nucleotide polymorphisms (281 schizophrenia cases [SCZ], 321 controls) from northern Chinese Han individuals using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism analysis. Differences existed in genotype, allele, and haplotype frequency distributions between SCZ and control groups. RESULTS: The rs2473357 genotype and allele frequency distributions differed between SCZ and controls; however, this difference disappeared after Bonferroni correction. Differences in rs2473357 genotype and allele frequency distributions between SCZ and controls were more pronounced in men than in women. The G allele increased schizophrenia risk (odds ratio = 1.807, 95% confidence interval = 1.164-2.803). Among six haplotypes (G-, A-, G-insC, A-C, G-C, and G-T), the G- haplotype frequency distribution differed between SCZ and controls in women; the A-C and G-C haplotype frequency distributions differed between SCZ and controls in men. CONCLUSIONS: EFHD2 may be involved in schizophrenia. Sex differences in EFHD2 genotype and allele frequency distributions existed among schizophrenia patients. Further research is needed to determine the role of EFHD2 in schizophrenia.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Esquizofrenia/genética , Adulto , Alelos , Povo Asiático/genética , Proteínas de Ligação ao Cálcio/metabolismo , Estudos de Casos e Controles , China , Etnicidade/genética , Feminino , Frequência do Gene/genética , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Genótipo , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética
19.
Cell Rep ; 32(6): 108030, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783949

RESUMO

Plasma cells secreting affinity-matured antibodies develop in germinal centers (GCs), where B cells migrate persistently and directionally over defined periods of time. How modes of GC B cell migration influence plasma cell development remained unclear. Through genetic deletion of the F-actin bundling protein Swiprosin-1/EF-hand domain family member 2 (EFhd2) and by two-photon microscopy, we show that EFhd2 restrains B cell speed in GCs and hapten-specific plasma cell output. Modeling the GC reaction reveals that increasing GC B cell speed promotes plasma cell generation. Lack of EFhd2 also reduces contacts of GC B cells with follicular dendritic cells in vivo. Computational modeling uncovers that both GC output and antibody affinity depend quantitatively on contacts of GC B cells with follicular dendritic cells when B cells migrate more persistently. Collectively, our data explain how GC B cells integrate speed and persistence of cell migration with B cell receptor affinity.


Assuntos
Linfócitos B/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Células Dendríticas Foliculares/imunologia , Centro Germinativo/imunologia , Plasmócitos/imunologia , Animais , Proteínas de Ligação ao Cálcio/deficiência , Diferenciação Celular , Movimento Celular/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 de Elongação de Peptídeos
20.
Methods Mol Biol ; 1929: 607-613, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30710300

RESUMO

Calcium and calcium-binding proteins play crucial roles in the regulation of actin dynamics, which contributes to cancer cell migration and invasion. In this chapter, we have focused on a three-dimensional imaging method to explore the pathophysiological function of EF-hand domain-containing protein D2 (EFHD2), a novel actin-binding protein. To overcome the limitations of two-dimensional imaging on substrate-coated cover glass for examination of invasive protrusions of cancer cells, we suggest three-dimensional reconstruction from optical z-sections of cells cultured on substrate-impregnated membrane filters of Transwell.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Técnicas de Cultura de Células/métodos , Imageamento Tridimensional/métodos , Melanoma/metabolismo , Podossomos/metabolismo , Actinas/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Movimento Celular , Humanos , Camundongos , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA