Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.348
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 114, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978121

RESUMO

The protein Bcl-2, well-known for its anti-apoptotic properties, has been implicated in cancer pathogenesis. Identifying the primary gene responsible for promoting improved cell survival and development has provided compelling evidence for preventing cellular death in the progression of malignancies. Numerous research studies have provided evidence that the abundance of Bcl-2 is higher in malignant cells, suggesting that suppressing Bcl-2 expression could be a viable therapeutic approach for cancer treatment. In this study, we acquired a compound collection using a database that includes constituents from Traditional Chinese Medicine (TCM). Initially, we established a pharmacophore model and utilized it to search the TCM database for potential compounds. Compounds with a fitness score exceeding 0.75 were selected for further analysis. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis identified six compounds with favorable therapeutic characteristics. The compounds that successfully passed the initial screening process based on the pharmacodynamic model were subjected to further evaluation. Extra-precision (XP) docking was employed to identify the compounds with the most favorable XP docking scores. Further analysis using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method to calculate the overall free binding energy. The binding energy between the prospective ligand molecule and the target protein Bcl-2 was assessed by a 100 ns molecular dynamics simulation for curcumin and Epigallocatechin gallate (EGCG). The findings of this investigation demonstrate the identification of a molecular structure that effectively inhibits the functionality of the Bcl-2 when bound to the ligand EGCG. Consequently, this finding presents a novel avenue for the development of pharmaceuticals capable of effectively addressing both inflammatory and tumorous conditions.


Assuntos
Catequina , Curcumina , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2 , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Catequina/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Humanos , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Ligação Proteica , Farmacóforo
2.
Cancer Cell Int ; 24(1): 200, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840243

RESUMO

Ferroptosis, an iron-dependent regulated cell death mechanism, holds significant promise as a therapeutic strategy in oncology. In the current study, we explored the regulatory effects of epigallocatechin gallate (EGCG), a prominent polyphenol in green tea, on ferroptosis and its potential therapeutic implications for non-small cell lung cancer (NSCLC). Treatment of NSCLC cell lines with varying concentrations of EGCG resulted in a notable suppression of cell proliferation, as evidenced by a reduction in Ki67 immunofluorescence staining. Western blot analyses demonstrated that EGCG treatment led to a decrease in the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) while increasing the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4). These molecular changes were accompanied by an increase in intracellular iron, malondialdehyde (MDA), and reactive oxygen species (ROS), alongside ultrastructural alterations characteristic of ferroptosis. Through small RNA sequencing and RT-qPCR, transfer RNA-derived small RNA 13502 (tsRNA-13502) was identified as a significant target of EGCG action, with its expression being upregulated in NSCLC tissues compared to adjacent non-tumorous tissues. EGCG was found to modulate the ferroptosis pathway by downregulating tsRNA-13502 and altering the expression of key ferroptosis regulators (GPX4/SLC7A11 and ACSL4), thereby promoting the accumulation of iron, MDA, and ROS, and ultimately inducing ferroptosis in NSCLC cells. This study elucidates EGCG's multifaceted mechanisms of action, underscoring the modulation of ferroptosis as a viable therapeutic approach for enhancing NSCLC treatment outcomes.

3.
Mol Cell Biochem ; 479(4): 963-973, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37266748

RESUMO

Decompensated cardiac hypertrophy is accompanied by impaired mitochondrial homeostasis, whether histone acetylation is involved in this process is yet to be determined. The role of HDAC1-mediated NRF1 histone deacetylation was investigated in transverse aortic constriction (TAC)-induced hypertrophy in rats and phenylephrine (PE)-induced hypertrophic cardiomyocytes. Administration of epigallocatechin-3-gallate (EGCG), an inhibitor of HDAC1, restored cardiac function, decreased heart/body weight and fibrosis, increased the ratio of mtDNA/nDNA and the percentage of LysoTracker+ CMs in TAC, compared with TAC without receiving EGCG. In PE-treated hypertrophic H9C2 cells, EGCG attenuated cell hypertrophy and increased LC3B II+MitoTracker+ puncta, as well as the ratio of mtDNA/nDNA. Interestingly, NRF1 but not PGC-1α expression was decreased in TAC- or PE-induced hypertrophic hearts or cells, respectively, while EGCG upregulated both NRF1 and PGC-1α in vitro. EGCG treatment also increased the interaction between PGC-1α and NRF1. In addition to inhibiting HDAC1 expression, EGCG decreased the binding of HDAC1 and increased the binding of acH3K9 or acH3K14 in the promotor regions of PGC-1α and NRF1. In neonatal rat cardiomyocytes, restored NRF1, TFAM and FUNDC1 were abolished by the overexpression of HDAC1. Collectively, data suggest that NRF1 reduction was averted by EGCG via inhibiting HDAC1-mediated histone deacetylation. Acetylation of NRF1 histone may play a key role in maintaining mitochondrial homeostasis associated with cardiac hypertrophy.


Assuntos
Cardiomegalia , Catequina/análogos & derivados , Histonas , Ratos , Animais , Histonas/metabolismo , Cardiomegalia/metabolismo , DNA Mitocondrial , Homeostase , Miócitos Cardíacos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
4.
Bioorg Chem ; 150: 107493, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38870703

RESUMO

2. This research investigates the impact of the EGCG-CSH/n-HA/CMC composite material on bone defect repair, emphasizing its influence on macrophage polarization and osteogenic differentiation of BMSCs. Comprehensive evaluations of the composite's physical and chemical characteristics were performed. BMSC response to the material was tested in vitro for proliferation, migration, and osteogenic potential. An SD rat model was employed for in vivo assessments of bone repair efficacy. Both transcriptional and proteomic analyses were utilized to delineate the mechanisms influencing macrophage behavior and stem cell differentiation. The material maintained excellent structural integrity and significantly promoted BMSC functions critical to bone healing. In vivo results confirmed accelerated bone repair, and molecular analysis highlighted the role of macrophage M2 polarization, particularly through changes in the SIRPA gene and protein expression. EGCG-CSH/n-HA/CMC plays a significant role in enhancing bone repair, with implications for macrophage and BMSC function. Our findings suggest that targeting SIRPA may offer new therapeutic opportunities for bone regeneration.

5.
Biol Pharm Bull ; 47(2): 509-517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38403661

RESUMO

(-)-Epigallocatechin-3-gallate (EGCg), a major constituent of green tea extract, is well-known to exhibit many beneficial actions for human health by interacting with numerous proteins. In this study we identified synaptic vesicle membrane protein VAT-1 homolog (VAT1) as a novel EGCg-binding protein in human neuroglioma cell extracts using a magnetic pull-down assay and LC-tandem mass spectrometry. We prepared recombinant human VAT1 and analyzed its direct binding to EGCg and its alkylated derivatives using surface plasmon resonance. For EGCg and the derivative NUP-15, we measured an association constant of 0.02-0.85 ×103 M-1s-1 and a dissociation constant of nearly 8 × 10-4 s-1. The affinity Km(affinity) of their binding to VAT1 was in the 10-20 µM range and comparable with that of other EGCg-binding proteins reported previously. Based on the common structure of the compounds, VAT1 appeared to recognize a catechol or pyrogallol moiety around the B-, C- and G-rings of EGCg. Next, we examined whether VAT1 mediates the effects of EGCg and NUP-15 on expression of neprilysin (NEP). Treatments of mock cells with these compounds upregulated NEP, as observed previously, whereas no effect was observed in the VAT1-overexpressing cells, indicating that VAT1 prevented the effects of EGCg or NUP-15 by binding to and inactivating them in the cells overexpressing VAT1. Further investigation is required to determine the biological significance of the VAT1-EGCg interaction.


Assuntos
Catequina , Proteínas de Transporte Vesicular , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Chá/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
J Nanobiotechnology ; 22(1): 90, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439048

RESUMO

Immune checkpoint inhibitor (ICI)-derived evolution offers a versatile means of developing novel immunotherapies that targets programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) axis. However, one major challenge is T cell exhaustion, which contributes to low response rates in "cold" tumors. Herein, we introduce a fluorinated assembly system of LFNPs/siTOX complexes consisting of fluorinated EGCG (FEGCG), fluorinated aminolauric acid (LA), and fluorinated polyethylene glycol (PEG) to efficiently deliver small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) for synergistic tumor cells and exhausted T cells regulation. Using a microfluidic approach, a library of LFNPs/siTOX complexes were prepared by altering the placement of the hydrophobe (LA), the surface PEGylation density, and the siTOX ratio. Among the different formulations tested, the lead formulation, LFNPs3-3/siTOX complexes, demonstrated enhanced siRNA complexation, sensitive drug release, improved stability and delivery efficacy, and acceptable biosafety. Upon administration by the intravenous injection, this formulation was able to evoke a robust immune response by inhibiting PD-L1 expression and mitigating T cell exhaustion. Overall, this study provides valuable insights into the fluorinated assembly and concomitant optimization of the EGCG-based delivery system. Furthermore, it offers a promising strategy for cancer immunotherapy, highlighting its potential in improving response rates in ''cold'' tumors.


Assuntos
Nanopartículas , Neoplasias , Linfócitos T , Antígeno B7-H1 , Ligantes , Microfluídica , Imunoterapia , Neoplasias/tratamento farmacológico
7.
Clin Exp Nephrol ; 28(2): 136-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847436

RESUMO

BACKGROUND: Burn patients often face a high risk of acute kidney injury (AKI) after severe burn injuries, meanwhile epigallocatechin-3-gallate (EGCG) has been proven to be effective in alleviating organ injury. METHODS: This study used the classical burn model in rats. Thirty model rats were randomly divided into a Burn group, a Burn + placebo group, a Burn + EGCG (50 mg/kg) group, and ten non-model rats as Sham group. The urinary excretion of the rats was subsequently monitored for a period of 48 h. After 48 h of different treatments, rat serum and kidneys were taken for the further verification. The efficacy of EGCG was assessed in pathological sections, biochemical indexes, and at the molecular level. RESULTS: Pathological sections were compared between the Burn group and Burn + placebo group. The rats in the Burn + EGCG group had less kidney damage. Moreover, the EGCG group maintained significantly elevated urine volumes, biochemical indexes manifested that EGCG could reduce serum creatinine (Cr) and neutrophil gelatinase-associated lipocalin (NGAL) level and inhibit the oxidation-related enzyme malondialdehyde (MDA) level, meanwhile the superoxide dismutase (SOD) level was increased. The molecular level showed that EGCG significantly reduced the mRNA expression levels of the inflammation-related molecules interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). CONCLUSION: The research indicated that EGCG had an alleviating effect on kidney injury in severely burned rats, and its alleviating effects were related to improving kidney functions, alleviating oxidative stress, and inhibiting the expression of inflammatory factors.


Assuntos
Injúria Renal Aguda , Queimaduras , Catequina , Humanos , Ratos , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Rim/patologia , Catequina/farmacologia , Catequina/uso terapêutico , Catequina/metabolismo , Fator de Necrose Tumoral alfa , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo
8.
Ecotoxicol Environ Saf ; 280: 116520, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833985

RESUMO

Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5 mg kg-1) for four weeks. Through 16 S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20 mg kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1 µg/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.


Assuntos
Cádmio , Catequina , Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Triptofano , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Triptofano/metabolismo , Triptofano/análogos & derivados , Cádmio/toxicidade , Transdução de Sinais/efeitos dos fármacos , Masculino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Indóis/farmacologia , Carbazóis/farmacologia
9.
Luminescence ; 39(3): e4727, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527806

RESUMO

Green tea extract (GTE) contains antioxidants that are present in green tea. The active constituents of green tea extract are catechins. This study demonstrates a spectrofluorimetric method for measuring GTE's catechin concentration based on its native fluorescence. To design a quick, sensitive, and ecological spectrofluorimetric approach, all features were investigated and adjusted. This method relies on determining the GTE ethanolic solution's native fluorescence at 312 nm after excitation at 227 nm. The calibration graph displayed a linear regression for values between 0.05 and 1.0 µg mL-1. The detection and quantification limits of the proposed technique were 0.008 and 0.026 µg mL-1, respectively. Two pure catechins present in GTE, (-)-epicatechin and (-)-epigallocatechin gallate, were examined by the proposed method. The analytical estimation of GTE in the pharmaceutical tablet was achieved effectively using this approach. An adequate degree of agreement was found when the findings were compared to those obtained by the comparative technique. Therefore, the novel strategy may be used in the GTE quality control study with minimal risks to people or the environment. The quantum yields of catechins were estimated. The validated technique was accepted by the International Council of Harmonization criteria.


Assuntos
Camellia sinensis , Catequina , Humanos , Catequina/análise , Espectrometria de Fluorescência , Extratos Vegetais , Chá , Antioxidantes/análise
10.
Phytother Res ; 38(2): 1013-1027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38140774

RESUMO

Type 2 diabetes (T2D) is a metabolic disorder that causes numerous complications including impaired wound healing and poses a significant challenge for the management of diabetic patients. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol that exhibits anti-inflammatory and anti-oxidative benefits in skin wounds, however, the direct effect of EGCG on epidermal keratinocytes, the primary cells required for re-epithelialization in wound healing remains unknown. Our study aims to examine the underlying mechanisms of EGCG's ability to promote re-epithelialization and wound healing in T2D-induced wounds. Murine models of wound healing in T2D were established via feeding high-fat high-fructose diet (HFFD) and the creation of full-thickness wounds. Mice were administered daily with EGCG or vehicle to examine the wound healing response and underlying molecular mechanisms of EGCG's protective effects. Systemic administration of EGCG in T2D mice robustly accelerated the wound healing response following injury. EGCG induced nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and promoted cytokeratin 16 (K16) expression to activate epidermal keratinocytes and robustly promoted re-epithelialization of wounds in diabetic mice. Further, EGCG demonstrated high binding affinity with Kelch-like ECH-associated protein 1 (KEAP1), thereby inhibiting KEAP1-mediated degradation of NRF2. Our findings provide important evidence that EGCG accelerates the wound healing response in diabetic mice by activating epidermal keratinocytes, thereby promoting re-epithelialization of wounds via K16/NRF2/KEAP1 signaling axis. These mechanistic insights into the protective effects of EGCG further suggest its therapeutic potential as a promising drug for treating chronic wounds in T2D.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Reepitelização , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Queratinócitos , Cicatrização
11.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732012

RESUMO

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Assuntos
Catequina , MicroRNAs , Neuroblastoma , Proteínas de Ligação a RNA , Catequina/análogos & derivados , Catequina/farmacologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
12.
Molecules ; 29(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893431

RESUMO

BACKGROUND: With the changes in lifestyle and diet structure, the incidence of obesity has increased year by year, and obesity is one of the inducements of many chronic metabolic diseases. Epigallocatechin gallate (EGCG), which is the most abundant component of tea polyphenols, has been used for many years to improve obesity and its complications. Though it has been reported that EGCG can improve obesity through many molecular mechanisms, EGCG may have many mechanisms yet to be explored. In this study, we explored other possible mechanisms through molecular docking and in vitro experiments. METHODS: AutoDock Vina was selected for conducting the molecular docking analysis to elucidate the interaction between EGCG and Notch1, while molecular dynamics simulations were employed to validate this interaction. Then, the new regulation mechanism of EGCG on obesity was verified with in vitro experiments, including a Western blot experiment, immunofluorescence experiment, oil red O staining, and other experiments in 3T3-L1 adipocytes. RESULTS: The molecular docking results showed that EGCG could bind to Notch1 protein through hydrogen bonding. In vitro cell experiments demonstrated that EGCG can significantly reduce the sizes of lipid droplets of 3T3-L1 adipocytes and promote UCP-1 expression by inhibiting the expression of Notch1 in 3T3-L1 adipocytes, thus promoting mitochondrial biogenesis. CONCLUSIONS: In this study, molecular docking and in vitro cell experiments were used to explore the possible mechanism of EGCG to improve obesity by inhibiting Notch1.


Assuntos
Adipogenia , Catequina , Simulação de Acoplamento Molecular , Receptor Notch1 , Animais , Camundongos , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Regulação da Expressão Gênica/efeitos dos fármacos , Simulação de Dinâmica Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptor Notch1/metabolismo , Proteína Desacopladora 1/metabolismo
13.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543009

RESUMO

Epigallocatechin gallate (EGCG) is a catechin, which is a type of flavonoid found in high concentrations in green tea. EGCG has been studied extensively for its potential health benefits, particularly in cancer. EGCG has been found to exhibit anti-proliferative, anti-angiogenic, and pro-apoptotic effects in numerous cancer cell lines and animal models. EGCG has demonstrated the ability to interrupt various signaling pathways associated with cellular proliferation and division in different cancer types. EGCG anticancer activity is mediated by interfering with various cancer hallmarks. This article summarize and highlight the effects of EGCG on cancer hallmarks and focused on the impacts of EGCG on these cancer-related hallmarks. The studies discussed in this review enrich the understanding of EGCG's potential as a therapeutic tool against cancer, offering a substantial foundation for scientists and medical experts to advance scientific and clinical investigations regarding EGCG's possibility as a potential anticancer treatment.


Assuntos
Catequina , Catequina/análogos & derivados , Neoplasias , Animais , Catequina/farmacologia , Catequina/uso terapêutico , Neoplasias/tratamento farmacológico , Proliferação de Células , Transdução de Sinais , Chá
14.
J Sci Food Agric ; 104(4): 2484-2492, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972116

RESUMO

BACKGROUND: It is well known that hemp proteins have the disadvantages of poor solubility and poor emulsification. To improve these shortcomings, an alkali covalent cross-linking method was used to prepare hemp protein isolate-epigallocatechin-3-gallate biopolymer (HPI-EGCG) and the effects of different heat treatment conditions on the structure and emulsifying properties of the HPI-EGCG covalent complex were studied. RESULTS: The secondary and tertiary structures, solubility, and emulsification ability of the HPI-EGCG complexes were evaluated using particle size, zeta potential, circular dichroism (CD), and fluorescence spectroscopy indices. The results showed that the absolute value of zeta potential of HPI-EGCG covalent complex was the largest, 18.6 mV, and the maximum binding amount of HPI to EGCG was 29.18 µmol g-1 . Under heat treatment at 25-35 °C, the α-helix content was reduced from 1.87% to 0%, and the ß-helix content was reduced from 82.79% to 0% after the covalent binding of HPI and EGCG. The solubility and emulsification properties of the HPI-EGCG covalent complexes were improved significantly, and the emulsification activity index (EAI) and emulsion stability index (ESI) were increased by 2.77-fold and 1.21-fold, respectively. CONCLUSION: A new HPI-EGCG covalent complex was developed in this study to provide a theoretical basis for the application of HPI-EGCG in food industry. © 2023 Society of Chemical Industry.


Assuntos
Cannabis , Catequina , Catequina/análogos & derivados , Cannabis/química , Calefação , Antioxidantes/química , Catequina/química , Biopolímeros
15.
J Sci Food Agric ; 104(10): 6127-6138, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442023

RESUMO

BACKGROUND: Wheat proteins can be divided into water/salt-soluble protein (albumin/globulin) and water/salt-insoluble protein (gliadins and glutenins (Glu)) according to solubility. Gliadins (Glia) are one of the major allergens in wheat. The inhibition of Glia antigenicity by conventional processing techniques was not satisfactory. RESULTS: In this study, free radical oxidation was used to induce covalent reactions. The effects of covalent reactions by high-intensity ultrasound (HIU) of different powers was compared. The enhancement of covalent grafting effectiveness between gliadin and (-)-epigallo-catechin 3-gallate (EGCG) was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry and Folin-Ciocalteu tests. HIU caused protein deconvolution and disrupted the intrastrand disulfide bonds that maintain the tertiary structure, causing a shift in the side chain structure, as proved by Fourier, fluorescence and Raman spectroscopic analysis. Comparatively, the antigenic response of the conjugates formed in the sonication environment was significantly weaker, while these conjugates were more readily hydrolyzed and less antigenic during simulated gastrointestinal fluid digestion. CONCLUSION: HIU-enhanced free radical oxidation caused further transformation of the spatial structure of Glia, which hid or destroyed the antigenic epitope, effectively inhibiting protein antigenicity. This study widened the application of polyphenol modification in the inhibition of wheat allergens. © 2024 Society of Chemical Industry.


Assuntos
Gliadina , Triticum , Gliadina/química , Gliadina/imunologia , Triticum/química , Triticum/imunologia , Oxirredução , Humanos , Alérgenos/química , Alérgenos/imunologia , Ultrassom
16.
J Sci Food Agric ; 104(11): 6649-6656, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38529727

RESUMO

BACKGROUND: The present study aimed to investigate the cryoprotective effect of epigallocatechin gallate (EGCG) replacing sucrose on surimi during frozen storage. Substitution or partial substitution of 0.1% EGCG for sucrose (1.5%) was added to surimi, and the surimi samples without and with commercial cryoprotectants (4% sucrose and 4% sorbitol) were used as the control group. RESULTS: The results obtained suggest that, with the increase in frozen storage time, the structural performance of surimi protein gradually weakened (e.g. the decrease in the surface hydrophobicity, the increase in the total sulfhydryl and solubility, and the protein myosin heavy chain bands became shallow) and surimi gel quality gradually deteriorated (e.g. the decrease in water-holding capacity, gel strength and all texture profile attributes). However, compared with the other three group surimi samples during the frozen period, the surimi proteins with partial replacement of sucrose by EGCG had a higher total sulfhydryl group content and solubility of proteins, as well as lower surface hydrophobicity of protein, suggesting that the addition of EGCG as a partial substitute for sucrose can enhance the antifreeze ability of surimi. Meanwhile, the surimi gel with the partial replacement of sucrose by EGCG had a higher water retention capacity, gel strength and texture attributes (e.g. hardness, springiness, cohesiveness, chewiness, and resilience), indicating that the addition of EGCG as a partial substitute for sucrose can inhibit the deterioration of surimi gel quality. CONCLUSION: Overall, EGCG partially replacing sucrose can play an alternative cryoprotectant with a lower sweetness to prevent the quality of surimi from deteriorating. © 2024 Society of Chemical Industry.


Assuntos
Catequina , Crioprotetores , Produtos Pesqueiros , Conservação de Alimentos , Armazenamento de Alimentos , Congelamento , Sacarose , Crioprotetores/química , Crioprotetores/farmacologia , Catequina/análogos & derivados , Catequina/química , Animais , Produtos Pesqueiros/análise , Sacarose/química , Conservação de Alimentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Solubilidade
17.
J Sci Food Agric ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895880

RESUMO

BACKGROUND: Recent studies have shown that the wettability of protein-based emulsifiers is critical for emulsion stability. However, few studies have been conducted to investigate the effects of varying epigallocatechin gallate (EGCG) concentrations on the wettability of protein-based emulsifiers. Additionally, limited studies have examined the effectiveness of soy protein-EGCG covalent complex nanoparticles with improved wettability as emulsifiers for stabilizing high-oil-phase (≥ 30%) curcumin emulsions. RESULTS: Soy protein isolate (SPI)-EGCG complex nanoparticles (SPIEn) with improved wettability were fabricated to stabilize high-oil-phase curcumin emulsions. The results showed that EGCG forms covalent bonds with SPI, which changes its secondary structure, enhances its surface charge, and improves its wettability. Moreover, SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) exhibited a better three-phase contact angle (56.8 ± 0.3o) and zeta potential (-27 mV) than SPI. SPIEn-2.0 also facilitated the development of curcumin emulsion gels at an oil volume fraction of 0.5. Specifically, the enhanced network between droplets as a result of the packing effects and SPIEn-2.0 with inherent antioxidant function was more effective at inhibiting curcumin degradation during long-term storage and ultraviolet light exposure. CONCLUSION: The results of the present study indicate that SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) comprises the optimum conditions for fabricating emulsifiers with improved wettability. Additionally, SPIEn-0.2 can improve the physicochemical stability of high-oil-phase curcumin emulsions, suggesting a novel strategy to design and fabricate high-oil-phase emulsion for encapsulating bioactive compounds. © 2024 Society of Chemical Industry.

18.
J Sci Food Agric ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873964

RESUMO

BACKGROUND: Chronic excessive alcohol consumption can lead to alcoholic fatty liver, posing substantial health risks. l-Theanine (LTA) and epigallocatechin gallate (EGCG) in tea exert antioxidant and hepatoprotective effects. However, the combined effects of LTA and EGCG on rats with alcoholic fatty liver, and the underlying mechanisms of such effects, remain unclear. In this study, Sprague Dawley (SD) rats were fed with alcohol for 6 weeks to induce alcoholic fatty liver. Subsequently, for another 6 weeks, the rats were administered LTA (200 mg kg-1 day-1), EGCG (200 mg kg-1 day-1), or a combination of LTA with EGCG (40 mg kg-1 day-1 l-Thea +160 mg kg-1 day-1 EGCG), respectively. RESULTS: The combined use of LTA and EGCG for alcoholic fatty liver disease had more significant effects than their individual administration. This combination reduced the activity of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as well as the levels of hepatic triglyceride (TG), malondialdehyde (MDA), and reactive oxygen species (ROS) in the rats. The combined intervention also increased hepatic superoxide dismutase (SOD) and glutathione peroxidase activity. Reductions in hepatic fat accumulation and inflammatory responses were observed. The mechanism underlying these effects primarily involved the inhibition of fatty acid synthesis and the alleviation of lipid peroxidation through the downregulation of the mRNA and protein expression of TNF-α, SREBP1c, and CYP2E1 and the upregulation of the mRNA and protein expression of ADH1, ALDH2, Lipin-1, PPARαPPARα, AMPK, and PGC-1α, thereby promoting the oxidative decomposition of fatty acids and reducing the synthesis of cholesterol and glucose. CONCLUSION: l-Theanine and EGCG appear to be able to alleviate alcoholic fatty liver by modulating lipid metabolism and ameliorating oxidative stress, indicating their potential as natural active ingredients in anti-alcoholic fatty liver food products. © 2024 Society of Chemical Industry.

19.
J Tissue Viability ; 33(1): 18-26, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042701

RESUMO

Diabetic wounds, as one of the most important complications of diabetes, face many challenges in treatment. Herein we investigated whether decellularized human amniotic membrane (dAM) loaded with epigallocatechin-3-gallate (EGCG) could promote healing in diabetic rats. Sixty diabetic rats were randomly planned into the untreated group, dAM group, EGCG group, and dAM + EGCG group. On days 7, 14, and 21, five rats from each group were sampled for stereological, molecular, and tensiometrical assessments. Our finding revealed that the wound closure rate, the total volumes of new epidermis and dermis, the numerical densities of fibroblasts, blood vessels, collagen density as well as tensiometrical parameters of the healed wounds were considerably increased in the treated groups than in the untreated group, and these changes were more obvious in the dAM + EGCG ones. Furthermore, the expression of TGF-ß, bFGF, and VEGF genes were significantly upregulated in all treated groups compared to the untreated group and were greater in the dAM + EGCG group. This is while expression of TNF-α and IL-1ß, as well as cell numerical densities of neutrophils and macrophages decreased more considerably in the dAM + EGCG group in comparison to the other groups. In conclusion, it was found that using both dAM transplantation and EGCG has more effect on diabetic wound healing.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Experimental , Humanos , Ratos , Animais , Diabetes Mellitus Experimental/complicações , Âmnio/metabolismo , Cicatrização , Colágeno/farmacologia
20.
Bull Exp Biol Med ; 177(1): 88-92, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38960956

RESUMO

We studied antimicrobial activity of epigallocatechin-3-gallate (EGCG), a green tea polyphenolic catechin, and its combined use with ceftazidime (CAZ) against bacterial strains of Klebsiella pneumoniae. EGCG exhibited no activity against strains of K. pneumoniae with a different sensitivity to CAZ. However, for a "sensitive" strain, a decrease in minimum inhibitory concentration (MIC) of CAZ (from 0.064 to 0.023 mg/liter) was revealed when CAZ was co-administered with EGCG. For a "resistant" stain, MIC of CAZ remained high, but activation of EGCG at its high concentrations was observed. Indirect evidence of antimicrobial effect of EGCG co-administered with CAZ on Klebsiella was obtained.


Assuntos
Antibacterianos , Catequina , Ceftazidima , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Klebsiella pneumoniae/efeitos dos fármacos , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA