Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 241(5): 2075-2089, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095260

RESUMO

Nuclear-cytoplasmic trafficking is crucial for protein synthesis in eukaryotic cells due to the spatial separation of transcription and translation by the nuclear envelope. However, the mechanism underlying this process remains largely unknown in plants. In this study, we isolated a maize (Zea mays) mutant designated developmentally delayed kernel 1 (ddk1), which exhibits delayed seed development and slower filling. Ddk1 encodes a plant-specific protein known as Importin-4 ß, and its mutation results in reduced 80S monosomes and suppressed protein synthesis. Through our investigations, we found that DDK1 interacts with eIF1A proteins in vivo. However, in vitro experiments revealed that this interaction exhibits low affinity in the absence of RanGTP. Additionally, while the eIF1A protein primarily localizes to the cytoplasm in the wild-type, it remains significantly retained within the nuclei of ddk1 mutants. These observations suggest that DDK1 functions as an exportin and collaborates with RanGTP to facilitate the nuclear export of eIF1A, consequently regulating endosperm development at the translational level. Importantly, both DDK1 and eIF1A are conserved among various plant species, implying the preservation of this regulatory module across diverse plants.


Assuntos
Sementes , Zea mays , Transporte Ativo do Núcleo Celular , Zea mays/metabolismo , Sementes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Grão Comestível/metabolismo
2.
Trends Biochem Sci ; 44(12): 1009-1021, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31353284

RESUMO

Selection of the translation initiation site (TIS) is a crucial step during translation. In the 1980s Marylin Kozak performed key studies on vertebrate mRNAs to characterize the optimal TIS consensus sequence, the Kozak motif. Within this motif, conservation of nucleotides in crucial positions, namely a purine at -3 and a G at +4 (where the A of the AUG is numbered +1), is essential for TIS recognition. Ever since its characterization the Kozak motif has been regarded as the optimal sequence to initiate translation in all eukaryotes. We revisit here published in silico data on TIS consensus sequences, as well as experimental studies from diverse eukaryotic lineages, and propose that, while the -3A/G position is universally conserved, the remaining variability of the consensus sequences enables their classification as optimal, strong, and moderate TIS sequences.


Assuntos
Códon de Iniciação/fisiologia , Eucariotos/fisiologia , Motivos de Nucleotídeos , Iniciação Traducional da Cadeia Peptídica/fisiologia , RNA Mensageiro/metabolismo
3.
Mol Cell Proteomics ; 17(7): 1337-1353, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29666159

RESUMO

Importin 13 is a member of the importin ß family of transport receptors. Unlike most family members, importin 13 mediates both, nuclear protein import and export. To search for novel importin 13 cargoes, we used stable isotope labeling of amino acids in cell culture (SILAC) and mass spectrometry. Using stringent criteria, we identified 255 importin 13 substrates, including the known cargoes Ubc9, Mago and eIF1A, and validate many of them as transport cargoes by extensive biochemical and cell biological characterization. Several novel cargoes can also be transported by the export receptor CRM1, demonstrating a clear redundancy in receptor choice. Using importin 13 mutants, we show that many of the novel substrates contact regions on the transport receptor that are not used by Ubc9, Mago or eIF1A. Together, this study significantly expands the repertoire of importin 13 cargoes and sets the basis for a more detailed characterization of this extremely versatile transport receptor.


Assuntos
Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Células HeLa , Humanos , Marcação por Isótopo , Ligação Proteica , Proteômica , Receptores Citoplasmáticos e Nucleares/metabolismo , Reprodutibilidade dos Testes , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
4.
BMC Struct Biol ; 18(1): 11, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180896

RESUMO

BACKGROUND: Eukaryotic translation initiation factor 1A (eIF1A) is universally conserved in all organisms. It has multiple functions in translation initiation, including assembly of the ribosomal pre-initiation complexes, mRNA binding, scanning, and ribosomal subunit joining. eIF1A binds directly to the small ribosomal subunit, as well as to several other translation initiation factors. The structure of an eIF1A homolog, the eIF1A domain-containing protein (eIF1AD) was recently determined but its biological functions are unknown. Since eIF1AD has a known structure, as well as a homolog, whose structure and functions have been extensively studied, it is a very attractive target for sequence and structure analysis. RESULTS: Structure/sequence analysis of eIF1AD found significant conservation in the surfaces corresponding to the ribosome-binding surfaces of its paralog eIF1A, including a nearly invariant surface-exposed tryptophan residue, which plays an important role in the interaction of eIF1A with the ribosome. These results indicate that eIF1AD may bind to the ribosome, similar to its paralog eIF1A, and could have roles in ribosome biogenenesis or regulation of translation. We identified conserved surfaces and sequence motifs in the folded domain as well as the C-terminal tail of eIF1AD, which are likely protein-protein interaction sites. The roles of these regions for eIF1AD function remain to be determined. We have also identified a set of trypanosomatid-specific surface determinants in eIF1A that could be a promising target for development of treatments against these parasites. CONCLUSIONS: The results described here identify regions in eIF1A and eIF1AD that are likely to play major functional roles and are promising therapeutic targets. Our findings and hypotheses will promote new research and help elucidate the functions of eIF1AD.


Assuntos
Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 1 em Eucariotos/genética , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Ribossomos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Fator de Iniciação 1 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Homologia de Sequência de Aminoácidos
5.
Int J Mol Sci ; 19(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551605

RESUMO

A variety of cellular stresses lead to global translation attenuation due to phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2), which decreases the availability of the eIF2-GTP-Met-tRNAi ternary complex. However, a subset of mRNAs continues to be translated by non-canonical mechanisms under these conditions. In fact, although translation initiation of activating transcription factor 4 (ATF4) is normally repressed by an upstream open reading frame (uORF), a decreased availability of ternary complex leads to increased translation of the main ATF4-coding ORF. We show here that siRNA-mediated depletion of eIF5B-which can substitute for eIF2 in delivering Met-tRNAi-leads to increased levels of ATF4 protein in mammalian cells. This de-repression is not due to phosphorylation of eIF2α under conditions of eIF5B depletion. Although eIF5B depletion leads to a modest increase in the steady-state levels of ATF4 mRNA, we show by polysome profiling that the depletion of eIF5B enhances ATF4 expression primarily at the level of translation. Moreover, eIF5B silencing increases the expression of an ATF4-luciferase translational reporter by a mechanism requiring the repressive uORF2. Further experiments suggest that eIF5B cooperates with eIF1A and eIF5, but not eIF2A, to facilitate the uORF2-mediated repression of ATF4 translation.


Assuntos
Fator 4 Ativador da Transcrição/genética , Endonucleases/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Fatores de Iniciação de Peptídeos/genética , Fosforilação , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
6.
Development ; 141(20): 3910-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25231760

RESUMO

In Drosophila melanogaster, the anteroposterior (AP) and dorsoventral (DV) axes of the oocyte and future embryo are established through the localization and translational regulation of gurken (grk) mRNA. This process involves binding of specific factors to the RNA during transport and a dynamic remodeling of the grk-containing ribonucleoprotein (RNP) complexes once they have reached their destination within the oocyte. In ovaries of spindle-class females, an activated DNA damage checkpoint causes inefficient Grk translation and ventralization of the oocyte. In a screen for modifiers of the oocyte DV patterning defects, we identified a mutation in the eIF1A gene as a dominant suppressor. We show that reducing the function of eIF1A in spnB ovaries suppresses the ventralized eggshell phenotype by restoring Grk expression. This suppression is not the result of more efficient DNA damage repair or of disrupted checkpoint activation, but is coupled to an increase in the amount of grk mRNA associated with polysomes. In spnB ovaries, the activated meiotic checkpoint blocks Grk translation by disrupting the accumulation of grk mRNA in a translationally competent RNP complex that contains the translational activator Oo18 RNA-binding protein (Orb); this regulation involves the translational repressor Squid (Sqd). We further propose that reduction of eIF1A allows more efficient Grk translation possibly because of the presence of specific structural features in the grk 5'UTR.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Fator de Iniciação 1 em Eucariotos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oogênese , Fator de Crescimento Transformador alfa/fisiologia , Animais , Dano ao DNA , Proteínas de Drosophila/metabolismo , Proteínas do Ovo/metabolismo , Fator de Iniciação 1 em Eucariotos/genética , Feminino , Genótipo , Masculino , Meiose , Mutação , Oócitos/citologia , Ovário/metabolismo , Fenótipo , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química
7.
J Biol Chem ; 289(46): 31827-31836, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25246524

RESUMO

The formation of a stable 43 S preinitiation complex (PIC) must occur to enable successful mRNA recruitment. However, the contributions of eIF1, eIF1A, eIF3, and the eIF2-GTP-Met-tRNAi ternary complex (TC) in stabilizing the 43 S PIC are poorly defined. We have reconstituted the human 43 S PIC and used fluorescence anisotropy to systematically measure the affinity of eIF1, eIF1A, and eIF3j in the presence of different combinations of 43 S PIC components. Our data reveal a complicated network of interactions that result in high affinity binding of all 43 S PIC components with the 40 S subunit. Human eIF1 and eIF1A bind cooperatively to the 40 S subunit, revealing an evolutionarily conserved interaction. Negative cooperativity is observed between the binding of eIF3j and the binding of eIF1, eIF1A, and TC with the 40 S subunit. To overcome this, eIF3 dramatically increases the affinity of eIF1 and eIF3j for the 40 S subunit. Recruitment of TC also increases the affinity of eIF1 for the 40 S subunit, but this interaction has an important indirect role in increasing the affinity of eIF1A for the 40 S subunit. Together, our data provide a more complete thermodynamic framework of the human 43 S PIC and reveal important interactions between its components to maintain its stability.


Assuntos
Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/química , Guanosina Trifosfato/química , RNA de Transferência de Metionina/química , Anisotropia , Células HeLa , Humanos , Cinética , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Interferência de RNA , Subunidades Ribossômicas Menores de Eucariotos/química , Ribossomos/química , Espectrometria de Fluorescência , Termodinâmica
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3090-8, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25478828

RESUMO

eIF5B and eIF1A are two translation-initiation factors that are universally conserved among all kingdoms. They show a unique interaction in eukaryotes which is important for ribosomal subunit joining. Here, the structures of two isolated forms of yeast eIF5B and of the eIF5B-eIF1A complex (eIF1A and eIF5B do not contain the respective N-terminal domains) are reported. The eIF5B-eIF1A structure shows that the C-terminal tail of eIF1A binds to eIF5B domain IV, while the core domain of eIF1A is invisible in the electron-density map. Although the individual domains in all structures of eIF5B or archaeal IF5B (aIF5B) are similar, their domain arrangements are significantly different, indicating high structural flexibility, which is advantageous for conformational change during ribosomal subunit joining. Based on these structures, models of eIF5B, eIF1A and tRNAi(Met) on the 80S ribosome were built. The models suggest that the interaction between the eIF1A C-terminal tail and eIF5B helps tRNAi(Met) to bind to eIF5B domain IV, thus preventing tRNAi(Met) dissociation, stabilizing the interface for subunit joining and providing a checkpoint for correct ribosome assembly.


Assuntos
Fator de Iniciação 1 em Eucariotos/química , Fatores de Iniciação em Eucariotos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Cristalografia por Raios X , Fator de Iniciação 1 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Modelos Moleculares , Conformação Proteica , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Biochimie ; 217: 31-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36773835

RESUMO

In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. These two factors are also orthologous to the bacterial IF2 and IF1 proteins, respectively. Recent cryo-EM studies showed how e/aIF5B and e/aIF1A cooperate on the small ribosomal subunit to favor the binding of the large ribosomal subunit and the formation of a ribosome competent for elongation. In this review, pioneering studies and recent biochemical and structural results providing new insights into the role of a/eIF5B in archaea and eukaryotes will be presented. Recent structures will also be compared to orthologous bacterial initiation complexes to highlight domain-specific features and the evolution of initiation mechanisms.


Assuntos
Fator de Iniciação 1 em Eucariotos , Fatores de Iniciação de Peptídeos , Fator de Iniciação 1 em Eucariotos/análise , Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 1 em Eucariotos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/análise , Fatores de Iniciação de Peptídeos/química , Bactérias/metabolismo , Ribossomos/metabolismo
10.
FEBS J ; 291(10): 2191-2208, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431777

RESUMO

The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.


Assuntos
Fator de Iniciação 1 em Eucariotos , Higromicina B , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Núcleo Celular/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Higromicina B/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
11.
Transl Oncol ; 15(1): 101299, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34864402

RESUMO

EIF1A encodes a translation initiation factor in eukaryocyte and aberrant expression of EIF1A is deemed to be associated with dysfunctions in intracranial diseases. The goal of this research was to explore the impacts of EIF1A on progression of human pituitary adenoma (PA). We employed immunohistochemistry to assess the expression of EIF1A in PA and para-carcinoma tissues. After constructing EIF1A-knockdown cell models via lentivirus infection, we examined cell proliferation through CCK-8 assay and Celigo cell counting assay. Flow cytometry was utilized to detect cell apoptosis and the migration ability of experimental cells was estimated using wound-healing assay and Transwell assay. The activity of the apoptosis-related factor, Caspase 3, was also examined via Caspase 3 activity assay. Lastly, in vivo xenograft mouse models were established to verify findings derived from in vitro cell models. Our results affirmed upregulation of EIF1A in PA cells and revealed that depletion of EIF1A could seriously limit cell proliferation and weaken the capacity of cell migration, and also enhance apoptosis of tumor cells. Mechanistically, degradation in cell growth mediated by EIF1A knockdown may involve in activation of MAPK signaling but inactivation of PI3K/AKT signaling pathway. This study indicates EIF1A plays a prominent role in facilitating tumor cell proliferation and migration which may further contribute to PA progression.

12.
Curr Res Struct Biol ; 4: 308-319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164648

RESUMO

Translation initiation in eukaryotes relies on a complex network of interactions that are continuously reorganized throughout the process. As more information becomes available about the structure of the ribosomal preinitiation complex (PIC) at various points in translation initiation, new questions arise about which interactions occur when, their roles, and regulation. The eukaryotic translation factor (eIF) 5 is the GTPase-activating protein (GAP) for the GTPase eIF2, which brings the initiator Met-tRNAi to the PIC. eIF5 also plays a central role in PIC assembly and remodeling through interactions with other proteins, including eIFs 1, 1A, and 3c. Phosphorylation by casein kinase 2 (CK2) significantly increases the eIF5 affinity for eIF2. The interaction between eIF5 and eIF1A was reported to be mediated by the eIF5 C-terminal domain (CTD) and the eIF1A N-terminal tail. Here, we report a new contact interface, between eIF5-CTD and the oligonucleotide/oligosaccharide-binding fold (OB) domain of eIF1A, which contributes to the overall affinity between the two proteins. We also show that the interaction is modulated by dynamic intramolecular interactions within both eIF5 and eIF1A. CK2 phosphorylation of eIF5 increases its affinity for eIF1A, offering new insights into the mechanisms by which CK2 stimulates protein synthesis and cell proliferation.

13.
Mol Cell Biol ; 39(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420357

RESUMO

Protein synthesis is linked to cell proliferation, and its deregulation contributes to cancer. Eukaryotic translation initiation factor 1A (eIF1A) plays a key role in scanning and AUG selection and differentially affects the translation of distinct mRNAs. Its unstructured N-terminal tail (NTT) is frequently mutated in several malignancies. Here we report that eIF1A is essential for cell proliferation and cell cycle progression. Ribosome profiling of eIF1A knockdown cells revealed a substantial enrichment of cell cycle mRNAs among the downregulated genes, which are predominantly characterized by a lengthy 5' untranslated region (UTR). Conversely, eIF1A depletion caused a broad stimulation of 5' UTR initiation at a near cognate AUG, unveiling a prominent role of eIF1A in suppressing 5' UTR translation. In addition, the AUG context-dependent autoregulation of eIF1 was disrupted by eIF1A depletion, suggesting their cooperation in AUG context discrimination and scanning. Importantly, cancer-associated eIF1A NTT mutants augmented the eIF1A positive effect on a long 5' UTR, while they hardly affected AUG selection. Mechanistically, these mutations diminished the eIF1A interaction with Rps3 and Rps10 implicated in scanning arrest. Our findings suggest that the reduced binding of eIF1A NTT mutants to the ribosome retains its open state and facilitates scanning of long 5' UTR-containing cell cycle genes.


Assuntos
Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , Proteínas Ribossômicas/metabolismo , Regiões 5' não Traduzidas , Animais , Pontos de Checagem do Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Códon de Iniciação , Fibroblastos , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Mutação , Neoplasias/genética , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo
14.
Front Plant Sci ; 8: 513, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439284

RESUMO

Eukaryotic translation initiation factor 1A (eIF1A) functions as an mRNA scanner and AUG initiation codon locator. However, few studies have clarified the role of eIF1A in abiotic stress. In this study, we cloned eIF1A (TheIF1A) from Tamarix hispida and found its expression to be induced by NaCl and polyethylene glycol (PEG) in roots, stems, and leaves. Compared to control, TheIF1A root expression was increased 187.63-fold when exposed to NaCl for 6 h, suggesting a potential abiotic stress response for this gene. Furthermore, transgenic tobacco plants overexpressing TheIF1A exhibited enhanced seed germination and a higher total chlorophyll content under salt and mannitol stresses. Increased superoxide dismutase, peroxidase, glutathione transferase and glutathione peroxidase activities, as well as decreased electrolyte leakage rates and malondialdehyde contents, were observed in TheIF1A-transgenic tobacco and T. hispida seedlings under salt and mannitol stresses. Histochemical staining suggested that TheIF1A improves reactive oxygen species (ROS) scavenging in plants. Moreover, TheIF1A may regulate expression of stress-related genes, including TOBLTP, GST, MnSOD, NtMPK9, poxN1, and CDPK15. Moreover, a 1352-bp promoter fragment of TheIF1A was isolated, and cis-elements were identified. Yeast one-hybrid assays showed that ThDof can specifically bind to the Dof motif present in the promoter. In addition, ThDof showed expression patterns similar to those of TheIF1A under NaCl and PEG stresses. These findings suggest the potential mechanism and physiological roles of TheIF1A. ThDof may be an upstream regulator of TheIF1A, and TheIF1A may function as a stress response regulator to improve plant salt and osmotic stress tolerance via regulation of associated enzymes and ROS scavenging, thereby reducing cell damage under stress conditions.

15.
Elife ; 62017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206102

RESUMO

The translation pre-initiation complex (PIC) scans the mRNA for an AUG codon in favorable context, and AUG recognition stabilizes a closed PIC conformation. The unstructured N-terminal tail (NTT) of yeast eIF1A deploys five basic residues to contact tRNAi, mRNA, or 18S rRNA exclusively in the closed state. Interestingly, EIF1AX mutations altering the human eIF1A NTT are associated with uveal melanoma (UM). We found that substituting all five basic residues, and seven UM-associated substitutions, in yeast eIF1A suppresses initiation at near-cognate UUG codons and AUGs in poor context. Ribosome profiling of NTT substitution R13P reveals heightened discrimination against unfavorable AUG context genome-wide. Both R13P and K16D substitutions destabilize the closed complex at UUG codons in reconstituted PICs. Thus, electrostatic interactions involving the eIF1A NTT stabilize the closed conformation and promote utilization of suboptimal start codons. We predict UM-associated mutations alter human gene expression by increasing discrimination against poor initiation sites.


Assuntos
Fator de Iniciação 1 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Análise Mutacional de DNA , Fator de Iniciação 1 em Eucariotos/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/metabolismo , RNA de Transferência/metabolismo
16.
Mol Cell Biol ; 37(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28584194

RESUMO

Canonical translation initiation involves ribosomal scanning, but short 5' untranslated region (5'UTR) mRNAs are translated in a scanning-independent manner. The extent and mechanism of scanning-independent translation are not fully understood. Here we report that short 5'UTR mRNAs constitute a substantial fraction of the translatome. Short 5'UTR mRNAs are enriched with TISU (translation initiator of short 5'UTR), a 12-nucleotide element directing efficient scanning-independent translation. Comprehensive mutagenesis revealed that each AUG codon-flanking nucleotide of TISU contributes to translational strength, but only a few are important for accuracy. Using site-specific UV cross-linking of ribosomal complexes assembled on TISU mRNA, we demonstrate specific binding of TISU to ribosomal proteins at the E and A sites. We identified RPS3 as the major TISU binding protein in the 48S complex A site. Upon 80S complex formation, RPS3 interaction is weakened and switched to RPS10e (formerly called RPS10). We further demonstrate that TISU is particularly dependent on eukaryotic initiation factor 1A (eIF1A) which interacts with both RPS3 and RPS10e. Our findings suggest that the cap-recruited ribosome specifically binds the TISU nucleotides at the A and E sites in cooperation with eIF1A to promote scanning arrest.


Assuntos
Regiões 5' não Traduzidas , Fator de Iniciação 1 em Eucariotos/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Animais , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Camundongos , Ligação Proteica , Mapas de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
17.
Elife ; 52016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28009256

RESUMO

Internal ribosome entry sites (IRESs) are important RNA-based translation initiation signals, critical for infection by many pathogenic viruses. The hepatitis C virus (HCV) IRES is the prototype for the type 3 IRESs and is also invaluable for exploring principles of eukaryotic translation initiation, in general. Current mechanistic models for the type 3 IRESs are useful but they also present paradoxes, including how they can function both with and without eukaryotic initiation factor (eIF) 2. We discovered that eIF1A is necessary for efficient activity where it stabilizes tRNA binding and inspects the codon-anticodon interaction, especially important in the IRES' eIF2-independent mode. These data support a model in which the IRES binds preassembled translation preinitiation complexes and remodels them to generate eukaryotic initiation complexes with bacterial-like features. This model explains previous data, reconciles eIF2-dependent and -independent pathways, and illustrates how RNA structure-based control can respond to changing cellular conditions.


Assuntos
Fator de Iniciação 1 em Eucariotos/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Sítios Internos de Entrada Ribossomal , Iniciação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Proteínas Virais/biossíntese , Linhagem Celular , Humanos , Modelos Biológicos
18.
Translation (Austin) ; 1(1): e24419, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26824019

RESUMO

Current literature using biochemical assays, structural analyses and genetic manipulations has reported that the key factors associated with the faithful matching of the initiator met-tRNA to the start codon AUG are eIF1, eIF1A and eIF5. However, these findings were in each case based upon the utilization of a single mRNA, perhaps with variations. In an effort to evaluate this general finding, we tested six different mRNAs. Our results confirm that these three proteins are important for start site selection. However, two additional findings would not have been predicted. The first is that eIF1 plays a major role in selecting against start codons that are in close proximity to the 5' end of the mRNA (i.e., less than 21 nucleotides). Second, the addition of eIF5B had nearly the same affect as the addition of eIF5. This is unexpected given the different roles that eIF5 and eIF5B have been proposed to play in the 80S initiation pathway. Finally, although many of the mRNAs appear to respond qualitatively in a similar manner, the quantitative differences noted suggest that there is still some mRNA specific character to our findings. This character may be the length of the 5' UTR, involvement of an IRES element, secondary structure either 5' or 3' of the start codon or specific sequence/structure elements that interact with RNA binding proteins or the ribosome.

19.
DNA Res ; 20(4): 391-402, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23649898

RESUMO

Mouse embryonic stem (ES) cells are prototypical stem cells that remain undifferentiated in culture for long periods, yet maintain the ability to differentiate into essentially all cell types. Previously, we have reported that ES cells oscillate between two distinct states, which can be distinguished by the transient expression of Zscan4 genes originally identified for its specific expression in mouse two-cell stage embryos. Here, we report that the nascent protein synthesis is globally repressed in the Zscan4-positive state of ES cells, which is mediated by the transient expression of newly identified eukaryotic translation initiation factor 1A (Eif1a)-like genes. Eif1a-like genes, clustered on Chromosome 12, show the high sequence similarity to the Eifa1 and consist of 10 genes (Eif1al1-Eif1al10) and 9 pseudogenes (Eif1al-ps1-Eif1al-ps9). The analysis of the expressed sequence tag database showed that Eif1a-like genes are expressed mostly in the two-cell stage mouse embryos. Microarray analyses and quantitative real-time polymerase chain reaction analyses show that Eif1a-like genes are expressed specifically in the Zscan4-positive state of ES cells. These results indicate a novel mechanism to repress protein synthesis by Eif1a-like genes and a unique mode of protein synthesis regulation in ES cells, which undergo a transient and reversible repression of global protein synthesis in the Zscan4-positive state.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fator de Iniciação 1 em Eucariotos/genética , Regulação da Expressão Gênica no Desenvolvimento , Biossíntese de Proteínas , Fatores de Transcrição/genética , Animais , Cromossomos de Mamíferos , Embrião de Mamíferos , Células-Tronco Embrionárias/classificação , Células-Tronco Embrionárias/citologia , Fator de Iniciação 1 em Eucariotos/classificação , Fator de Iniciação 1 em Eucariotos/metabolismo , Etiquetas de Sequências Expressas , Camundongos , Família Multigênica , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA