Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biosci Biotechnol Biochem ; 82(8): 1344-1358, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29629628

RESUMO

This study was carried out to evaluate the neuroprotective activity of polysaccharide extracts isolated from Perilla frutescens (PEPF) in H2O2-treated HT22 hippocampus cells. The PEPF treatment was found to increase the anti-oxidant activities of HT22 hippocampus cells. PEPF treatment resulted in a significant protection of HT22 hippocampus cells against H2O2-induced neurotoxicity, this protection ultimately occurred through an inhibition of ROS-mediated intracellular Ca2+ levels leading to MAPKs and NF-κB, as well as the accumulation of PI3K/AKT and Nrf2-mediated HO-1/NQO1 pathways. Furthermore, PEPF not only decreased the expression of Bax, cytochrome c, and cleaved caspases-3, -8, and -9, but also increased the expression of PARP and Bcl-2 in the H2O2-treated HT22 hippocampus cells, which overall contributed to the neuroprotective action. PEPF retains its mitochondrial membrane potential and reduces the elevated levels of sub-G1 phase and apoptotic morphological features induced by H2O2. It also reduces the malondialdehyde levels and enhances the intracellular SOD activity.


Assuntos
Hipocampo/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Perilla frutescens/química , Polissacarídeos/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Caspases/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Fase G1/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/isolamento & purificação , Polissacarídeos/isolamento & purificação , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
2.
Int J Pharm X ; 4: 100126, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36147518

RESUMO

Chemoresistance and hence the consequent treatment failure is considerably challenging in clinical cancer therapeutics. The understanding of the genetic variations in chemoresistance acquisition encouraged the use of gene modulatory approaches to restore anti-cancer drug efficacy. Many smart nanoparticles are designed and optimized to mediate combinational therapy between nucleic acid and anti-cancer drugs. This review aims to define a rational design of such co-loaded nanocarriers with the aim of chemoresistance reversal at various cellular levels to improve the therapeutic outcome of anticancer treatment. Going through the principles of therapeutics loading, physicochemical characteristics tuning, and different nanocarrier modifications, also looking at combination effectiveness on chemosensitivity restoration. Up to now, these emerging nanocarriers are in development status but are expected to introduce outstanding outcomes.

3.
Acta Pharm Sin B ; 11(9): 2726-2737, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589393

RESUMO

Integrins are transmembrane receptors that have been implicated in the biology of various human physiological and pathological processes. These molecules facilitate cell-extracellular matrix and cell-cell interactions, and they have been implicated in fibrosis, inflammation, thrombosis, and tumor metastasis. The role of integrins in tumor progression makes them promising targets for cancer treatment, and certain integrin antagonists, such as antibodies and synthetic peptides, have been effectively utilized in the clinic for cancer therapy. Here, we discuss the evidence and knowledge on the contribution of integrins to cancer biology. Furthermore, we summarize the clinical attempts targeting this family in anti-cancer therapy development.

4.
J Trace Elem Med Biol ; 61: 126508, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32305626

RESUMO

BACKGROUND: Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE: This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS: Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.


Assuntos
Compostos Organometálicos/farmacologia , Vanádio/farmacologia , Animais , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/farmacologia , Anticolesterolemiantes/efeitos adversos , Anticolesterolemiantes/farmacologia , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Cardiotônicos/efeitos adversos , Cardiotônicos/farmacologia , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacologia , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Compostos Organometálicos/efeitos adversos , Vanádio/efeitos adversos
5.
JACC Basic Transl Sci ; 3(4): 521-532, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30175276

RESUMO

The mechanism that leads to a decrease in ß1-adrenergic receptor (ß1AR) expression in the failing heart remains uncertain. This study shows that cardiomyocyte ß1AR expression and isoproterenol responsiveness decrease in response to oxidative stress. Studies of mechanisms show that the redox-dependent decrease in ß1AR expression is uniquely prevented by carvedilol and not other ßAR ligands. Carvedilol also promotes the accumulation of N-terminally truncated ß1ARs that confer protection against doxorubicin-induced apoptosis in association with activation of protein kinase B. The redox-induced molecular controls for cardiomyocyte ß1ARs and pharmacologic properties of carvedilol identified in this study have important clinical and therapeutic implications.

6.
JACC Basic Transl Sci ; 1(1-2): 3-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27642642

RESUMO

Although remote ischemic pre-conditioning (RIPC) reduced infarct size in animal experiments and proof-of-concept clinical trials, recent phase III trials failed to confirm cardioprotection during cardiac surgery. Here, we characterized the kinetic properties of humoral factors that are released after RIPC, as well as the signal transduction pathways that were responsible for cardioprotection in an ex vivo model of global ischemia reperfusion injury. Venous blood from 20 healthy volunteers was collected at baseline and 5 min, 30 min, 1 h, 6 h, and daily from 1 to 7 days after RIPC (3 × 5/5 min upper-limb ischemia/reperfusion). Plasma-dialysates (cut-off: 12 to 14 kDa; dilution: 1:20) were infused into Langendorff-perfused mouse hearts subjected to 20/120 min global ischemia/reperfusion. Infarct size and phosphorylation of signal transducer and activator of transcription (STAT)3, STAT5, extracellular-regulated kinase 1/2 and protein kinase B were determined. In a subgroup of plasma-dialysates, an inhibitor of STAT3 (Stattic) was used in mouse hearts. Perfusion with baseline-dialysate resulted in an infarct size of 39% of ventricular mass (interquartile range: 36% to 42%). Perfusion with dialysates obtained 5 min to 6 days after RIPC significantly reduced infarct size by ∼50% and increased STAT3 phosphorylation beyond that with baseline-dialysate. Inhibition of STAT3 abrogated these effects. These results suggest that RIPC induces the release of cardioprotective, dialyzable factor(s) within 5 min, and that circulate for up to 6 days. STAT3 is activated in murine myocardium by RIPC-induced human humoral factors and is causally involved in cardioprotection.

7.
Cell Cycle ; 14(4): 648-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25590338

RESUMO

Approximately 25% of breast cancers overexpress and depend on the receptor tyrosine kinase ERBB2, one of 4 ERBB family members. Targeted therapies directed against ERBB2 have been developed and used clinically, but many patients continue to develop resistance to such therapies. Although much effort has been focused on elucidating the mechanisms of acquired resistance to ERBB2-targeted therapies, the involvement of ERBB4 remains elusive and controversial. We demonstrate that genetic ablation of ERBB4, but not ERBB1-3, led to apoptosis in lapatinib-resistant cells, suggesting that the efficacy of pan-ERBB inhibitors was, at least in part, mediated by the inhibition of ERBB4. Moreover, ERBB4 was upregulated at the protein level in ERBB2+ breast cancer cell lines selected for acquired lapatinib resistance in vitro and in MMTV-Neu mice following prolonged lapatinib treatment. Knockdown of ERBB4 caused a decrease in AKT phosphorylation in resistant cells but not in sensitive cells, suggesting that ERBB4 activated the PI3K/AKT pathway in lapatinib-resistant cells. Importantly, ERBB4 knockdown triggered apoptosis not only in lapatinib-resistant cells but also in trastuzumab-resistant cells. Our results suggest that although ERBB4 is dispensable for naïve ERBB2+ breast cancer cells, it may play a key role in the survival of ERBB2+ cancer cells after they develop resistance to ERBB2 inhibitors, lapatinib and trastuzumab.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-4/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Lapatinib , Camundongos , Quinazolinas , Receptor ErbB-4/genética , Trastuzumab
8.
Cancer Biol Ther ; 16(5): 733-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803131

RESUMO

The present studies sought to determine whether the anti-folate pemetrexed (Alimta) and the sphingosine-1-phosphate receptor modulator FTY720 (Fingolimod, Gilenya) interacted to kill tumor cells. FTY720 and pemetrexed interacted in a greater than additive fashion to kill breast, brain and colorectal cancer cells. Loss of p53 function weakly enhanced the toxicity of FTY720 whereas deletion of activated RAS strongly or expression of catalytically inactive AKT facilitated killing. Combined drug exposure reduced the activity of AKT, p70 S6K and mTOR and activated JNK and p38 MAPK. Expression of activated forms of AKT, p70 S6K and mTOR or inhibition of JNK and p38 MAPK suppressed the interaction between FTY720 and pemetrexed. Treatment of cells with FTY720 and pemetrexed increased the numbers of early autophagosomes but not autolysosomes, which correlated with increased LC3II processing and increased p62 levels, suggestive of stalled autophagic flux. Knock down of ATG5 or Beclin1 suppressed autophagosome formation and cell killing. Knock down of ceramide synthase 6 suppressed autophagosome production and cell killing whereas knock down of ceramide synthase 2 enhanced vesicle formation and facilitated death. Collectively our findings argue that pemetrexed and FTY720 could be a novel adjunct modality for breast cancer treatment.


Assuntos
Cloridrato de Fingolimode/imunologia , Pemetrexede/imunologia , Autofagia , Linhagem Celular Tumoral , Sobrevivência Celular , Ceramidas , Humanos , Transdução de Sinais
9.
Tissue Barriers ; 3(1-2): e977176, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25838982

RESUMO

The epithelial tight junction determines the paracellular water and ion movement in the intestine and also prevents uptake of larger molecules, including antigens, in an uncontrolled manner. Claudin-2, one of the 27 mammalian claudins regulating that barrier function, forms a paracellular channel for small cations and water. It is typically expressed in leaky epithelia like proximal nephron and small intestine and provides a major pathway for the paracellular transport of sodium, potassium, and fluid. In intestinal inflammation (Crohn's disease, ulcerative colitis), immune-mediated diseases (celiac disease), and infections (HIV enteropathy), claudin-2 is upregulated in small and large intestine and contributes to diarrhea via a leak flux mechanism. In parallel to that upregulation, other epithelial and tight junctional features are altered and the luminal uptake of antigenic macromolecules is enhanced, for which claudin-2 may be partially responsible through induction of tight junction strand discontinuities.

10.
Cancer Biol Ther ; 15(12): 1646-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482938

RESUMO

The present studies examined the biology of the multiple sclerosis drug dimethyl-fumarate (DMF) or its in vivo breakdown product and active metabolite mono-methyl-fumarate (MMF), alone or in combination with proteasome inhibitors, in primary human glioblastoma (GBM) cells. MMF enhanced velcade and carfilzomib toxicity in multiple primary GBM isolates. Similar data were obtained in breast and colon cancer cells. MMF reduced the invasiveness of GBM cells, and enhanced the toxicity of ionizing radiation and temozolomide. MMF killed freshly isolated activated microglia which was associated with reduced IL-6, TGFß and TNFα production. The combination of MMF and the multiple sclerosis drug Gilenya further reduced both GBM and activated microglia viability and cytokine production. Over-expression of c-FLIP-s or BCL(-)XL protected GBM cells from MMF and velcade toxicity. MMF and velcade increased plasma membrane localization of CD95, and knock down of CD95 or FADD blocked the drug interaction. The drug combination inactivated AKT, ERK1/2 and mTOR. Molecular inhibition of AKT/ERK/mTOR signaling enhanced drug combination toxicity whereas molecular activation of these pathways suppressed killing. MMF and velcade increased the levels of autophagosomes and autolysosomes and knock down of ATG5 or Beclin1 protected cells. Inhibition of the eIF2α/ATF4 arm or the IRE1α/XBP1 arm of the ER stress response enhanced drug combination lethality. This was associated with greater production of reactive oxygen species and quenching of ROS suppressed cell killing.


Assuntos
Fumaratos/toxicidade , Inibidores de Proteassoma/farmacologia , Antineoplásicos/farmacologia , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fumarato de Dimetilo , Sinergismo Farmacológico , Glioblastoma/metabolismo , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA