RESUMO
KEY MESSAGE: ARG6 and ARG10 pea accessions exhibited better tolerance to drought by keeping drought-associated attributes stable and higher, that is, stable chlorophyll content, high antioxidant activity, and the presence of polymorphic bands with stress-responsive EST-SSR markers. Each year, a significant portion of crops is lost due to various abiotic stresses, and even pea (Pisum sativum) crop growth and yield are severely affected by the challenges posed by drought stress. Drought is a critical factor that limits crop growth and development, and its impact is exacerbated by changes in the magnitude of climatic conditions. Drought induces oxidative stress in plants, leading to the accumulation of high concentrations of reactive oxygen species that damage cell structures and vital functioning of cells. The primary objective was to identify stress-tolerant plants by evaluating different morphological and biochemical attributes, such as biomass, chlorophyll content, relative water content, ascorbate peroxidase (APX), superoxide dismutase (SOD), and DPPH scavenging activity, as well as protein, proline, and phenolic content. Our study revealed that pea accessions (ARG6 and ARG10) were more resilient to drought stress as their chlorophyll, relative water, protein, and proline contents increased under drought conditions. Antioxidant enzymes, such as SOD, APX, and DPPH activities, also increased under drought stress in ARG10 and ARG6, suggesting that these accessions could bolster the antioxidant defense system in response to drought stress. Based on putative (cellular, biological, and metabolic) functions, ten EST-SSR primers were selected for the amplification study. Three EST-SSR primers, AUMP06_110, AUMP18_300, and AUMP31_250, were used for ARG6 and ARG10. Based on the correlation between the presence or absence of specific EST-SSR alleles, various physiological and morphological traits, and DPPH scavenging activity, both ARG10 and ARG6 demonstrated resistance to drought stress.
Assuntos
Clorofila , Secas , Estresse Oxidativo , Pisum sativum , Pisum sativum/genética , Pisum sativum/fisiologia , Pisum sativum/metabolismo , Clorofila/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Ascorbato Peroxidases/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Prolina/metabolismo , Simulação por Computador , Biomarcadores/metabolismo , Estresse Fisiológico/genéticaRESUMO
Orchidantha chinensis T. L. Wu, an endemic species in China, is listed as a key protected wild plant in Guangdong Province. However, the lack of reports on the chloroplast genome and simple sequence repeat (SSR) markers has hindered the assessment of its genetic diversity and conservation strategies. The limited number of molecular markers to assess the genetic diversity of this species, and thus develop proper conservation strategies, highlighted the urgent need to develop new ones. This study developed new SSR markers and investigated genetic variation using 96 samples of O. chinensis from seven populations. Through high-throughput sequencing, a complete chloroplast genome of 134,407 bp was assembled. A maximum-likelihood phylogenetic tree, based on the chloroplast genome, showed that O. chinensis is closely related to Ravenala madagascariensis. The study identified 52 chloroplast SSRs (cpSSRs) and 5094 expressed sequence tag SSRs (EST-SSRs) loci from the chloroplast genome and leaf transcriptome, respectively. Twenty-one polymorphic SSRs (seven cpSSRs and fourteen EST-SSRs) were selected to evaluate the genetic variation in 96 accessions across seven populations. Among these markers, one cpSSR and 11 EST-SSRs had high polymorphism information content (>0.5). Cluster, principal coordinate, and genetic structure analyses indicated that groups G1 and G6 were distinct from the other five groups. However, an analysis of molecular variance showed greater variation within groups than among groups. The genetic distance among the populations was significantly positively correlated with geographical distance. These findings provide new markers for studying the genetic variability of O. chinensis and offer a theoretical foundation for its conservation strategies.
Assuntos
Espécies em Perigo de Extinção , Variação Genética , Genoma de Cloroplastos , Repetições de Microssatélites , Orchidaceae , Filogenia , Repetições de Microssatélites/genética , Orchidaceae/genética , Orchidaceae/classificação , Polimorfismo Genético , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Etiquetas de Sequências ExpressasRESUMO
Zanthoxylum (Sichuan pepper), with its rich cultivars, has long been widely cultivated in China for its unique seasoning and medicinal uses, but most of its cultivars have similar morphological characteristics. Therefore, we hypothesized that the genetic diversity of Zanthoxylum cultivars is low because of their apomixis and long cultivation history. In this study, we aimed to investigate the genetic diversity of three Zanthoxylum species on the cultivar level based on express sequence tag-simple sequence repeat (EST-SSR) primers. In total, 121 samples of three Zanthoxylum species (Z. bungeanum, Z. armatum and Z. piperitum) were collected from different areas in China for genetic diversity analysis. A total of six specificity and polymorphism EST-SSR primers, which we selected from among 120 primers based on two transcriptomes (Z. bungeanum, Z. armatum) in our earlier study, were used to evaluate genetic diversity based on capillary electrophoresis technology. The results of our analysis using the unweighted pair group method with arithmetic mean (UPGMA) indicated that most of the samples are clustered in one clade in the UPGMA dendrogram, and the average genetic distance was 0.6409. Principal component analysis (PCA) showed that Z. piperitum may have a closer genetic relationship with Z. bungeanum than with Z. armatum. An analysis of molecular variation (AMOVA) showed that the genetic variation mainly stemmed from individuals within populations; the genetic differentiation coefficient (PhiPT) was 0.429, the gene flow (Nm) between populations was 0.333, and the differences among populations were not significant (p > 0.001). For the intraspecific populations of ZB, the percentage of genetic variation was 53% among populations and 47% within populations, with non-significant differences between populations (p > 0.001). The genetic differentiation coefficient (PhiT) was 0.529, and the gene flow (Nm) was 0.223. For the intraspecific populations of ZA, the results indicated that the percentage of genetic variation was 29% among populations and 71% within populations, with non-significant differences between populations (p > 0.001); the genetic differentiation coefficient (PhiPT) was 0.293, and the gene flow (Nm) was 0.223. Through genetic structure analysis (GSA), we predicted that these 121 samples belonged to two optimal subgroups, which means that all the samples probably originated from two gene pools. Above all, this indicated that the genetic diversity of the 121 Zanthoxylum samples was relatively low at both the species and cultivar levels, a finding which was consistent with our initial assumptions. This study provides a reference, with molecular-level data, for the further identification of Zanthoxylum species.
RESUMO
BACKGROUND: Lilium genus consists of approximately 100 species and numerous varieties, many of which are interspecific hybrids, which result in a complicated genetic background. The germplasm identification, genetic relationship analysis, and breeding of Lilium rely on exploiting genetic information among different accessions. Hence, an attempt was made to develop new EST-SSR markers and study the molecular divergence among 65 genotypes of Lilium. METHODS AND RESULTS: A total of 5509 EST-SSRs were identified from the high-throughput sequencing database of L. 'Elodie'. After primer screening, six primer pairs with the most abundant polymorphic bands were selected from 100 primer pairs. Combined with the other 10 reported SSR primers, a total of 16 pairs detected genetic information with an average PIC value of 0.7583. The number of alleles per locus varied from four to 33, the expected heterozygosity varied from 0.3289 to 0.9231, and the observed heterozygosity varied from 0.2857 to 0.5122. Based on the phylogenic results, 22 Asiatic hybrids (A), seven Longiflorum × Asiatic hybrids (LA), as well as two native species were grouped. Eighteen Oriental hybrids (O) and nine Oriental × Trumpet (OT) hybrids, four native species, one LO, and one LL (L. pardalinum × L. longiflorum) variety were grouped. CONCLUSIONS: Two major clusters were reported and a large number of genotypes were grouped based on UPGMA and STRUCTURE analysis methods. The PIC value as well as other parameters revealed that the EST-SSR markers selected were informative. In addition, the clustering pattern displayed better agreement with the cultivar's pedigree. The newly identified SSRs in this study provides molecular markers for germplasm characterization and genetic diversity for Lilium.
Assuntos
Lilium , Lilium/genética , Transcriptoma/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos/genética , Repetições de Microssatélites/genética , Melhoramento VegetalRESUMO
BACKGROUND: Monochasma savatieri Franch. ex Maxim is a medicinally valuable herb. However, the collection and protection of the wild germplasm resources of M. savatieri are still insufficient, and their genetic diversity and population structure have been poorly studied. RESULTS: We collected and examined 46 M. savatieri individuals from Fujian, Hunan, Jiangxi, and Zhejiang provinces for genetic diversity and population structure, using 33 newly developed expressed sequence tag-simple sequence repeat (EST-SSR) markers. Applying these markers, we detected a total of 208 alleles, with an average of 6.303 alleles per locus. The polymorphic information content varied from 0.138 to 0.884 (average: 0.668), indicating a high level of polymorphism. At the population level, there was a low degree of genetic diversity among populations (I = 0.535, He = 0.342), with Zhejiang individuals showing the highest genetic diversity among the four populations (Fst = 0.497), which indicated little gene flow within the M. savatieri populations (Nm = 0.253). Mantel test analysis revealed a significant positive correlation between geographical and genetic distance among populations (R2 = 0.3304, p < 0.05), and structure and principal coordinate analyses supported classification of populations into three clusters, which was consistent with the findings of cluster analysis. CONCLUSIONS: As a rare medicinal plants, the protection of M. savatieri does not look optimistic, and accordingly, protective efforts should be beefed up on the natural wild populations. This study provided novel tools and insights for designing effective collection and conservation strategies for M. savatieri.
Assuntos
Variação Genética , Repetições de Microssatélites , Orobanchaceae , Alelos , Etiquetas de Sequências Expressas , Orobanchaceae/genética , Polimorfismo GenéticoRESUMO
BACKGROUND: Amomum tsaoko is a medicinal and food dual-use crop that belongs to the Zingiberaceae family. However, the lack of transcriptomic and genomic information has limited the understanding of the genetic basis of this species. Here, we performed transcriptome sequencing of samples from different A. tsaoko tissues, and identified and characterized the expressed sequence tag-simple sequence repeat (EST-SSR) markers. RESULTS: A total of 58,278,226 high-quality clean reads were obtained and de novo assembled to generate 146,911 unigenes with an N50 length of 2002 bp. A total of 128,174 unigenes were successfully annotated by searching seven protein databases, and 496 unigenes were identified as annotated as putative terpenoid biosynthesis-related genes. Furthermore, a total of 55,590 EST-SSR loci were detected, and 42,333 primer pairs were successfully designed. We randomly selected 80 primer pairs to validate their polymorphism in A. tsaoko; 18 of these primer pairs produced distinct, clear, and reproducible polymorphisms. A total of 98 bands and 96 polymorphic bands were amplified by 18 pairs of EST-SSR primers for the 72 A. tsaoko accessions. The Shannon's information index (I) ranged from 0.477 (AM208) to 1.701 (AM242) with an average of 1.183, and the polymorphism information content (PIC) ranged from 0.223 (AM208) to 0.779 (AM247) with an average of 0.580, indicating that these markers had a high level of polymorphism. Analysis of molecular variance (AMOVA) indicated relatively low genetic differentiation among the six A. tsaoko populations. Cross-species amplification showed that 14 of the 18 EST-SSR primer pairs have transferability between 11 Zingiberaceae species. CONCLUSIONS: Our study is the first to provide transcriptome data of this important medicinal and edible crop, and these newly developed EST-SSR markers are a very efficient tool for germplasm evaluation, genetic diversity, and molecular marker-assisted selection in A. tsaoko.
Assuntos
Amomum , Zingiberaceae , Amomum/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Terpenos , Transcriptoma , Zingiberaceae/genéticaRESUMO
Chrysanthemums (Chrysanthemum morifolium Ramat.) are ornamental flowers, which are famous worldwide. The mode of inheritance has great implications for the genetic analysis of polyploid species. However, genetic analysis of chrysanthemum has been hampered because of its controversial inheritance mode (disomic or hexasomic). To classify the inheritance mode of chrysanthemums, an analysis of three approaches was carried out in an F1 progeny of 192 offspring using 223 expressed sequence tag-simple sequence repeat (EST-SSR) markers. The analysis included segregation analysis, the ratio of simplex marker alleles linked in coupling to repulsion, as well as the transmission and segregation patterns of EST-SSR marker alleles. After segregation analysis, 204 marker alleles fit hexasomic inheritance and 150 marker alleles fit disomic inheritance, showing that marker alleles were inherited predominantly in a hexasomic manner. Furthermore, the results of the analysis of allele configuration and segregation behavior of five EST-SSR markers also suggested random pairing of chromosomes. Additionally, the ratio of simplex marker alleles linked in coupling to repulsion was 1:0, further supporting hexasomic inheritance. Therefore, it could be inferred that chrysanthemum is a complete or near-complete hexasome.
Assuntos
Chrysanthemum , Alelos , Chrysanthemum/genética , Etiquetas de Sequências Expressas , Humanos , Repetições de Microssatélites , PoliploidiaRESUMO
Weeds are the biggest threat to cropping system sustainability in wheat. Metribuzin is a versatile herbicide for broad-spectrum weed management. Understanding key genes, mechanisms and functional markers are essential to develop higher metribuzin tolerant wheats. We identified Chuan Mai 25 (tolerant) and Ritchie (susceptible) as contrasting genotypes to metribuzin stress through dose-response analyses. Transcriptome sequencing using NovaSeq 6000 RNA-Seq platform identified a total of 77,443 genes; 59,915 known genes and 17,528 novel genes. The functional enrichment analysis at 0 h, 24 h and 60 h herbicide exposure revealed that endogenous increase of metabolic enzymes, light-harvesting chlorophyll proteins, PSII stability factor HCF136 and glucose metabolism conferred metribuzin tolerance. The validation of DEGs using RT-qPCR and QTL mapping confirmed their responsiveness to metribuzin. Transcription factors MYB, AP2-EREBP, ABI3VP1, bHLH, NAC are significantly expressed during metribuzin stress. Transcripts with significant enrichments revealed 114 SSRs for genomic selection. The master regulators provide promising avenues for enhancing metribuzin tolerance.
Assuntos
Pão , Triticum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Triazinas/metabolismo , Triticum/genética , Triticum/metabolismoRESUMO
Ailanthus altissima Swingle, is a tree species native to East Asia and has a great potential in decorative, bioenergy and industrial applications in many countries. To date, despite its commercial importance, the genomic and genetic resources available for this species are still insufficient. In this study, we characterized the transcriptome of A. altissima and developed thirteen EST-SSRs (expressed sequence tag-simple sequence repeats) based on Illumina paired-end RNA sequencing (RNA-seq). Besides, we developed ten polymorphic chloroplast microsatellite (cpSSR) markers using the available chloroplast genome of A. altissima. The transcriptome data produced 87,797 unigenes, of which 64,891 (73.91%) unigenes were successfully annotated in at least one protein database. For cpSSR markers the number of detected alleles (N) per marker varied from three at cpSSR12 to twelve at cpSSR8, the unbiased haploid diversity indices (uh) varied from 0.111 to 0.485, and haploid diversity indices (h) ranged from 0.101 to 0.444 with an average unbiased haploid diversity index (uh) of 0.274. Overall, a total of 65 different cpSSR alleles were identified at the ten loci among 165 individuals of A. altissima. The allele number per locus for EST-SSRs varied from 2.143 to 9.357, and the values of observed and expected heterozygosity ranged from 0.312 to 1.000 and 0.505 to 0.826, respectively. The molecular markers developed in this study will facilitate future genetic diversity, population structure, long distance-gene transfer and pollen-based gene flow analyses of A. altissima populations from its known distribution ranges in China focusing on planted and natural forest stands.
Assuntos
Ailanthus/genética , Repetições de Microssatélites/genética , Análise de Sequência de RNA , Transcriptoma/genética , Cloroplastos/genética , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Loci Gênicos , Genética Populacional , Haplótipos/genética , Anotação de Sequência Molecular , Filogenia , Polimorfismo GenéticoRESUMO
High-throughput sequencing of the Phoebe bournei transcriptome was performed, and novel SSR markers were identified. A total of 73,518 nonredundant unigenes were assembled and annotated by sequence similarity searching in diverse public databases. A total of 40,853 SSRs were identified from 73,518 unigenes. Twenty-three pairs of polymorphic EST-SSR markers were selected from 98 markers and used for genetic analyses in 75 individuals from three P. bournei populations. The 23 pairs of markers could detect abundant genetic information from the samples (PIC = 0.769), and cross-species amplification was successfully performed in other related species. Three populations had high level of genetic diversity (He = 0.658 in average), of which the population YS from Jiangxi province had the most abundant genetic diversity (He = 0.722). The results of genetic structure analyses showed that the population YS from Jiangxi province had obvious genetic differences from the other two populations, and the genetic information of the population SX from Fujian province was related to that of the population LC from Guangdong province and the population YS. The transcriptomic resources and EST-SSR markers are valuable tools not only for the ecological conservation of P. bournei but also for phylogenetic studies.
Assuntos
Etiquetas de Sequências Expressas/metabolismo , Lauraceae/genética , Repetições de Microssatélites/genética , Análise de Sequência de RNA , Transcriptoma/genética , Marcadores Genéticos , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
KEY MESSAGE: Identification of an EST-SSR molecular marker associated with Blister blight, a common fungal disease of tea, facilitating marker-assisted selection, marking a milestone in tea molecular breeding. lister blight (BB) leaf disease of tea, caused by the fungus Exobasidium vexans, results in 25-30% crop loss annually. BB is presently controlled by Cu based fungicides, but genetic resistance is the most viable option in disease management. Tea is a naturally out-crossing, woody perennial necessitating a long time for completion of a breeding programme. Marker-assisted selection (MAS) is vital to expedite breeding programmes and also for better accuracy in gene identification. The aim of the current research was to derive marker-trait associations using an F1 population segregating for BB. The population was genotyped at 11 expressed sequence tag simple sequence repeat loci followed by detecting the alleles by fragment analysis. The genotypic and phenotypic data were subjected to single-marker analysis resulting in the identification of EST-SSR073 as a diagnostic marker amplifying three alleles of the sizes, 168, 170 and 190 bp in F1. Of them, alleles 190 and 168 bp were confirmed to concur BB resistance and susceptibility, respectively. The alleles were validated in a panel of 64 tea cultivars, resulting in the amplification of 12 alleles at EST-SSR073. The EST-SSR073 allele sequences matched with Camellia sinensis photosystem-I reaction center subunit-II. The marker EST-SSR073 can be effectively used in breeding tea against BB, recording a milestone in MAS in tea.
Assuntos
Basidiomycota/fisiologia , Camellia sinensis/genética , Resistência à Doença/genética , Marcadores Genéticos/genética , Repetições de Microssatélites/genética , Doenças das Plantas/imunologia , Alelos , Camellia sinensis/imunologia , Camellia sinensis/microbiologia , Embaralhamento de DNA , Etiquetas de Sequências Expressas , Loci Gênicos/genética , Genótipo , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , CháRESUMO
BACKGROUND: The Lycoris genus includes many ornamentally and medicinally important species. Polyploidization and hybridization are considered modes of speciation in this genus, implying great genetic diversity. However, the lack of effective molecular markers has limited the genetic analysis of this genus. RESULTS: In this study, mining of EST-SSR markers was performed using transcriptome sequences of L. aurea, and 839 primer pairs for non-redundant EST-SSRs were successfully designed. A subset of 60 pairs was randomly selected for validation, of which 44 pairs could amplify products of the expected size. Cross-species transferability of the 60 primer pairs among Lycoris species were assessed in L. radiata Hreb, L. sprengeri Comes ex Baker, L. chinensis Traub and L. anhuiensis, of which between 38 to 77% of the primers were able to amplify products in these Lycoris species. Furthermore, 20 and 10 amplification products were selected for sequencing verification in L. aurea and L. radiata respectively. All products were validated as expected SSRs. In addition, 15 SSRs, including 10 sequence-verified and 5 unverified SSRs were selected and used to evaluate the genetic diversity of seven L. radiata lines. Among these, there were three sterile lines, three fertile lines and one line represented by the offspring of one fertile line. Unweighted pair group method with arithmetic mean analysis (UPGMA) demonstrated that the outgroup, L. aurea was separated from L. radiata lines and that the seven L. radiata lines were clustered into two groups, consistent with their fertility. Interestingly, even a dendrogram with 34 individuals representing the seven L. radiata lines was almost consistent with fertility. CONCLUSIONS: This study supplies a pool of potential 839 non-redundant SSR markers for genetic analysis of Lycoris genus, that present high amplification rate, transferability and efficiency, which will facilitate genetic analysis and breeding program in Lycoris.
Assuntos
Etiquetas de Sequências Expressas , Marcadores Genéticos , Hibridização Genética , Lycoris/classificação , Lycoris/genética , Repetições de Microssatélites , Polimorfismo Genético , DNA de Plantas , FilogeniaRESUMO
BACKGROUND: Apocynum venetum L. is an important medicinal plant that is mainly distributed in the coastal areas and northwest of China. In addition to its high medical and economic value, its adaptation to saline-alkali and coastal saline lands makes A. venetum an ideal candidate for use in vegetation restoration. To date, the study of A. venetum has been limited in the northwest region of China, little attention has been paid to the genetic diversity and population structure of A. venetum populations in the coastal region. Here, we performed transcriptome sequencing of total RNA from A. venetum leaves and developed efficient expressed sequence tag-simple sequence repeat (EST-SSR) markers for analyzing the genetic diversity and population structure of A. venetum in the coastal region. RESULTS: A total of 86,890 unigenes were generated after de novo assembly, and 68,751 of which were successfully annotated by searching against seven protein databases. Furthermore, 14,072 EST-SSR loci were detected and 10,243 primer pairs were successfully designed from these loci. One hundred primer pairs were randomly selected and synthesized, twelve primer pairs were identified as highly polymorphic and further used for population genetic analysis. Population genetic analyses showed that A. venetum exhibited low level of genetic diversity (mean alleles per locus, NA = 3.3; mean expected heterozygosity, HE = 0.342) and moderate level of genetic differentiation among the populations (genetic differentiation index, FST = 0.032-0.220) in the coastal region. Although the contemporary (mean mc = 0.056) and historical (mean mh = 0.106) migration rates among the six A. venetum populations were moderate, a decreasing trend over the last few generations was detected. Bayesian structure analysis clustered six populations into two major groups, and genetic bottlenecks were found to have occurred in two populations (QG, BH). CONCLUSIONS: Using novel EST-SSR markers, we evaluated the genetic variation of A. venetum in the coastal region and determined conservation priorities based on these findings. The large dataset of unigenes and SSRs identified in our study, combining samples from a broader range, will support further research on the conservation and evolution of this important coastal plant and its related species.
Assuntos
Apocynum/genética , Etiquetas de Sequências Expressas , Variação Genética , Repetições de Microssatélites , Transcriptoma , Teorema de Bayes , China , Perfilação da Expressão Gênica , Marcadores Genéticos , Genética PopulacionalRESUMO
BACKGROUND: Lilac (Syringa oblata) is an important woody plant with high ornamental value. However, very limited genetic marker resources are currently available, and little is known about the genetic architecture of important ornamental traits for S. oblata, which is hindering its genetic studies. Therefore, it is of great significance to develop effective molecular markers and understand the genetic architecture of complex floral traits for the genetic research of S. oblata. RESULTS: In this study, a total of 10,988 SSRs were obtained from 9864 unigene sequences with an average of one SSR per 8.13 kb, of which di-nucleotide repeats were the dominant type (32.86%, 3611). A set of 2042 primer pairs were validated, out of which 932 (45.7%) exhibited successful amplifications, and 248 (12.1%) were polymorphic in eight S. oblata individuals. In addition, 30 polymorphic EST-SSR markers were further used to assess the genetic diversity and the population structure of 192 cultivated S. oblata individuals. Two hundred thirty-four alleles were detected, and the PIC values ranged from 0.23 to 0.88 with an average of 0.51, indicating a high level of genetic diversity within this cultivated population. The analysis of population structure showed two major subgroups in the association population. Finally, 20 significant associations were identified involving 17 markers with nine floral traits using the mixed linear model. Moreover, marker SO104, SO695 and SO790 had significant relationship with more than one trait. CONCLUSION: The results showed newly developed markers were valuable resource and provided powerful tools for genetic breeding of lilac. Beyond that, our study could serve an efficient foundation for further facilitate genetic improvement of floral traits for lilac.
Assuntos
Etiquetas de Sequências Expressas , Flores/genética , Repetições de Microssatélites/genética , Característica Quantitativa Herdável , Syringa/genética , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos/genética , Variação Genética/genética , Syringa/anatomia & histologiaRESUMO
BACKGROUND: Allelic variation underlying the quantitative traits in plants is caused by the extremely complex regulation process. Tree peony originated in China is a peculiar ornamental, medicinal and oil woody plant. Paeonia rockii, one of tree peony species, is a precious emerging woody oil crop. However, in this valuable plant, the study of functional loci associated with yield traits has rarely been identified. Therefore, to explore the genetic architecture of 24 yield quantitative traits, the association mapping was first reported in 420 unrelated cultivated P. rockii individuals based on the next-generation sequencing (NGS) and single-molecule long-read sequencing (SMLRS). RESULTS: The developed 58 pairs of polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers from 959 candidate transcription factors (TFs) associated with yield were used for genotyping the 420 P. rockii accessions. We observed a high level of genetic diversity (polymorphic information content, PIC = 0.514) and low linkage disequilibrium (LD) between EST-SSRs. Moreover, four subpopulations in the association population were revealed by STRUCTURE analyses. Further, single-marker association analysis identified 141 significant associations, involving 17 quantitative traits and 41 EST-SSRs. These loci were mainly from AP2, TCP, MYB, HSF, bHLH, GATA, and B3 gene families and showed a small proportion of the phenotypic variance (3.79 to 37.45%). CONCLUSIONS: Our results summarize a valuable collection of functional loci associated with yield traits in P. rockii, and provide a precious resource that reveals allelic variation underlying quantitative traits in Paeonia and other woody oil crops.
Assuntos
Paeonia/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites/genética , Paeonia/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Fatores de Transcrição/fisiologiaRESUMO
Bluebunch wheatgrass (referred to as BBWG) [Pseudoroegneria spicata (Pursh) Á. Löve] is an important rangeland Triticeae grass used for forage, conservation, and restoration. This diploid has the basic St genome that occurs also in many polyploid Triticeae species, which serve as a gene reservoir for wheat improvement. Until now, the St genome in diploid species of Pseudoroegneria has not been mapped. Using a double-cross mapping populations, we mapped 230 expressed sequence tag derived simple sequence repeat (EST-SSR) and 3468 genotyping-by-sequencing (GBS) markers to 14 linkage groups (LGs), two each for the seven homologous groups of the St genome. The 227 GBS markers of BBWG that matched those in a previous study helped identify the unclassified seven LGs of the St sub-genome among 21 LGs of Thinopyrum intermedium (Host) Barkworth & D.R. Dewey. Comparisons of GBS sequences in BBWG to whole-genome sequences in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) revealed that the St genome shared a homology of 35% and 24%, a synteny of 86% and 84%, and a collinearity of 0.85 and 0.86, with ABD and H, respectively. This first-draft molecular map of the St genome will be useful in breeding cereal and forage crops.
Assuntos
Mapeamento Cromossômico , Genômica , Hordeum/genética , Poaceae/genética , Triticum/genética , Cromossomos de Plantas , Diploide , Etiquetas de Sequências Expressas , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Repetições de Microssatélites , Poliploidia , SinteniaRESUMO
The genus Rhododendron, known for large impressive flowers is widely distributed throughout the world. Rhododendrons have limited genetic information, despite of comprising high species diversity, morphological overlap and weak genetic barrier. In present study, expressed sequence tag (EST) data from Rhododendron catawbiense Michx (Subgenus Hymenanthes, Section Ponticum) and Rhododendron mucronatum var. ripense (Makino) E.H. Wilson (Subgenus Tsutsusi, Section Tsutsusi) were utilized for mining and identification of the SSRs for genetic diversity analysis of R. arboreum Smith (Subgenus Tsutsusi, Section Tsutsusi). A total of 249 SSRs were developed from 1767 contigs. Di-nucleotide was found to be most abundant repeat followed by tri- and tetra-nucleotide repeats. The motif AG/CT was most common di-nucleotide motif (31.73%), whereas, AAC/GTT (8.43%), ACG/CGT (8.03%), AAG/CTT (7.23%) and AGG/CCT (6.43%) were most abundant tri-nucleotide repeat motif. Among these SSRs, 168 sequences were only fit into the criteria to design flanking primer pairs. A total of 30 randomly selected primer pairs were utilized for validation and genetic diversity study in 36 genotypes of R. arboreum collected from western Himalayan region. In aggregate, 26 SSR markers (86.66%) produced good and repeatable amplifications. Expected heterozygosity (HE) ranged from 0.322 to 0.841 and observed heterozygosity (HO) ranged from 0.327 to 1.000 and PIC value ranged from 0.008 to 0.786. These primers were able to distinguish the geographic differences of occurrence based on cluster analysis. These developed EST-SSRs can be useful in future population genetics analysis and micro-evolutionary studies in Rhododendron species.
Assuntos
Repetições de Microssatélites/genética , Rhododendron/genética , DNA de Plantas/genética , Etiquetas de Sequências Expressas/metabolismo , Marcadores Genéticos/genética , Variação Genética/genética , Genoma de Planta/genética , Genótipo , Motivos de Nucleotídeos/genética , Polimorfismo Genético/genética , Análise de Sequência de DNA/métodosRESUMO
V. minor contains monomeric eburnamine-type of indole alkaloids having utilization as a neuro-medicinal plant. The biosynthetic pathway studies using miRNAs has been the focal point for plant genomic research in recent years and this technique is utilized to get an insight into a possible pathway level study in V. minor as understanding of genes in this prized medicinal plant is meagrely understood. The de novo transcriptomic analysis using Illumina Next gen sequencing has been performed in glasshouse shifted plant and transformed roots to elucidate the possible non confirmed steps of terpenoid indole alkaloids (TIAs) pathway in V. minor. A putative TIA pathway is elucidated in the study including twelve possible TIAs biosynthetic genes. The specific miRNA associated with TIAs pathway were identified and their roles were discussed for the first time in V. minor. The comparative analysis of transcriptomic data of glasshouse shifted plant and transformed roots showed that the raw reads of transformed roots were higher (83,740,316) compared to glasshouse shifted plant (67,733,538). The EST-SSR prediction showed the maximum common repeats among glasshouse shifted plant and transformed roots, although small variation was found in trinucleotide repeats restricted to glasshouse shifted plant. The study reveals overall 37 miRNAs which were observed to be true and can have a role in pathway as they can regulate the growth and alkaloid production. The identification of putative pathway genes plays an important role in establishing linkage between Aspidosperma and Eburnamine alkaloids.
RESUMO
BACKGROUND: Blumeria graminis f. sp. tritici (Bgt), the causal agent of wheat powdery mildew severely affects yield security wheat production in China. Understanding the virulence structure and genetic variations of this pathogen is important for breeding wheat lines resistant to wheat powdery mildew. However, information related to genes controlling resistance remains elusive. This study analyzes the virulence structure and the genetic diversity of pathogenic Bgt populations isolated from northeastern (Liaoning, Heilongjiang) and northwestern (Gansu) China, two representative wheat producing areas, on 37 wheat cultivars each carrying a known powdery mildew resistance (Pm) gene. RESULTS: Bgt isolates from northeastern China show higher frequencies of virulence genes than populations from Gansu Province. Many of the known Pm genes failed to provide resistance in this study. However, Pm21 provided 100% resistance to all isolates from all three provinces, obtained during two consecutive years, while Pm13 provided 100% resistance in Gansu. Pm13, Pm16, Pm18, and Pm22 also showed partial resistance in northeastern China, while Pm16, Pm18, Pm22, Pm5 + 6 and Pm2 + 6 +? maintained some resistance in Gansu. Genetic diversity among populations in different regions was detected by cluster analyses using expressed sequence tag-simple sequence repeat (EST-SSR). When the genetic similarity coefficient is relatively high, populations from the same regional origin are mostly clustered into one group while populations from different regions exhibit large genetic differences. CONCLUSION: Pm21 remains the best choice for breeding programs to maintain resistance to Bgt. Only 58% of the isolates tested show a clear correlation between EST-SSR genetic polymorphisms and frequency of virulence gene data.
Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Variação Genética , Ascomicetos/isolamento & purificação , China , Análise por Conglomerados , Etiquetas de Sequências Expressas , Frequência do Gene , Genes Fúngicos , Repetições de Microssatélites/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Virulência/genéticaRESUMO
BACKGROUND: Elymus nutans and E. sibiricus are two important forage grasses of the genus Elymus. But they are difficult to grow for commercial seed production due to serious seed shattering. We conducted a comparative transcriptome analysis of abscission zone to find possible transcription changes associated with seed shattering, explore candidate genes involved in seed shattering and identify candidate gene-based EST-SSR markers for germplasm evaluation. RESULTS: cDNA libraries from abscission zone (AZ) and non-abscission zone (NAZ) tissues of E. nutans were constructed and sequenced. A total of 111,667 unigenes were annotated and 7644 differentially expressed transcripts (DETs) were predicted, corresponding to 6936 up-regulated in AZ and 708 down-regulated in NAZ. We identified 489 candidate genes related to transcription factor, cell wall hydrolysis or modification, hydrolase activity, phytohormone signaling and response, lignin biosynthesis, and signal transduction or protein turnover. Eleven similar candidate genes involved in polygalacturonase activity, hydrolase activity, and mitogen-activated protein kinase were up-regulated in the abscission zone of the two Elymus species, suggesting these genes may have specific function for abscission zone development and seed shattering. A total of 67 polymorphic EST-SSR markers were developed and characterized based on the sequences of these candidate genes. Fourteen polymorphic EST-SSR primers were finally used to study genetic diversity in 48 E. nutans genotypes with contrasting seed shattering habit. The dendrogram based on molecular data showed that most accessions with similar seed shattering degree tended to group together. CONCLUSIONS: The expression data generated from this study provides an important resource for future molecular biological research. Many DETs were associated with abscission zone development, and EST-SSR loci related to candidate genes may have potential application in identifying trait-associated markers in E. nutans in the future.