Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(25): 14005-14014, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513736

RESUMO

Paleozoic and Precambrian sedimentary successions frequently contain massive dolomicrite [CaMg(CO3)2] units despite kinetic inhibitions to nucleation and precipitation of dolomite at Earth surface temperatures (<60 °C). This paradoxical observation is known as the "dolomite problem." Accordingly, the genesis of these dolostones is usually attributed to burial-hydrothermal dolomitization of primary limestones (CaCO3) at temperatures of >100 °C, thus raising doubt about the validity of these deposits as archives of Earth surface environments. We present a high-resolution, >63-My-long clumped-isotope temperature (TΔ47) record of shallow-marine dolomicrites from two drillcores of the Ediacaran (635 to 541 Ma) Doushantuo Formation in South China. Our T∆47 record indicates that a majority (87%) of these dolostones formed at temperatures of <100 °C. When considering the regional thermal history, modeling of the influence of solid-state reordering on our TΔ47 record further suggests that most of the studied dolostones formed at temperatures of <60 °C, providing direct evidence of a low-temperature origin of these dolostones. Furthermore, calculated δ18O values of diagenetic fluids, rare earth element plus yttrium compositions, and petrographic observations of these dolostones are consistent with an early diagenetic origin in a rock-buffered environment. We thus propose that a precursor precipitate from seawater was subsequently dolomitized during early diagenesis in a near-surface setting to produce the large volume of dolostones in the Doushantuo Formation. Our findings suggest that the preponderance of dolomite in Paleozoic and Precambrian deposits likely reflects oceanic conditions specific to those eras and that dolostones can be faithful recorders of environmental conditions in the early oceans.

2.
Appl Environ Microbiol ; 88(24): e0140922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468881

RESUMO

The phylum "Candidatus Patescibacteria" (or Candidate Phyla Radiation [CPR]) accounts for roughly one-quarter of microbial diversity on Earth, but the presence and diversity of these bacteria in marine sediments have been rarely charted. Here, we investigate the abundance, diversity, and metabolic capacities of CPR bacteria in three sediment sites (Mohns Ridge, North Pond, and Costa Rica Margin) with samples covering a wide range of redox zones formed during the early diagenesis of organic matter. Through metagenome sequencing, we found that all investigated sediment horizons contain "Ca. Patescibacteria" (0.4 to 28% of the total communities), which are affiliated with the classes "Ca. Paceibacteria," "Ca. Gracilibacteria," "Ca. Microgenomatia," "Ca. Saccharimonadia," "Ca. ABY1," and "Ca. WWE3." However, only a subset of the diversity of marine sediment "Ca. Patescibacteria," especially the classes "Ca. Paceibacteria" and "Ca. Gracilibacteria," can be captured by 16S rRNA gene amplicon sequencing with commonly used universal primers. We recovered 11 metagenome-assembled genomes (MAGs) of CPR from these sediments, most of which are novel at the family or genus level in the "Ca. Paceibacteria" class and are missed by the amplicon sequencing. While individual MAGs are confined to specific anoxic niches, the lack of capacities to utilize the prevailing terminal electron acceptors indicates that they may not be directly selected by the local redox conditions. These CPR bacteria lack essential biosynthesis pathways and may use a truncated glycolysis pathway to conserve energy as fermentative organotrophs. Our findings suggest that marine sediments harbor some novel yet widespread CPR bacteria during the early diagenesis of organic matter, which needs to be considered in population dynamics assessments in this vast environment. IMPORTANCE Ultrasmall-celled "Ca. Patescibacteria" have been estimated to account for one-quarter of the total microbial diversity on Earth, the parasitic lifestyle of which may exert a profound control on the overall microbial population size of the local ecosystems. However, their diversity and metabolic functions in marine sediments, one of the largest yet understudied ecosystems on Earth, remain virtually uncharacterized. By applying cultivation-independent approaches to a range of sediment redox zones, we reveal that "Ca. Patescibacteria" members are rare but widespread regardless of the prevailing geochemical conditions. These bacteria are affiliated with novel branches of "Ca. Patescibacteria" and have been largely missed in marker gene-based surveys. They do not have respiration capacity but may conserve energy by fermenting organic compounds from their episymbiotic hosts. Our findings suggest that these novel "Ca. Patescibacteria" are among the previously overlooked microbes in diverse marine sediments.


Assuntos
Bactérias , Ecossistema , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Filogenia , Metagenoma , Sedimentos Geológicos/microbiologia
3.
Global Biogeochem Cycles ; 36(11): e2022GB007493, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36582664

RESUMO

Glacier meltwater supplies silicon (Si) and iron (Fe) sourced from weathered bedrock to downstream ecosystems. However, the extent to which these nutrients reach the ocean is regulated by the nature of the benthic cycling of dissolved Si and Fe within fjord systems, given the rapid deposition of reactive particulate fractions at fjord heads. Here, we examine the benthic cycling of the two nutrients at four Patagonian fjord heads through geochemical analyses of sediment pore waters, including Si and Fe isotopes (δ30Si and δ56Fe), and reaction-transport modeling for Si. A high diffusive flux of dissolved Fe from the fjord sediments (up to 0.02 mmol m-2 day-1) compared to open ocean sediments (typically <0.001 mmol m-2 day-1) is supported by both reductive and non-reductive dissolution of glacially-sourced reactive Fe phases, as reflected by the range of pore water δ56Fe (-2.7 to +0.8‰). In contrast, the diffusive flux of dissolved Si from the fjord sediments (0.02-0.05 mmol m-2 day-1) is relatively low (typical ocean values are >0.1 mmol m-2 day-1). High pore water δ30Si (up to +3.3‰) observed near the Fe(II)-Fe(III) redox boundary is likely associated with the removal of dissolved Si by Fe(III) mineral phases, which, together with high sedimentation rates, contribute to the low diffusive flux of Si at the sampled sites. Our results suggest that early diagenesis promotes the release of dissolved Fe, yet suppresses the release of dissolved Si at glaciated fjord heads, which has significant implications for understanding the downstream transport of these nutrients along fjord systems.

4.
Sci Total Environ ; 915: 169830, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190920

RESUMO

Anthropogenic pressures considerably affect coastal areas, increasing nitrogen and phosphorous loads that lead to eutrophication. Eutrophication sometimes results in hypoxic and/or anoxic conditions near the bottom water. Dissolved oxygen (DO) concentrations influence redox-sensitive nutrients, which can alter the benthic flux of nutrients. We retrieved sediment cores from two sites in the eastern and western parts of Elefsis Bay, a semi-enclosed area of the Eastern Mediterranean, Greece, during winter and summer. In the western part, seasonally hypoxic or anoxic conditions occurred. We analysed pore-water samples under normoxic, hypoxic and anoxic bottom water conditions to study the pore-water nutrient concentrations variability under different oxygen regimes. Ex situ incubation experiments were conducted at the site experiencing oxygen deficiency by manipulating the DO concentrations. The pore-water nutrient concentrations showed higher variability at the site experiencing oxygen deficiency. Notably, elevated ammonium concentrations were observed in the pore water during anoxic conditions, in the 2-20-cm sediment layer. However, the benthic fluxes of ammonium and phosphate at the 0-2-cm sediment layer were comparable under hypoxic and anoxic conditions. The results of the incubation experiments demonstrate a direct decrease in nitrate concentrations as the DO concentrations diminished in the overlying water. The incubations after re-oxygenating the overlying water show that phosphate was more efficiently scavenged when anoxic conditions prevailed in the bottom water. The incubation experiments indicate the rapid response of the seafloor to oxygen availability, particularly concerning processes that influence nitrate and phosphate concentrations. These observations highlight the dynamic nature of nutrient cycling in shallow, seasonally anoxic environments, such as Elefsis Bay, and emphasise the sensitivity of the seafloor ecosystem to changes in bottom water oxygen availability.

5.
Heliyon ; 9(7): e17617, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37415948

RESUMO

The Ebolowa Municipal Lake (EML) (South Cameroon) in order to identify the early diagenesis processes taking place in the lake and the factors influencing them. To this end, 21 samples were collected. In situ, hydrogen potential, redox potential, conductivity, dissolved oxygen content, and turbidity were measured. In the laboratory, the samples were subjected to mineralogical analysis by X-ray diffraction, geochemical analysis by X-ray fluorescence and ICP-MS, and statistical analysis. The coefficient of variation (Qi) was calculated from the geochemical data. In the water column, OD > 2 mg/L, pH > 7 and Eh < 0 mV. In sediments: pH < 7, Eh values are lower. The contents of 2.08 ≤ TOC ≤ 12.65%. The mineralogical procession consists of quartz, kaolinite, gibbsite, goethite, and siderite. The latter is only present in the EML. The sediments are dominated by SiO2 (60.44-89.47%), Al2O3 (6.55-18.17%), and Fe2O3 (1.15-6.21%). The Qi values range from 0.73 to 2.31. The Mn/Fe ratio values are below 0.40. Qi > 1 for Al, Fe, Mn, Mg, K, Na, P, Ni, Co, Zn, Pb, Cd, Cu, Ba, and V, and Qi < 1 for Si; Qi = 1 for Ca. The hierarchical cluster analysis shows two groups: the first one includes the samples from the central and western parts, while the second one includes those from the eastern and southern parts of the lake. The water column is subject to oxic conditions, while the sediments are anoxic. The rapid consumption of oxygen is due to organic mineralization, which is the main diagenesis observed in the lake. This phenomenon is more accentuated in the western part of the lake.

6.
Environ Sci Pollut Res Int ; 30(57): 120735-120748, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943432

RESUMO

The study on the origin of quartz and silica in Xuanwei Formation coal in Northwest Yunnan, China, is helpful to understand the relationship between quartz and silica and the high incidence of lung cancer from the root. To address these questions, the mineralogy and microscopic studies of silica in Xuanwei Formation coal were performed. The following results were obtained: (1) silica in the late Permian Xuanwei Formation coal seams originated from detrital input, early diagenesis, and late diagenesis. (2) A more significant contribution comes from early diagenesis, which contains abundant authigenic quartz and amorphous silica. (3) Quartz and silica from inorganic silicon are more symbiotic with kaolinite and from biogenic silicon with chamosite. (4) Three silica polymorphs in coal samples have been identified: opal-A (amorphous silica), opal-CT/-C (cristobalite/tridymite), and α quartz. (5) Opal-A is ubiquitous, while opal-CT/-C and α quartz are rare. (5) Opal-A is an amorphous and nontoxic ordinary silica. (6) Since the toxicity of amorphous silica and its presence in coal is an emerging topic, it should be continuously monitored.


Assuntos
Quartzo , Dióxido de Silício , Dióxido de Silício/análise , Carvão Mineral/análise , Silício , China/epidemiologia
7.
Biology (Basel) ; 12(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37237455

RESUMO

This article presents geochemical, mineralogical and microbiological characteristics of five samples of modern bottom sediments in the littoral zone of the high-mountain salty lake Issyk-Kul. The 16S rRNA gene sequencing method shows that the microbial community consists of organic carbon degraders (representatives of phyla: Proteobacteria, Chloroflexi, Bacteroidota and Verrucomicrobiota and families Anaerolineaceae and Hungateiclostridiaceae), photosynthetic microorganisms (representatives of Chloroflexi, phototrophic Acidobacteria, purple sulphur bacteria Chromatiaceae and cyanobacteria) and bacteria of the reducing branches of the sulphur biogeochemical cycle (representatives of Desulfobacterota, Desulfosarcinaceae and Desulfocapsaceae). The participation of microorganisms in processes in the formation of a number of authigenic minerals (calcite, framboidal pyrite, barite and amorphous Si) is established. The high diversity of microbial communities indicates the presence of labile organic components involved in modern biogeochemical processes in sediments. The active destruction of organic matter begins at the water-sediment interface.

8.
Mar Pollut Bull ; 185(Pt A): 114139, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36335688

RESUMO

Bizerte Lagoon is a vital Mediterranean ecosystem subjected to intense anthropogenic pressure. The potential ecological risk caused by certain metals (Zn, Cu, Cr, Cd, Ni, Pb and Mn) is assessed from the data carried out in the sediment and pore water at two sites along with identifying the effects of diagenetic processes on the vertical distribution of these metals and their resulting diffusive fluxes. Using various ecological indices our results reveal a high ecological risk to benthic organisms from metals chiefly Cd, Pb and Ni accumulated in the sediment at both sites. Metals derived from organic matter degradation (Cu and Cd) and/or reduction of Mn-Fe-oxyhydroxydes (Pb, Ni, Zn, Cr) due to early diagenetic processes in sediment. The resulting concentration gradients between pore water and overlying water induce diffusive fluxes of metals to the water column. The estimation of the potential ecological risk caused by dissolved metals in pore waters by application of the Interstitial Water Criteria Toxic Units index indicates a slight ecological risk by Cu that was not identified in sediment. The ecological risk posed by dissolved metals is evidenced from -6 cm depth, which reduces the possibility of contamination of benthic species living above the water-sediment interface by diffusive fluxes of these metals.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Sedimentos Geológicos , Metais Pesados/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água , Ecossistema , Tunísia , Cádmio , Chumbo , Oligoelementos/análise , Medição de Risco , China
9.
Water Res ; 189: 116567, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161327

RESUMO

In freshwater systems, sediment can be an important source for the internal loading of PO4. The limiting character of this element in such system leads to consider this phenomenon in terms of eutrophication risks and water quality stakes. A four-months follow-up (January, March, April and May 2019) was carried out in a strong phosphate (PO4) limited secondary channel from an artificial irrigation system of Charente Maritime (France) to link the mobilization of remineralization products in the upper 6 cm layer of sediment (conventional core slicing/centrifugation and DET probes) and the phytoplankton biomass dynamics in the water column. Results showed congruent patterns between the temporal succession of the organic matter mineralization processes in the sediment and the primary biomass dynamics in the water column. In January and March (considered in winter), PO4 proved to be retained by adsorption onto iron oxides in anoxic sediment since pore water nitrate inhibited for about a month the respiration of metal oxides in the first cm of sediment, thus limiting PO4 availability and the phytoplankton growth. In April and May (early spring), after exhaustion of pore water nitrate, the dissolutive reduction of iron oxides released PO4 into pore water generated a significant diffusive outgoing flux from the sediment to the water column with a maximum in April (-1.10E-04±2.81E-05 nmol cm-2 s-1). This release coincided with the nanophytoplankton bloom (5.50 µg Chla L-1) and a potential increase of PO4 concentration in the water column. This work provides some insight on the importance of benthic-pelagic coupling in anthropogenic systems. This conceptual model has to be deployed on other sites of interest where internal loading of P takes precedence over external inputs and nitrate mitigation drives its benthic recycling and ultimately its bioavailability. This is to be essential to characterize the aquatic environment quality in order to limit eutrophication risks.


Assuntos
Fitoplâncton , Áreas Alagadas , Eutrofização , França , Água Doce , Sedimentos Geológicos , Nitrogênio/análise , Fósforo/análise
10.
Sci Total Environ ; 777: 145783, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33676215

RESUMO

Influences of post depositional changes of sedimentary organic matter (SOM) on chromium (Cr) speciation in continental slope sediments from the east and west coast of India are presented in this study. Average concentrations of total sedimentary Cr (CrT) in the slope areas of both the coasts were not elevated and ranged from 56.8 to 163 mg·kg-1 (avg. 97.3 ± 28.3 mg·kg-1). The geology of adjacent land masses influenced sedimentary Cr concentration in the slope areas. Geochemical fractionation study showed that a major fraction (51.6-159 mg·kg-1; avg. 89.6 ± 24.3 mg·kg-1) of the total sedimentary Cr was present in residual part of the sediments. Prime hosting phase for non-residual sedimentary Cr was oxidizable binding phase (SOM) (1.4-23.9 mg·kg-1; avg. 6.7 ± 6.3 mg·kg-1) followed by reducing binding phase (Fe/Mn-oxyhydroxide phase) (0.1-1.7 mg·kg-1; avg. 0.7 ± 0.3 mg·kg-1). Concentration of Cr (VI) in the slope sediments, varied from 0.2 to 8.3 mg·kg-1 (avg. 1.2 ± 1.0 mg·kg-1), was also predominantly associated with the SOM. The δ13Corg values of the SOM (ranged from -19.4 to -21.4‰; avg. -20.3 ± 0.5‰) suggests that they were derived from marine sources. Based on molar C/N ratio (ranged from 6.3-12.9; avg. 9.0 ± 2.0), the SOM were classified as labile organic matter. Increasing molar C/N ratio in the studied sediments was used as a proxy to reflect post depositional changes of the SOM. Association of normalized Cr (VI) (with respect to CrT) increased with increasing SOM concentration by 0.008 mg·kg-1. One unit increase of sedimentary molar C/N ratio was found to increase normalized Cr (VI) (w.r.t. CrT) by 0.003 mg·kg-1 in the sediments. This study suggests that post-depositional changes of SOM may increase Cr binding capacity and control its speciation and mobility in marine sediment system.

11.
Mar Pollut Bull ; 155: 111066, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32469754

RESUMO

St Georges Bay of Lebanon's coast is an open bay to the Mediterranean Sea. It is exposed to numerous anthropogenic activities such as industrial effluent, untreated wastewater discharge and maritime activities resulting in increasing chemical contamination, especially with trace metals. Contamination with trace metals (Cu, Cd, Co, Pb, As, Ag and Hg) and the influence of early diagenesis on their distribution were studied on both sediments and waters. For this purpose, sediment cores were collected, then treated under inert atmosphere to retrieve pore waters and solid fraction. The area appears to be seriously impacted by the materials transported by the Beirut River and/or by direct inputs, and recent land reclamation using dumpsite material. The sediments showed a significant level of contamination. Element mobility was studied by selective extraction on sediments. The mobility of trace elements from solid fraction to pore waters is controlled by the Fe/Mn cycle and organic matter.


Assuntos
Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos , Líbano , Mar Mediterrâneo
12.
Sci Total Environ ; 723: 138088, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32392692

RESUMO

Monomethylmercury (MMHg) concentrations in aquatic biota from Lake Titicaca are elevated although the mercury (Hg) contamination level of the lake is low. The contribution of sediments to the lake MMHg pool remained however unclear. In this work, seven cores representative of the contrasted sediments and aquatic ecotopes of Lake Titicaca were sliced and analyzed for Hg and redox-sensitive elements (Mn, Fe, N and S) speciation in pore-water (PW) and sediment to document early diagenetic processes responsible for MMHg production and accumulation in PW during organic matter (OM) oxidation. The highest MMHg concentrations (up to 12.2 ng L-1 and 90% of THg) were found in subsurface PWs of the carbonate-rich sediments which cover 75% of the small basin and 20% of the large one. In other sediment facies, the larger content of OM restricted MMHg production and accumulation in PW by sequestering Hg in the solid phase and potentially also by decreasing its bioavailability in the PW. Diagenetically reduced S and Fe played a dual role either favoring or restricting the availability of Hg for biomethylation. The calculation of theoretical diffusive fluxes suggests that Lake Titicaca bottom sediments are a net source of MMHg, accounting for more than one third of the daily MMHg accumulated in the water column of the Lago Menor. We suggest that in the context of rising anthropogenic pressure, the enhancement of eutrophication in high altitude Altiplano lakes may increase these MMHg effluxes into the water column and favor its accumulation in water and biota.

13.
Sci Total Environ ; 675: 247-259, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31030132

RESUMO

The seasonal dynamics and diagenesis of trace metals at two contrasting coastal sites were studied to determine the mechanism that drove the diffusive release of trace metals from sediments in the Changjiang Estuary. Porewater trace metal concentrations were 53.4-4829 nM for Zn, 11.0-344 nM for Cu, 7.75-221 nM for Cr, 2.71-61.1 nM for Co, 0.822-42.7 nM for Pb and 0.037-4.22 nM for Cd. The concentrations and profiles of trace metals in the porewater and solid phase displayed obvious regional and seasonal variations. This variation was mainly reflected in the surface layer and the depth of the suboxic and anoxic layers. Regionally, surface porewater trace metal concentrations in the seasonal hypoxic region were higher than those in the aerobic region due to changes in the redox conditions being beneficial to the release of trace metals. Seasonally, surface porewater trace metal concentrations decreased in summer compared to spring due to their removal by forming metal sulfides in summer. Solid profiles of the trace metals supported their dynamic variations in the porewater. The partition coefficient suggested that the formation of Fe/Mn (hydr)oxides was effective for the removal of trace metal in oxidizing condition, while the formation of sulfides was conducive to the removal of trace metals in reducing condition. The combination of porewater with solid phase data suggested that the dynamics of Cu, Zn, Cr and Co were mainly controlled by Fe and Mn diagenesis, the dynamics of Cd were affected by S cycling, and the dynamics of Pb were disturbed by anthropogenic inputs and benthic organism activities. Estimation of benthic fluxes indicated that sediments were an important source of trace metals in the water column. The contributions of trace metals by sediments to the water column of the Changjiang Estuary were only one order of magnitude lower than those by riverine fluxes.

14.
J Hazard Mater ; 325: 120-128, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-27930996

RESUMO

Mercury (Hg) is widely distributed in different localities around the world and poses a serious health threat to humans, especially when ingested in the form of methylmercury (MeHg). Efforts have been directed toward decreasing the production of MeHg by converting Hg to stable forms. Activated carbon and biochar have been evaluated as stabilization agents for Hg in contaminated sediments. However, the long-term fate of Hg stabilized by these materials remains unclear. Here, we compare the effectiveness of Hg stabilization using two biochars prepared from switchgrass at 300°C (lowT) and 600°C (highT). Experiments were conducted by co-blending biochars and sediment for >600 d under anaerobic conditions. Aqueous concentrations of total Hg and MeHg were greatly reduced in the presence of biochars, with the exception of a spike in MeHg concentration observed at ∼440 d in the high-T biochar system. Hg co-occurs with S, Fe, Cu, and other elements within the plant structure of low-T biochar particles, but primarily on the outer surfaces of high-T biochar particles. Our results indicate that the stabilization of Hg may be through an early-stage diagenetic process, suggesting that the stabilization of Hg by biochar may be effective over long time frames.


Assuntos
Carvão Vegetal/química , Sedimentos Geológicos/química , Mercúrio/química , Compostos de Metilmercúrio/química , Poluentes Químicos da Água/química , Carbono/análise , Cobre/análise , Ferro/análise , Mercúrio/análise , Metilação , Compostos de Metilmercúrio/análise , Panicum , Rios , Enxofre/análise , Poluentes Químicos da Água/análise
15.
Sci Total Environ ; 517: 178-94, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25727674

RESUMO

To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment-water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.


Assuntos
Monitoramento Ambiental , Metais/análise , Poluentes Químicos da Água/análise , Cobre/análise , Sedimentos Geológicos , Chumbo/análise , Massachusetts , Prata/análise
16.
Mar Pollut Bull ; 88(1-2): 155-61, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25263958

RESUMO

The influence of early diagenesis on the vertical distribution of metal forms in the sediments of Bohai Bay was discussed in this paper. The results showed that the concentrations were: Al > Fe ≈ Ca > Mn > Cr > Zn > Cu > Pb > Cd. In vertical distribution, the forms of Cr and Pb were stable from the top to the bottom. However, the exchangeable forms and acid-extracted forms of Cd, Cu and Zn presented an obvious declining trend. The metals would be transformed to more stable forms during the early-diagenesis process. Further analysis found that early diagenesis can change the sedimentary environment, affecting pH, oxidation-reduction potential (ORP), total dissolved solid (TDS) and the structure of organic matter (OM), all main factors influencing metal forms in the sediments of Bohai Bay.


Assuntos
Sedimentos Geológicos/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Baías , China , Sedimentos Geológicos/química , Água do Mar/química
17.
An. acad. bras. ciênc ; 81(4): 781-792, Dec. 2009. ilus, mapas
Artigo em Inglês | LILACS | ID: lil-529937

RESUMO

The late Cambrian - late Tremadocian La Silla Formation is a carbonate unit of the eastern Precordillera in Argentina whose facies indicate a shallow platform environment. Until this moment, there were no studies that referred to the diagenetic evolution of these rocks. The present study involves the characteristics and distribution of the silicification that affects this unit and determines its different diagenetic stages through petrographic (with cathodoluminescence support) and stratigraphic analyses. An early diagenetic chert, in a stage previous to the compactation, was observed. This chert is related to silica-rich seawater in contact with permeable and porous sediments. A later pulse of chert, associated with fracturing, also occurs. The knowledge provided by the characteristics and distribution of chert in these carbonates is significant, especially when considering that the La Silla Formation in San Juan province is the most quarried unit for the elaboration of lime.


A Formação La Silla (Neo Cambriano-Neo Tremadociano) é formada por depósitos carbonáticos da região da Pré-Cordilheira leste, Argentina. As faciologias encontradas em tais depósitos indicam um ambiente de deposição caracterizado por uma plataforma rasa. Até o momento, nenhum estudo tratou especificamente da evolução diagenética dessas rochas. O presente estudo envolve as características e distribuição da silicificação que afeta esta formação e apresenta os diferentes estágios diagenéticos ocorridos, através de análises petrográficas (auxiliadas por catodoluminescência) e estratigráficas. Foi identificado um pulso precoce de silicificação, anterior ao processo de compactação das rochas afetadas. Esta silicificação foi favorecida pela presença de água do mar rica em sílica em contato com sedimentos porosos e permeáveis. Também foi identificado um pulso de silicificação tardia, associado a eventos de fraturamento das rochas. O conhecimento adquirido sobre as características e a distribuição da silicificação nestes depósitos carbonáticos é importante, especialmente quando se considera que a Formação La Silla, na Província de San Juan, é a formação mais minerada para a produção de calcário.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA