Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Parasitol Res ; 122(6): 1381-1390, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081209

RESUMO

The range of the protozoan parasite Theileria parva, which causes East Coast fever in cattle, has been expanding to countries where it has not previously been detected, as a result of cross-border domestic cattle movement. Countries where T. parva has not previously been observed until recently include Cameroon and South Sudan. This raises the issue of the conservation of the p104 antigen gene, on which the nested PCR assay that is widely used for T. parva surveillance in the blood of infected cattle is based. We sampled 40 isolates from six countries widely distributed across the geographical range of the parasite, including eastern, central and southern Africa, for p104 sequence polymorphism. These included parasites from both domestic cattle and the Cape buffalo (Syncerus caffer) wildlife reservoir. The most frequent allelic variants were present in cattle transmissible isolates from multiple widely separated geographical regions in Zambia, Uganda, Kenya, Tanzania, Rwanda and South Africa. These frequent p104 variants were also present in the three component stocks of the Muguga cocktail used for the infection and treatment live immunisation procedure to control T. parva in the field. Other isolates exhibited unique alleles. This includes some of the p104 sequences from Cameroon, which is outside the known range of the Rhipicephalus tick vector and whose origin is therefore unclear. The nested primer oligonucleotides used to generate the amplicons were universally conserved in cattle-derived parasites and a majority of buffalo-derived isolates across the geographical range of the parasite. However, some rare South African buffalo-derived isolates exhibited one or two mismatches with the primer sequences. It therefore remains possible that some p104 alleles may be so divergent that they do not amplify with the current diagnostic primers and are not detectable in surveys, hence the need for increasing knowledge of genetic heterogeneity of diagnostic targets. There was no evidence for positive selection among those p104 mutations that resulted in residue changes. Importantly, the data indicate that the p104-based PCR detection assay should be effective across the majority of the range of T. parva, and if the one or two mismatches are shown in future to result in the primers annealing less efficiently, then the assay can be further improved by introduction of degenerate bases to enable amplification of the less frequent South African buffalo-derived variant p104 genes.


Assuntos
Parasitos , Rhipicephalus , Theileria parva , Theileriose , Animais , Bovinos , Theileria parva/genética , Parasitos/genética , Búfalos/parasitologia , Theileriose/epidemiologia , Theileriose/parasitologia , Rhipicephalus/parasitologia , Reação em Cadeia da Polimerase/veterinária , Variação Genética
2.
Vet Pathol ; 59(6): 1031-1046, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36052867

RESUMO

Cases of Theileria-associated mortality are rarely reported in African wild artiodactyls. Descriptions of lesions are limited, particularly in endangered hippotraginids. Here, we analyzed retrospectively the gross and histologic findings in 55 roan antelope (Hippotragus equinus) with fatal natural theileriosis. The most frequently recorded gross findings in 40 cases were widespread petechiae and ecchymoses (72.5%), probable anemia (67.5%), icterus (60%), splenomegaly (60%), hepatomegaly (52.5%), and pulmonary edema (50%). Histologic lesions in 34 cases were characterized by multi-organ infiltrates of parasitized and nonparasitized mononuclear leukocytes (MLs), and fewer multinucleate giant cells (MNGCs). Liver, lung, kidney, adrenal gland, and heart were most consistently infiltrated, followed by spleen and lymph nodes. Leukocytes were phenotyped in lung, liver, kidney, and heart specimens from 16 cases, using immunohistochemistry to detect CD20, CD3, myeloid/histiocyte antigen (MAC387), IBA-1, and CD204 surface receptors. A roan polyclonal anti-Theileria sp. (sable) antibody was applied to the same tissues to identify intraleukocytic parasite antigens. Similar proportions of intravascular and extravascular IBA-1-, CD204-, and MAC387-reactive putative monocyte-macrophages and fewer CD3-positive putative T-lymphocytes were identified in all organs, especially the lungs in infected roan. CD20-positive putative B-lymphocytes were significantly scarcer than in uninfected controls. Intraleukocytic Theileria parasites labeled consistently in affected tissues. Some parasitized and nonparasitized MLs and the MNGCs failed to label with selected leukocyte markers. Fatal theileriosis in roans may largely be the result of multi-organ monocyte-macrophage activation with associated tissue injury and overwhelming systemic inflammation. The identity of the parasitized leukocytes and characteristics of the lymphohistiocytic response require further clarification in roans.


Assuntos
Antílopes , Artiodáctilos , Doenças dos Bovinos , Theileria , Theileriose , Animais , Bovinos , Estudos Retrospectivos , Theileriose/parasitologia
3.
BMC Genomics ; 21(1): 279, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245418

RESUMO

BACKGROUND: The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome. RESULTS: The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized. CONCLUSIONS: The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.


Assuntos
Anotação de Sequência Molecular/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Theileria parva/genética , Processamento Alternativo , Animais , Redes Reguladoras de Genes , Genoma de Protozoário , Glicosilação , Gado/parasitologia , Análise de Sequência de RNA , Theileria parva/metabolismo
4.
Vet Pathol ; 57(1): 24-48, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31854265

RESUMO

The published literature on schizont-"transforming," or pathogenic theileriosis, in African wild artiodactyls is dated and based on limited information. Here the authors review the taxonomy, diagnosis, epidemiology, hematology, pathology, and aspects of control in various species. Molecular studies based on 18S and 16S rRNA gene sequences have shown that African wild artiodactyls are commonly infected with diverse Theileria spp., as well as nontheilerial hemoprotozoa and rickettsia-like bacteria, and coinfections with pathogenic and nonpathogenic Theileria species are often recorded. Although theileriosis is still confusingly referred to as cytauxzoonosis in many species, the validity of a separate Cytauxzoon genus in artiodactyls is debated. The epidemiology of theileriosis is complex; the likelihood of fatal disease depends on the interplay of parasite, vertebrate host, tick vector, and environmental factors. Roan calves (Hippotragus equinus) and stressed animals of all host species are more susceptible to fatal theileriosis. Even though regenerative anemia is common, peripheral blood piroplasm parasitemia does not correlate with disease severity. Other than anemia, common macroscopic lesions include icterus, hemorrhages (mucosal, serosal, and tissue), fluid effusions into body cavities, lung edema, and variably sized raised cream-colored foci of leukocyte infiltration in multiple organs. Histopathologic findings include vasocentric hyperproliferation and lysis of atypical leukocytes with associated intracellular schizonts, parenchymal necrosis, hemorrhage, thromboembolism, and edema. Immunophenotyping is required to establish the identity of the schizont-transformed leukocytes in wild ungulates. Throughout the review, we propose avenues for future research by comparing existing knowledge on selected aspects of theileriosis in domestic livestock with that in African wild artiodactyls.


Assuntos
Artiodáctilos/parasitologia , Gado/parasitologia , Theileria/classificação , Theileriose/parasitologia , Animais , Theileria/genética , Theileria/isolamento & purificação , Theileriose/patologia
5.
Parasitol Res ; 119(7): 2363-2367, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32500369

RESUMO

Rhipicephalus appendiculatus is the major tick vector of Theileria parva, an apicomplexan protozoan parasite that causes the most economically important and lethal disease of cattle in East and central Africa. The African cape buffalo (Syncerus caffer) is the major wildlife host of T. parva from southern Uganda and Kenya to southern Africa. We show herein that R. appendiculatus appears to be absent from the two largest national parks in northern Uganda. Syncerus caffer is common in both of these national parks, specifically Murchison falls (MFNP) and Kidepo Valley (KVNP). We re-confirmed the previously reported absence of T. parva in buffalo sampled in the two northern parks based on RLB data using a nested PCR based on the T. parva p104 gene. By contrast, T. parva-infected R. appendiculatus ticks and parasite-infected buffalo were present in Lake Mburo (LMNP) in South central Uganda. This suggests that the distribution of R. appendiculatus, which is predicted to include the higher rainfall regions of northern Uganda, may be limited by additional, as yet unknown factors.


Assuntos
Vetores Aracnídeos/parasitologia , Búfalos/parasitologia , Rhipicephalus/parasitologia , Theileria parva/fisiologia , Animais , Animais Selvagens/parasitologia , DNA de Protozoário/genética , Ecossistema , Genes de Protozoários/genética , Parques Recreativos , Theileria parva/genética , Theileriose/parasitologia , Theileriose/transmissão , Uganda/epidemiologia
6.
BMC Vet Res ; 15(1): 46, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704455

RESUMO

BACKGROUND: The Infection and Treatment Method (ITM) of vaccination is the only immunization procedure currently available to protect cattle against East Coast fever (ECF), a tick-transmitted disease responsible for losses of several hundreds of millions of dollars per year in sub-Saharan Africa. The vaccine comprises a homogenized preparation of infected ticks packaged in straws and stored in liquid nitrogen. The current manufacturing protocol results in straws containing 30-40 doses (ILRI 0804), which is impractical for immunizing small herds as found in dairy and smallholder farming systems. The ILRI 0804 SD stabilate was prepared as a 1:5 dilution of the parent stabilate, with the aim of producing vaccine stabilate straws containing between four to eight doses and thus suitable for smallholder farming systems. Infectivity of the diluted stabilate was assessed and the protective efficacy of the diluted stabilate was determined by performing experimental and field immunizations. RESULTS: Two groups of six cattle were inoculated with 1 ml of the diluted stabilate at 1:20 (equivalent to the recommended field dose for ILRI 0804, assuming no loss of sporozoite viability during thawing and refreezing) and 1:14 (assuming 30-35% loss of sporozoite viability). Schizonts were detected in all 12 animals, showing viability of sporozoites. Ten animals from the infectivity study and two control animals not previously exposed to T. parva were challenged with the parental ILRI 0804 stabilate. The results show that the two control animals displayed severe ECF reactions and were treated 14 days after challenge. Of the previously infected animals, only one underwent a severe reaction following challenge, a result in accord with the challenge experiments performed previously with the parent stabilate [Ticks Tick-Borne Dis 7:306-314, 2016]. The animal that displayed a severe reaction had no detectable schizonts and did not seroconvert following the initial inoculation with ILRI 0804 SD. In addition, 62 animals immunized under field conditions showed a mean seroconversion rate of 82%. CONCLUSION: The results presented in this article demonstrate that it is possible to prepare straws suitable for use in smallholder herds by thawing, diluting and refreezing already packaged vaccine.


Assuntos
Indústria de Laticínios , Imunização/veterinária , Vacinas Protozoárias/imunologia , Theileria parva/imunologia , Theileriose/prevenção & controle , Carrapatos/parasitologia , Animais , Bovinos , Criopreservação/veterinária , Embalagem de Medicamentos/métodos , Armazenamento de Medicamentos , Imunização/métodos , Imunogenicidade da Vacina , Vacinas Protozoárias/administração & dosagem , Soroconversão , Tanzânia , Carrapatos/imunologia
7.
Trop Anim Health Prod ; 51(1): 99-107, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30014196

RESUMO

East Coast fever (ECF), one of the most serious tick-borne diseases in sub-Saharan and eastern Africa, was introduced to the island of Grande Comore in 2002 through zebu import from Tanzania, resulting in at least a 10% loss of livestock. A participatory epidemiology initiative was launched in 2015 to gain a better understanding of ECF epidemiology. Thirty-six villages were investigated involving 36 focus group sessions and 120 individual questionnaires. Farmers' knowledge of ECF and of priority diseases affecting the country was assessed, and the impacts of ECF and other major diseases were compared by a scoring method. The results showed that 69.4% (95% CI [51.3, 87.5%]) of the farmers had good to very good knowledge of ECF. The most important cattle diseases on Grande Comore were considered to be East Coast fever, heartwater, babesiosis, and cutaneous diseases. About 58% of the farmers (95% CI [49.2, 66.8%]) use curative treatments when cattle were sick. Between January and September 2015, the ECF incidence was estimated at 18.5% (95% CI [15.5, 21.4%]), and 87.5% (95% CI [72.7, 100%]) of the cattle infected by ECF died. The ECF incidence estimated in our study was found to be less when compared to that observed in Tanzania even though the climatic conditions in the Union of the Comoros are suitable for the biological vector of ECF, the tick species Rhipicephalus appendiculatus. Access to chemical treatment and its effectiveness against ECF, as well as controlling borders and organizing quarantine, are discussed.


Assuntos
Participação da Comunidade , Theileriose/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Animais , Vetores Aracnídeos , Bovinos , Comores/epidemiologia , Humanos , Incidência , Rhipicephalus , Tanzânia/epidemiologia , Theileriose/prevenção & controle , Doenças Transmitidas por Carrapatos/prevenção & controle
8.
Trop Anim Health Prod ; 49(4): 813-822, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28332070

RESUMO

In Tanzania, control of East Coast fever (ECF) has predominantly relied on tick control using acaricides and chemotherapy, little on ECF vaccination, and very little on dissemination regarding animal immunization. In this paper, the prevalence, control measure, and tolerance of Tanzania Shorthorn Zebu (TSHZ) cattle to ECF are reviewed. In addition, the opportunities available for reducing the use of acaricides for the benefit of the farmers in terms of reduction of costs of purchasing acaricides and environmental pollution are described. The tick distribution and epidemiological factors for ECF such as the agro-ecological zones (AEZ), livestock production systems (LPS), strain, and age of the animals are also described. These factors influence the epidemiology of ECF and the distribution of TSHZ strains in different geographic locations of Tanzania. We have further showed that there is a tendency of farmers to select among the strains of TSHZ for animals which can tolerate ticks and ECF and crossbreed them with their local strains with the aim of benefiting from the inherent characteristics of the most tolerant strains. Generally, many strains of TSHZ cattle are tolerant to tick infestation and ECF infection and can be bred to respond to the needs of the people. In this review paper, we recommend that in future, ECF epidemiological studies should account for factors such as livestock production system, agro-climate, breed of animal, tick control strategy, and the dynamic interactions between them. In conclusion, we have demonstrated that an integrated control method involving use of acaricides, immunization, and ECF-tolerant/-resistant animals is required.


Assuntos
Theileriose/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Acaricidas , Animais , Bovinos , Imunização/veterinária , Gado , Prevalência , Tanzânia/epidemiologia , Theileriose/imunologia , Theileriose/prevenção & controle , Controle de Ácaros e Carrapatos , Infestações por Carrapato/imunologia , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/imunologia , Doenças Transmitidas por Carrapatos/prevenção & controle , Carrapatos , Vacinação
9.
Trop Anim Health Prod ; 49(8): 1613-1621, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28752214

RESUMO

Ticks and tickborne diseases (TBDs) are serious constraints to cattle production in Tanzania and other tropical and subtropical countries. Among the TBDs, East Coast fever (ECF) is the most important as it causes significant economic losses to the cattle industry in Tanzania. However, control of ECF in Tanzania has continued to be a challenge due to inadequate epidemiological information. The main objective of this study was to determine the epidemiological situation of Theileria parva infections in cattle kept under pastoral and agro-pastoral farming systems in Mara, Singida, and Mbeya regions of Tanzania. Blood samples were collected from 648 cattle in the three regions. Genomic DNA was extracted and amplified in a polymerase chain reaction (PCR) using T. parva-specific primers targeting the 104-kD antigen (P104) gene. In addition, information was collected on the possible risk factors of T. parva infection (animal age, region, animal sex, tick burden, tick control method, and frequency of acaricide application). The prevalence of T. parva across the three regions was 14.2%. There was variation in prevalence among the three regions with Mara (21.8%) having a significantly higher (p = 0.001) prevalence than the other regions. Moreover, Mbeya exhibited relatively lower prevalence (7.4%) compared to the other regions. Factors found to be significantly associated with an animal being PCR positive for T. parva were region (p = 0.001) and tick burden (p = 0.003). Other factors were not found to be significant predictors of being PCR positive for T. parva. The present study showed high variation in tick burden and T. parva prevalence across the regions. Therefore, different strategic planning and cost-effective control measures for ticks and T. parva infection should be implemented region by region in order to reduce losses caused by ticks and ECF in the study area.


Assuntos
Theileria parva , Theileriose/epidemiologia , Acaricidas/farmacologia , Animais , Bovinos , Reação em Cadeia da Polimerase/veterinária , Prevalência , Fatores de Risco , Tanzânia/epidemiologia , Theileriose/prevenção & controle , Controle de Ácaros e Carrapatos/métodos , Carrapatos/efeitos dos fármacos
10.
Bioorg Med Chem ; 22(15): 4338-46, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24909679

RESUMO

East Coast fever (ECF) is a tick-borne disease caused by the parasite Theileria parva which infects cattle. In Sub-Saharan Africa it leads to enormous economic costs. After a bite of a tick, sporozoites invade the host lymphocytes and develop into schizonts. At this stage the parasite transforms host lymphocytes resulting in the clonal expansion of infected lymphocytes. Animals develop a lymphoma like disorder after infection which is rapidly fatal. Hitherto, a few drugs of the quinone type can cure the disease. However, therapy can only be successful after early diagnosis. The genera Theileria and Plasmodium, which includes the causative agent of human malaria, are closely related apicomplexan parasites. Enzymes of the hypusine pathway, a posttranslational modification in eukaryotic initiation factor EIF-5A, have shown to be druggable targets in Plasmodium. We identified the first enzyme of the hypusine pathway from T. parva, the deoxyhypusine synthase (DHS), which is located on chromosome 2 of the Muguga strain. Transcription is significantly increased in schizonts. The expressed T. parva DHS reveals an open reading frame (ORF) of 370 amino acids after expression in Escherichia coli Rosetta cells with a molecular size of 41.26 kDa and a theoretical pI of 5.26. Screening of the Malaria Box which consists of 400 active compounds resulted in a novel heterocyclic compound with a guanyl spacer which reduced the activity of T. parva DHS to 45%. In sum, the guanyl residue seems to be an important lead structure for inhibition of Theileria DHS. Currently, more different guanyl analogues from the Malaria Box are tested in inhibitor experiments to determine their efficacy.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Plasmodium/enzimologia , Theileria parva/enzimologia , Sequência de Aminoácidos , Animais , Bovinos , Clonagem Molecular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Escherichia coli/metabolismo , Guanina/química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/metabolismo , Humanos , Cinética , Linfócitos/parasitologia , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plasmodium/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Theileria parva/genética
11.
Ticks Tick Borne Dis ; 15(6): 102386, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128161

RESUMO

Instead of using the Infection and Treatment Method (ITM)-based vaccine, is it possible to control East Coast Fever (ECF) through blocking Theileria parva transmission in ticks and cattle? This review pursues this question. It's over 100 years since Arnold Theiler (1912) first illustrated the natural ITM as a vaccination approach against ECF-cattle disease. The approach entails infecting cattle with live Theileria sporozoites and co-treatment with long-acting tetracycline. Building on the ITM principle, the "Muguga"-cocktail ECF vaccine was developed in the 1970s and it remains the only commercially available-one. Although the vaccine induces cattle-protection, the vaccination approach still raises several drawbacks. Of those, the most outstanding is the vaccine-safety. This is implied because after ITM vaccination, cattle revert to T. parva pathogen reservoirs, therefore, during blood meal-acquisition, the ticks co-ingest T. parva pathogens. Ultimately, the pathogens are further transmitted transstadial; from larvae to nymph and nymph-adults and later re-transmitted to cattle during blood-meal acquisition. Consequently, the vaccine-constituting T. parva strains are introduced and (re) spread in non-endemic/ endemic areas. Precisely, rather than eradicating the disease, the ITM vaccination-approach promotes ECF endemicity. With advent of novel vaccination approaches toward vector and vector-borne disease control, ECF-control based on ITM of vaccination is considered outdated. The review highlights the need for embracing a holistic integrative vaccination approach entailing blocking Theileria pathogen-development and transmission both in the ticks and cattle, and/or the tick-population.

12.
Vet Parasitol ; 330: 110240, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959671

RESUMO

Theileriosis caused by Theileria parva infections is responsible for high cattle mortalities in Zambia. Although infected buffalo are a risk to cattle, the characterization of T. parva parasites occurring in this host in Zambia has not been reported. Furthermore, considering the advances in the development of a p67 subunit vaccine, the knowledge of p67 genetic and antigenic diversity in both cattle and buffalo associated T. parva is crucial. Therefore, blood samples from buffalo (n=43) from Central, Eastern and Southern provinces, and cattle (n=834) from Central, Copperbelt, Eastern, Lusaka, and Southern provinces, were tested for T. parva infection and the parasites characterized by sequencing the gene encoding the p67 antigen. About 76.7 % of buffalo and 19.3 % of cattle samples were PCR positive for T. parva. Three of the four known p67 allele types (1, 2 and 3) were identified in parasites from buffalo, of which two (allele types 2 and 3) are associated with T. parva parasites responsible for Corridor disease. Only allele type 1, associated with East Coast fever, was identified from cattle samples, consistent with previous reports from Zambia. Phylogenetic analysis revealed segregation between allele type 1 sequences from cattle and buffalo samples as they grouped separately within the same sub-clade. The high occurrence of T. parva infection in buffalo samples investigated demonstrates the risk of Corridor disease infection, or even outbreaks, should naïve cattle co-graze with infected buffalo in the presence of the tick vector. In view of a subunit vaccine, the antigenic diversity in buffalo associated T. parva should be considered to ensure broad protection. The current disease control measures in Zambia may require re-evaluation to ensure that cattle are protected against buffalo-derived T. parva infections. Parasite stocks used in 'infection and treatment' immunization in Zambia, have not been evaluated for protection against buffalo-derived T. parva parasites currently circulating in the buffalo population.


Assuntos
Alelos , Antígenos de Protozoários , Búfalos , Theileria parva , Theileriose , Animais , Búfalos/parasitologia , Theileria parva/genética , Theileria parva/imunologia , Theileriose/parasitologia , Theileriose/epidemiologia , Zâmbia/epidemiologia , Bovinos , Antígenos de Protozoários/genética , Filogenia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/epidemiologia , Proteínas de Protozoários
13.
mBio ; 15(6): e0341223, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38747635

RESUMO

Theileria annulata is a tick-transmitted apicomplexan parasite that gained the unique ability among parasitic eukaryotes to transform its host cell, inducing a fatal cancer-like disease in cattle. Understanding the mechanistic interplay between the host cell and malignant Theileria species that drives this transformation requires the identification of responsible parasite effector proteins. In this study, we used TurboID-based proximity labeling, which unbiasedly identified secreted parasite proteins within host cell compartments. By fusing TurboID to nuclear export or localization signals, we biotinylated proteins in the vicinity of the ligase enzyme in the nucleus or cytoplasm of infected macrophages, followed by mass spectrometry analysis. Our approach revealed with high confidence nine nuclear and four cytosolic candidate parasite proteins within the host cell compartments, eight of which had no orthologs in non-transforming T. orientalis. Strikingly, all eight of these proteins are predicted to be highly intrinsically disordered proteins. We discovered a novel tandem arrayed protein family, nuclear intrinsically disordered proteins (NIDP) 1-4, featuring diverse functions predicted by conserved protein domains. Particularly, NIDP2 exhibited a biphasic host cell-cycle-dependent localization, interacting with the EB1/CD2AP/CLASP1 parasite membrane complex at the schizont surface and the tumor suppressor stromal antigen 2 (STAG2), a cohesion complex subunit, in the host nucleus. In addition to STAG2, numerous NIDP2-associated host nuclear proteins implicated in various cancers were identified, shedding light on the potential role of the T. annulata exported protein family NIDP in host cell transformation and cancer-related pathways.IMPORTANCETurboID proximity labeling was used to identify secreted proteins of Theileria annulata, an apicomplexan parasite responsible for a fatal, proliferative disorder in cattle that represents a significant socio-economic burden in North Africa, central Asia, and India. Our investigation has provided important insights into the unique host-parasite interaction, revealing secreted parasite proteins characterized by intrinsically disordered protein structures. Remarkably, these proteins are conspicuously absent in non-transforming Theileria species, strongly suggesting their central role in the transformative processes within host cells. Our study identified a novel tandem arrayed protein family, with nuclear intrinsically disordered protein 2 emerging as a central player interacting with established tumor genes. Significantly, this work represents the first unbiased screening for exported proteins in Theileria and contributes essential insights into the molecular intricacies behind the malignant transformation of immune cells.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas de Protozoários , Theileria annulata , Theileria annulata/genética , Theileria annulata/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Animais , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Bovinos , Interações Hospedeiro-Parasita , Macrófagos/parasitologia , Theileriose/parasitologia , Theileriose/metabolismo , Núcleo Celular/metabolismo
14.
Front Vet Sci ; 11: 1400467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290507

RESUMO

Introduction: Explanatory models of disease focus on individuals' and groups' understandings of diseases, revealing a disconnect between livestock keepers and animal health providers. Animal health providers rely on models grounded in their veterinary training and experience. At the same time, livestock keepers may construct models based on traditional knowledge and their lived experience with East Coast fever in their cattle herds. To better understand East Coast fever and develop more efficient management strategies, this ethnographic study used the explanatory models' framework to provide a structured way for comprehending and contrasting different beliefs and understandings of East Coast fever as perceived by the livestock keepers across the different livestock production systems. Method: Multiple data collection methods were employed, including unstructured observations, 30 in-depth interviews (IDIs), 18 focus group discussions (FGDs), and 25 key informant interviews (KIIs). Results: Adult cattle, calves and sheep were perceived as susceptible to East Coast fever. However, there were varying perceptions of livestock susceptible to East Coast fever in the different livestock production systems. East Coast fever was attributed to multiple factors, including ticks, tsetse flies, mosquitos, birds, stagnant, dirty, or contaminated water, and livestock-wildlife interactions. However, some aspects were specific to the production system. Livestock keepers classified diseases based on observable signs, grouping diseases with similar signs under the same classification. Moreover, livestock keepers described different forms of East Coast fever ranging from treatable to fatal, which could be distinguished by the signs they presented. Self-treatment with drugs from the local agro-vet shops was the initial course of action during suspected cases of East Coast fever. Animal health practitioners were the last resort if self-treatment did not produce the desired outcome. Livestock keepers perceived avoidance of stagnant or contaminated water, tick control, and fencing as effective control measures for East Coast fever in their livestock herd. Very few livestock keepers were aware of an East Coast fever vaccine. Discussion: Mechanistic explanations hold little significance in controlling East Coast fever. Instead, understanding and addressing livestock keepers' beliefs regarding ECF is crucial for promoting behaviors that support interventions across different livestock production systems.

15.
Int J Parasitol ; 54(10): 507-521, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38677399

RESUMO

Theileria parvacauses East Coast fever (ECF), one of the most important and lethal tick-borne diseases of cattle in sub-Saharan Africa. ECF is a considerable burden to the livestock industry, causing annual losses exceeding US $300 million. Currently, diagnosis of T. parva infections relies mainly on clinical signs, serology, and microscopic identification of parasites in either blood or lymph fluid samples. However, some of these tests might not indicate ongoing infection and they all lack the sensitivity to detect low-level infections. Molecular tests such as nested and quantitative PCR assays offer high sensitivity for detection of T. parva. However, these tests remain highly complex technologies that are impractical to use in resource-limited settings where economic losses due to the disease have the most significant impact. A field-deployable, point-of-care test will be of significant value in the treatment and control of ECF in endemic areas. For this purpose, we have developed a CRISPR-Cas12a-based pen-side tool that can sensitively and specifically detect T. parva based on the p104 gene. We describe a streamlined, field-applicable diagnostic tool comprising a 20 min recombinase polymerase amplification (RPA) reaction followed by a 60 min CRISPR-Cas12a reaction using a FAM/Biotin lateral flow strip readout. We tested two different RPA primer pairs and four different CRISPR-RNAs (crRNAs). The p104-based assay displayed high sensitivity, detecting as low as one infected lymphocyte per three microliters of blood and universally detecting eight different T. parva strains without detecting DNA from other Theileria spp. such as Theileria mutans and Theileria lestoquardi. This work opens the way for a field-applicable diagnostic tool for the sensitive point-of-care early diagnosis of T. parva infections in cattle.


Assuntos
Sistemas CRISPR-Cas , Theileriose , Theileriose/diagnóstico , Theileriose/parasitologia , Animais , Bovinos , Theileria parva/genética , Theileria parva/isolamento & purificação , Sensibilidade e Especificidade , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Testes Imediatos
16.
Vaccines (Basel) ; 12(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38400135

RESUMO

To achieve the World Health Organization's global Sustainable Development Goals, increased production of high-quality protein for human consumption is required while minimizing, ideally reducing, environmental impacts. One way to achieve these goals is to address losses within current livestock production systems. Infectious diseases are key limiters of edible protein production, affecting both quantity and quality. In addition, some of these diseases are zoonotic threats and potential contributors to the emergence of antimicrobial resistance. Vaccination has proven to be highly successful in controlling and even eliminating several livestock diseases of economic importance. However, many livestock diseases, both existing and emerging, have proven to be recalcitrant targets for conventional vaccination technologies. The threat posed by the COVID-19 pandemic resulted in unprecedented global investment in vaccine technologies to accelerate the development of safe and efficacious vaccines. While several vaccination platforms emerged as front runners to meet this challenge, the clear winner is mRNA-based vaccination. The challenge now is for livestock industries and relevant stakeholders to harness these rapid advances in vaccination to address key diseases affecting livestock production. This review examines the key features of mRNA vaccines, as this technology has the potential to control infectious diseases of importance to livestock production that have proven otherwise difficult to control using conventional approaches. This review focuses on the challenging diseases of ruminants due to their importance in global protein production. Overall, the current literature suggests that, while mRNA vaccines have the potential to address challenges in veterinary medicine, further developments are likely to be required for this promise to be realized for ruminant and other livestock species.

17.
Front Immunol ; 14: 1143034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063887

RESUMO

East Coast fever is an acute bovine disease caused by the apicomplexan parasite Theileria parva and is regarded as one of the most important tick-vectored diseases in Africa. The current vaccination procedure has many drawbacks, as it involves the use of live T. parva sporozoites. As a novel vaccination strategy, we have constructed the recombinant lumpy skin disease virus (LSDV) named LSDV-SODis-p67HA-BLV-Gag, encoding a modified form of the T. parva p67 surface antigen (p67HA), as well as the bovine leukemia virus (BLV) gag gene for the formation of virus-like particles (VLPs) to potentially enhance p67 immunogenicity. In place of the native sequence, the chimeric p67HA antigen has the human tissue plasminogen activator signal sequence and the influenza hemagglutinin A2 transmembrane domain and cytoplasmic tail. p67HA was detected on the surface of infected cells, and VLPs comprising BLV Gag and p67HA were produced. We also show that higher multiple bands observed in western blot analysis are due to glycosylation of p67. The two vaccines, pMExT-p67HA (DNA) and LSDV-SODis-p67HA-BLV-Gag, were tested for immunogenicity in mice. p67-binding antibodies were produced by vaccinated animals, with higher titers detected in mice vaccinated with the recombinant LSDV. This candidate dual vaccine warrants further testing in cattle.


Assuntos
Doença Nodular Cutânea , Vacinas Protozoárias , Theileriose , Bovinos , Humanos , Camundongos , Animais , Theileriose/prevenção & controle , Theileriose/parasitologia , Ativador de Plasminogênio Tecidual , Proteínas de Protozoários , Doença Nodular Cutânea/prevenção & controle
18.
Acta Trop ; 238: 106800, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535510

RESUMO

Cattle production is constantly threatened by diseases like East Coast fever, also known as theileriosis, caused by the protozoan parasite Theileria parva which is transmitted by ticks such as the brown ear tick, Rhipicephalus appendiculatus. To reduce the extensive use of chemical acaricides, fungal-based microbial control agents such as Metarhizium anisopliae have been tested and show promising results against R. appendiculatus both in field and in semi-field experiments in Africa. However, no known endeavors to link the spatial distribution of R. appendiculatus to climatic variables important for the successful application of M. anisopliae in selected East African countries exists. This work therefore aims to improve the successful application of M. anisopliae against R. appendiculatus by designing a temperature-dependent model for the efficacy of M. anisopliae against three developmental stages (larvae, nymphs, adults) of R. appendiculatus. Afterward a spatial prediction of potential areas where this entomopathogenic fungus might cause a significant epizootic in R. appendiculatus population in three selected countries (Kenya, Tanzania, Uganda) in Eastern Africa were generated. This can help to determine whether the temperature and rainfall at a local or regional scale might give good conditions for application of M. anisopliae and successful microbial control of R. appendiculatus.


Assuntos
Metarhizium , Rhipicephalus , Theileriose , Animais , Bovinos , Theileriose/epidemiologia , Uganda , Temperatura
19.
Biochimie ; 206: 24-35, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36198333

RESUMO

The tick-transmitted apicomplexan Theileria parva causes East Coast fever, a bovine disease of great economic and veterinary importance in Africa. Papain-like cysteine proteases play important roles in protozoan parasite host cell entry and egress, nutrition and host immune evasion. This study reports the identification and characterisation of a T. parva strain Muguga cathepsin L-like (C1A subfamily) cysteine protease (ThpCP). Molecular modelling confirmed the papain-like fold of ThpCP, hydrophobic character of the S2 substrate binding pocket and non-covalent interaction between the pro- and catalytic domains preceding low pH autoactivation. ThpCP was recombinantly expressed in a protease deficient E. coli (Rosetta (DE3)pLysS strain) expression host as a 46 kDa proenzyme. Following Ni-chelate affinity chromatography and acidification, the 27 kDa mature ThpCP was purified by cation-exchange chromatography. Purified ThpCP hydrolysed typical cathepsin L substrates N-α-benzyloxycarbonyl (Z)-Phe-Arg-7-amino-4-methyl-coumarin (AMC) (kcat/Km = 4.49 × 105 s-1M-1) and Z-Leu-Arg-AMC (kcat/Km = 4.20 × 105 s-1M-1), but showed no activity against the cathepsin B-selective substrate Z-Arg-Arg-AMC. Recombinant ThpCP was active over a broad pH range from pH 4.5 to 7.5, thereby showing potential activity in the acidic parasite food vacuole and close to neutral pH of the host lymphocyte cytoplasm. Recombinant ThpCP was inhibited by the cysteine protease inhibitors E64, iodoacetate, leupeptin, chymostatin, Z-Phe-Ala-diazomethylketone (DMK) and Z-Phe-Phe-DMK and hydrolysed bovine proteins: haemoglobin, immunoglobulin G, serum albumin and fibrinogen as well as goat IgG at pH 6 and 7. Functional expression and characterisation of Theileria cysteine proteases should enable high throughput screening of cysteine protease inhibitor libraries against these proteases.


Assuntos
Cisteína Proteases , Theileria parva , Animais , Bovinos , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Catepsina L/metabolismo , Theileria parva/genética , Theileria parva/metabolismo , Sequência de Aminoácidos , Papaína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Éxons
20.
Cell Surf ; 8: 100078, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35647418

RESUMO

East Coast Fever is a devastating African cattle disease caused by the apicomplexan parasite, Theileria parva. Little is known about the cell surface, and few proteins have been identified. Here, we take an in silico approach to identify novel cell surface proteins, and predict the structure of four key proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA