Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biometeorol ; 68(4): 719-730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279025

RESUMO

Knowledge on mesoclimatic zonation and microclimatic variations within mountain forest ecosystems is crucial for understanding regional species turnover and effects of climate change on these systems. The temperate mountain forests in the Andean region of South America are among the largest and contiguous natural deciduous forest areas in the world. Due to their pronounced disturbance regime and different successional stages, a climatic zonation combined with the characterisation of its microclimatic variation is important to identify thresholds of species occurrences.We used micro-loggers to measure air temperature and relative humidity for one year at 40 measurement locations along longitudinal and elevation gradients in mountain forests in Northern Patagonia, Argentina. Our results unveil mesoclimatic patterns within these forests characterised by variations in temperature and vapour pressure deficit along the elevational gradient in general, but also at different times of the year. For example, Austrocedrus chilensis and Nothofagus dombeyi forests differed mainly by temperature and its diurnal range in the warmest months of the year. Also, differences between forest stands and gaps were more pronounced in the warmest months of the year and at lower elevations, with up to 2.5 K higher temperatures in the second half of the day in gaps. We found clear indications that shrubland of Nothofagus antarctica representing a successional stage after disturbances alters the mesoclimatic pattern, favouring forest fire ignition. Such mesoclimatic variations have a major influence on tree species turnover and ecological processes within these forest ecosystems.The findings contribute to our understanding of the complex interplay between topography, climate, and vegetation in shaping the spatial patterns of species occurrences.


Assuntos
Ecossistema , Florestas , Argentina , Árvores , Mudança Climática
2.
Mol Phylogenet Evol ; 118: 403-413, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28919504

RESUMO

The relative roles of ecological niche conservatism versus niche divergence in promoting montane speciation remains an important topic in biogeography. Here, our aim was to test whether lineage diversification in a species complex of trapdoor spiders corresponds with riverine barriers or with an ecological gradient associated with elevational tiering. Aliatypus janus was sampled from throughout its range, with emphasis on populations in the southern Sierra Nevada Mountains of California. We collected multi-locus genetic data to generate a species tree for A. janus and its close relatives. Coalescent based hypothesis tests were conducted to determine if genetic breaks within A. janus conform to riverine barriers. Ecological niche models (ENM) under current and Last Glacial Maximum (LGM) conditions were generated and hypothesis tests of niche conservatism and divergence were performed. Coalescent analyses reveal deeply divergent genetic lineages within A. janus, likely corresponding to cryptic species. Two primary lineages meet along an elevational gradient on the western slopes of the southern Sierra Nevada Mountains. ENMs under both current and LGM conditions indicate that these groups occupy largely non-overlapping niches. ENM hypothesis testing rejected niche identity between the two groups, and supported a sharp ecological gradient occurring where the groups meet. However, the niche similarity test indicated that the two groups may not inhabit different background niches. The Sierra Nevada Mountains provide a natural laboratory for simultaneously testing ecological niche divergence and conservatism and their role in speciation across a diverse range of taxa. Aliatypus janus represents a species complex with cryptic lineages that may have diverged due to parapatric speciation along an ecological gradient, or been maintained by the evolution of ecological niche differences following allopatric speciation.


Assuntos
Aranhas/classificação , Animais , California , Fenômenos Ecológicos e Ambientais , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Especiação Genética , Nevada , Filogenia , RNA Ribossômico 28S/química , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genética , Aranhas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA