RESUMO
Understanding emotions in males is crucial given their higher susceptibility to substance use, interpersonal violence, and suicide compared to females. Steroid hormones are assumed to be critical biological factors that affect and modulate emotion-related behaviors, together with psychological and social factors. This review explores whether males' abilities to recognize emotions of others and regulate their own emotions are associated with testosterone, cortisol, and their interaction. Higher levels of testosterone were associated with improved recognition and heightened sensitivity to threatening faces. In contrast, higher cortisol levels positively impacted emotion regulation ability. Indirect evidence from neuroimaging research suggested a link between higher testosterone levels and difficulties in cognitive emotion regulation. However, this notion must be investigated in future studies using different emotion regulation strategies and considering social status. The present review contributes to the understanding of how testosterone and cortisol affect psychological well-being and emotional behavior in males.
Assuntos
Regulação Emocional , Hidrocortisona , Testosterona , Humanos , Masculino , Hidrocortisona/metabolismo , Regulação Emocional/fisiologia , Testosterona/metabolismo , Testosterona/fisiologia , Emoções/fisiologia , Estresse Psicológico/metabolismo , Reconhecimento Psicológico/fisiologiaRESUMO
Empathic function, which is primarily manifested by facial imitation, is believed to play a pivotal role in interpersonal emotion regulation for mood reinstatement. To explore this association and its neural substrates, we performed a questionnaire survey (study l) to identify the relationship between empathy and interpersonal emotion regulation; and a task-mode fMRI study (study 2) to explore how facial imitation, as a fundamental component of empathic processes, promotes the interpersonal emotion regulation effect. Study 1 showed that affective empathy was positively correlated with interpersonal emotion regulation. Study 2 showed smaller negative emotions in facial imitation interpersonal emotion regulation (subjects imitated experimenter's smile while followed the interpersonal emotion regulation guidance) than in normal interpersonal emotion regulation (subjects followed the interpersonal emotion regulation guidance) and Watch conditions. Mirror neural system (e.g. inferior frontal gyrus and inferior parietal lobe) and empathy network exhibited greater activations in facial imitation interpersonal emotion regulation compared with normal interpersonal emotion regulation condition. Moreover, facial imitation interpersonal emotion regulation compared with normal interpersonal emotion regulation exhibited increased functional coupling from mirror neural system to empathic and affective networks during interpersonal emotion regulation. Furthermore, the connectivity of the right orbital inferior frontal gyrus-rolandic operculum lobe mediated the association between the accuracy of facial imitation and the interpersonal emotion regulation effect. These results show that the interpersonal emotion regulation effect can be enhanced by the target's facial imitation through increased functional coupling from mirror neural system to empathic and affective neural networks.
Assuntos
Regulação Emocional , Humanos , Mapeamento Encefálico/métodos , Comportamento Imitativo/fisiologia , Imageamento por Ressonância Magnética/métodos , Empatia , Neuroimagem Funcional , Emoções/fisiologia , Expressão FacialRESUMO
Automatic emotion counter-regulation refers to an unintentional attentional shift away from the current emotional state and toward information of the opposite valence. It is a useful emotion regulation skill that prevents the escalation of current emotional state. However, the cognitive mechanisms of emotion counter-regulation are not fully understood. Using a randomization approach, this study investigated how automatic emotion counter-regulation impacted attentional inhibition of emotional stimuli, an important aspect of emotion processing closely associated with emotion regulation and mental health. Forty-six university students were randomly assigned to an emotion counter-regulation group and a control group. The former group watched an anger-inducing video to evoke automatic emotion counter-regulation of anger, while the latter group watched an emotionally neutral video. Next, both groups completed a negative priming task of facial expressions with EEG recorded. In the emotion counter-regulation group, we observed an enhanced attentional inhibition of the angry, but not happy, faces, as indicated by a prolonger response time, a larger N2, and a smaller P3 in response to angry versus happy stimuli. These patterns were not observed in the control group, supporting the role of elicited emotion counter-regulation of anger in causing these modulation patterns in responses.
Assuntos
Regulação Emocional , Humanos , Ira/fisiologia , Atenção/fisiologia , Emoções/fisiologia , Expressão Facial , FelicidadeRESUMO
Interpersonal emotion regulation is the dynamic process where the regulator aims to change the target's emotional state, which is presumed to engage three neural systems: cognitive control (i.e., dorsal and ventral lateral PFC, etc.), empathy/social cognition (i.e., dorsal premotor regions, temporal-parietal junction, etc.), and affective response (i.e., insula, amygdala, etc.). This study aimed to identify the underlying neural correlate (especially the interpersonal one), of interpersonal emotion regulation based on two typical strategies (cognitive appraisal, expressive suppression). Thirty-four female dyads (friends) were randomly assigned into two strategy groups, with one assigned as the target and the other as the regulator to downregulate the target's negative emotions using two strategies. A functional near-infrared spectroscopy system was used to simultaneously measure participants' neural activity. Results showed that these two strategies could successfully downregulate the targets' negative emotions. Both strategies evoked intrapersonal and interpersonal neural couplings between the cognitive control, social cognition, and mirror neuron systems (e.g., PFC, temporal-parietal junction, premotor cortex, etc.), whereas cognitive reappraisal (vs expressive suppression) evoked a broader pattern. Further, cognitive reappraisal involved increased interpersonal brain synchronization between the prefrontal and temporal areas at the sharing stage, whereas expressive suppression evoked increased interpersonal brain synchronization associated with the PFC at the regulation stage. These findings indicate that intrapersonal and interpersonal neural couplings associated with regions within the abovementioned systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing, underlie interpersonal emotion regulation based on cognitive reappraisal or expressive suppression.SIGNIFICANCE STATEMENT As significant as intrapersonal emotion regulation, interpersonal emotion regulation subserves parent-child, couple, and leader-follower relationships. Despite enormous growth in research on intrapersonal emotion regulation, the field lacks insight into the neural correlates underpinning interpersonal emotion regulation. This study aimed to probe the underlying neural correlates of interpersonal emotion regulation using a multibrain neuroimaging (i.e., hyperscanning) based on functional near-infrared spectroscopy. Results showed that both cognitive reappraisal and expressive suppression strategies successfully downregulated the target's negative emotions. More importantly, they evoked intrapersonal and interpersonal neural couplings associated with regions within the cognitive control, social cognition, and mirror neuron systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing. These findings deepen our understanding of the neural correlates underpinning interpersonal emotion regulation.
Assuntos
Regulação Emocional , Feminino , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico , Cognição/fisiologia , Emoções/fisiologia , Imageamento por Ressonância MagnéticaRESUMO
A clear understanding of the neural circuit underlying emotion regulation (ER) is important for both basic and translational research. However, a lack of evidence based on combined neuroimaging and neuromodulation techniques calls into question (1) whether the change of prefrontal-subcortical activity intrinsically and causally contributes to the ER effect; and (2) whether the prefrontal control system directly modulates the subcortical affective system. Accordingly, we combined fMRI recordings with transcranial magnetic stimulation (TMS) to map the causal connections between the PFC and subcortical affective structures (amygdala and insula). A total of 117 human adult participants (57 males and 60 females) were included in the study. The results revealed that TMS-induced ventrolateral PFC (VLPFC) facilitation led to enhanced activity in the VLPFC and ventromedial PFC (VMPFC) as well as attenuated activity in the amygdala and insula during reappraisal but not during nonreappraisal (i.e., baseline). Moreover, the activated VLPFC intensified the prefrontal-subcortical couplings via the VMPFC during reappraisal only. This study provides combined TMS-fMRI evidence that downregulating negative emotion involves the prefrontal control system suppressing the subcortical affective system, with the VMPFC serving as a crucial hub within the VLPFC-subcortical network, suggesting an indirect pathway model of the ER circuit. Our findings outline potential protocols for improving ER ability by intensifying the VLPFC-VMPFC coupling in patients with mood and anxiety disorders.SIGNIFICANCE STATEMENT Using fMRI to examine the TMS effect, we uncovered that the opposite neural changes in prefrontal (enhanced) and subcortical (attenuated) regions are not a byproduct of emotion regulation (ER); instead, this prefrontal-subcortical activity per se causally contributes to the ER effect. Furthermore, using TMS to amplify the neural changes within the ER circuit, the "bridge" role of the VMPFC is highlighted under the reappraisal versus nonreappraisal contrast. This "perturb-and-measure" approach overcomes the correlational nature of fMRI data, helping us to identify brain regions that causally support reappraisal (the VLPFC and VMPFC) and those that are modulated by reappraisal (the amygdala and insula). The uncovered ER circuit is important for understanding the neural systems underlying reappraisal and valuable for translational research.
Assuntos
Cognição , Regulação Emocional , Imageamento por Ressonância Magnética , Vias Neurais , Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Feminino , Humanos , Masculino , Mapeamento Encefálico , Cognição/fisiologia , Regulação Emocional/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Ansiedade/fisiopatologia , Transtornos do Humor/fisiopatologia , Inclusão Social , Isolamento Social , Estimulação Luminosa , Tonsila do Cerebelo/fisiologia , Córtex Insular/fisiologia , Asiático , Adulto JovemRESUMO
Interpersonal emotion regulation (IER) is a crucial ability for effectively recovering from negative emotions through social interaction. It has been emphasized that the empathy network, cognitive control network, and affective generation network sustain the deployment of IER. However, the temporal dynamics of functional connectivity among these networks of IER remains unclear. This study utilized IER task-fMRI and sliding window approach to examine both the stationary and dynamic functional connectivity (dFC) of IER. Fifty-five healthy participants were recruited for the present study. Through clustering analysis, four distinct brain states were identified in dFC. State 1 demonstrated situation modification stage of IER, with strong connectivity between affective generation and visual networks. State 2 exhibited pronounced connectivity between empathy network and both cognitive control and affective generation networks, reflecting the empathy stage of IER. Next, a 'top-down' pattern is observed between the connectivity of cognitive control and affective generation networks during the cognitive control stage of state 3. The affective response modulation stage of state 4 mainly involved connections between empathy and affective generation networks. Specifically, the degree centrality of the left middle temporal gyrus (MTG) mediated the association between one's IER tendency and the regulatory effects in state 2. The betweenness centrality of the left ventrolateral prefrontal cortex (VLPFC) mediated the association between one's IER efficiency and the regulatory effects in state 3. Altogether, these findings revealed that dynamic connectivity transitions among empathy, cognitive control, and affective generation networks, with the left VLPFC and MTG playing dominant roles, evident across the IER processing.
Assuntos
Regulação Emocional , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Lobo Temporal , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Feminino , Adulto Jovem , Adulto , Regulação Emocional/fisiologia , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Empatia/fisiologia , Mapeamento Encefálico/métodos , Relações Interpessoais , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Conectoma/métodos , Emoções/fisiologiaRESUMO
The temporal dynamics of resting-state networks may represent an intrinsic functional repertoire supporting cognitive control performance across the lifespan. However, little is known about brain dynamics during the preschool period, which is a sensitive time window for cognitive control development. The fast timescale of synchronization and switching characterizing cortical network functional organization gives rise to quasi-stable patterns (i.e., brain states) that recur over time. These can be inferred at the whole-brain level using hidden Markov models (HMMs), an unsupervised machine learning technique that allows the identification of rapid oscillatory patterns at the macroscale of cortical networks. The present study used an HMM technique to investigate dynamic neural reconfigurations and their associations with behavioral (i.e., parental questionnaires) and cognitive (i.e., neuropsychological tests) measures in typically developing preschoolers (4-6 years old). We used high-density EEG to better capture the fast reconfiguration patterns of the HMM-derived metrics (i.e., switching rates, entropy rates, transition probabilities and fractional occupancies). Our results revealed that the HMM-derived metrics were reliable indices of individual neural variability and differed between boys and girls. However, only brain state transition patterns toward prefrontal and default-mode brain states, predicted differences on parental-report questionnaire scores. Overall, these findings support the importance of resting-state brain dynamics as functional scaffolds for behavior and cognition. Brain state transitions may be crucial markers of individual differences in cognitive control development in preschoolers.
Assuntos
Eletroencefalografia , Regulação Emocional , Humanos , Masculino , Feminino , Pré-Escolar , Criança , Regulação Emocional/fisiologia , Cadeias de Markov , Comportamento Infantil/fisiologia , Desenvolvimento Infantil/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Pais , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagemRESUMO
The regulation of emotions is a crucial facet of well-being and social adaptability, with explicit strategies receiving primary attention in prior research. Recent studies, however, emphasize the role of implicit emotion regulation, particularly implicating the ventromedial prefrontal cortex (VMPFC) in association with its implementation. This study delves into the nuanced role of the VMPFC through focality-optimized multichannel transcranial direct current stimulation (tDCS), shedding light on its causal involvement in implicit reappraisal. The primary goal was to evaluate the effectiveness of VMFPC-targeted tDCS and elucidate its role in individuals with high trait anxiety. Participants engaged in implicit and explicit emotion regulation tasks during multichannel tDCS targeting the VMPFC. The outcome measures encompassed negative emotion ratings, pupillary diameter, and saccade count, providing a comprehensive evaluation of emotion regulation efficiency. The intervention exhibited a notable impact, resulting in significant reductions in negative emotion ratings and pupillary reactions during implicit reappraisal, highlighting the indispensable role of the VMPFC in modulating emotional responses. Notably, these effects demonstrated sustained efficacy up to 1 day postintervention. This study underscores the potency of VMPFC-targeted multichannel tDCS in augmenting implicit emotion regulation. This not only contributes insights into the neural mechanisms of emotion regulation but also suggests innovative therapeutic avenues for anxiety disorders. The findings present a promising trajectory for future mood disorder interventions, bridging the gap between implicit emotion regulation and neural stimulation techniques.
Assuntos
Regulação Emocional , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Regulação Emocional/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Ansiedade/fisiopatologia , Ansiedade/terapia , Movimentos Sacádicos/fisiologia , Emoções/fisiologiaRESUMO
Emotion regulation is a process by which individuals modulate their emotional responses to cope with different environmental demands, for example, by reappraising the emotional situation. Here, we tested whether effective connectivity of a reappraisal-related neural network at rest is predictive of successfully regulating high- and low-intensity negative emotions in an emotion-regulation task. Task-based and resting-state functional magnetic resonance imaging (rs-fMRI) data of 28 participants were collected using ultra-high magnetic field strength at 7 Tesla during three scanning sessions. We used spectral dynamic causal modeling (spDCM) on the rs-fMRI data within brain regions modulated by emotion intensity. We found common connectivity patterns for both high- and low-intensity stimuli. Distinctive effective connectivity patterns in relation to low-intensity stimuli were found from frontal regions connecting to temporal regions. Reappraisal success for high-intensity stimuli was predicted by additional connections within the vlPFC and from temporal to frontal regions. Connectivity patterns at rest predicting reappraisal success were generally more pronounced for low-intensity stimuli, suggesting a greater role of stereotyped patterns, potentially reflecting preparedness, when reappraisal was relatively easy to implement. The opposite was true for high-intensity stimuli, which might require a more flexible recruitment of resources beyond what is reflected in resting state connectivity patterns. Resting-state effective connectivity emerged as a robust predictor for successful reappraisal, revealing both shared and distinct network dynamics for high- and low-intensity stimuli. These patterns signify specific preparatory states associated with heightened vigilance, attention, self-awareness, and goal-directed cognitive processing, particularly during reappraisal for mitigating the emotional impact of external stimuli. Our findings hold potential implications for understanding psychopathological alterations in brain connectivity related to affective disorders.
Assuntos
Mapeamento Encefálico , Emoções , Humanos , Emoções/fisiologia , Encéfalo/fisiologia , Transtornos do Humor , Processos Mentais , Imageamento por Ressonância Magnética/métodosRESUMO
Previous behavioral research has found that working memory is associated with emotion regulation efficacy. However, there has been mixed evidence as to whether the neural mechanisms between emotion regulation and working memory overlap. The present study tested the prediction that individual differences on the working memory subtest of the Weschler Adult Intelligence Scale (WAIS-IV) could be predicted from the pattern of brain activity produced during emotion regulation in regions typically associated with working memory, such as the dorsal lateral prefrontal cortex (dlPFC). A total of 101 participants completed an emotion regulation fMRI task in which they either viewed or reappraised negative images. Participants also completed working memory test outside the scanner. A whole brain covariate analysis contrasting the reappraise negative and view negative BOLD response found that activity in the right dlPFC positively related to working memory ability. Moreover, a multivoxel pattern analysis approach using tenfold cross-validated support vector regression in regions-of-interest associated with working memory, including bilateral dlPFC, demonstrated that we could predict individual differences in working memory ability from the pattern of activity associated with emotion regulation. These findings support the idea that emotion regulation shares underlying cognitive processes and neural mechanisms with working memory, particularly in the dlPFC.
RESUMO
Emotion regulation (ER) is the process by which individuals can modulate the intensity of their emotional experience and it plays a crucial role in daily life. So far, behavioral analyses seem to suggest that ER ability remains stable throughout the lifespan. However, imaging studies evaluating the neural correlates of ER performance during the aging process have shown mixed results. In this study, we used the "Cambridge Centre for Ageing and Neuroscience cohort sample" to investigate: (1) ER behavioral performance and (2) the differential association between brain measures (based on both structural and functional connectivity data) and ER performance, in a group of younger/middle-aged participants (N = 159; age range: 18y < x < 58y) relative to a group of older healthy subjects (N = 136; age range: 58y < =x < 89y). Whereas we found no group-related differences either in ER behavioral data or the association between ER performance and structural data, we did observe that ER performance was differentially correlated in our two study groups to functional connectivity measures in the fronto-insular-temporal network, which has been shown to be involved in emotional processing. Group-related differences were specifically localized in a cluster of voxels within the anterior cingulate areas which revealed a reverse pattern between our study groups: in younger/middle-aged participants better ER performance was associated with increase connectivity, whereas among older participants better ER performance was related to reduced connectivity. Based on our results, we suggest that a de-differentiation mechanism, known to affect the frontal lobes brain activity and connectivity in older subjects, might explain our findings.
Assuntos
Regulação Emocional , Pessoa de Meia-Idade , Humanos , Idoso , Adolescente , Envelhecimento , Longevidade , Lobo Frontal/diagnóstico por imagem , EmoçõesRESUMO
Laypeople believe that sharing their emotional experiences with others will improve their understanding of those experiences, but no clear empirical evidence supports this belief. To address this gap, we used data from four daily life studies (N = 659; student and community samples) to explore the association between social sharing and subsequent emotion differentiation, which involves labeling emotions with a high degree of complexity. Contrary to our expectations, we found that social sharing of emotional experiences was linked to greater subsequent emotion differentiation on occasions when people ruminated less than usual about these experiences. In contrast, on occasions when people ruminated more than usual about their experiences, social sharing of these experiences was linked to lower emotion differentiation. These effects held when we controlled for levels of negative emotion. Our findings suggest that putting feelings into words through sharing may only enable emotional precision when that sharing occurs without dwelling or perseverating.
Assuntos
Emoções , Ruminação Cognitiva , Humanos , Masculino , Feminino , Emoções/fisiologia , Adulto , Adulto Jovem , Ruminação Cognitiva/fisiologia , Adolescente , Pessoa de Meia-Idade , Relações Interpessoais , Comportamento SocialRESUMO
BACKGROUND: Cognitive distancing is an emotion regulation strategy commonly used in psychological treatment of various mental health disorders, but its therapeutic mechanisms are unknown. METHODS: 935 participants completed an online reinforcement learning task involving choices between pairs of symbols with differing reward contingencies. Half (49.1%) of the sample was randomised to a cognitive self-distancing intervention and were trained to regulate or 'take a step back' from their emotional response to feedback throughout. Established computational (Q-learning) models were then fit to individuals' choices to derive reinforcement learning parameters capturing clarity of choice values (inverse temperature) and their sensitivity to positive and negative feedback (learning rates). RESULTS: Cognitive distancing improved task performance, including when participants were later tested on novel combinations of symbols without feedback. Group differences in computational model-derived parameters revealed that cognitive distancing resulted in clearer representations of option values (estimated 0.17 higher inverse temperatures). Simultaneously, distancing caused increased sensitivity to negative feedback (estimated 19% higher loss learning rates). Exploratory analyses suggested this resulted from an evolving shift in strategy by distanced participants: initially, choices were more determined by expected value differences between symbols, but as the task progressed, they became more sensitive to negative feedback, with evidence for a difference strongest by the end of training. CONCLUSIONS: Adaptive effects on the computations that underlie learning from reward and loss may explain the therapeutic benefits of cognitive distancing. Over time and with practice, cognitive distancing may improve symptoms of mental health disorders by promoting more effective engagement with negative information.
Assuntos
Reforço Psicológico , Recompensa , Humanos , Análise e Desempenho de TarefasRESUMO
BACKGROUND: Everyday affective fluctuations are more extreme and more frequent in adolescence compared to any other time in development. Successful regulation of these affective experiences is important for good mental health and has been proposed to depend on affective control. The present study examined whether improving affective control through a computerised affective control training app (AffeCT) would benefit adolescent mental health. METHODS: One-hundred and ninety-nine participants (11-19 years) were assigned to complete 2 weeks of AffeCT or placebo training on an app. Affective control (i.e. affective inhibition, affective updating and affective shifting), mental health and emotion regulation were assessed at pre- and post-training. Mental health and emotion regulation were assessed again one month and one year later. RESULTS: Compared with the placebo group, the AffeCT group showed significantly greater improvements in affective control on the trained measure. AffeCT did not, relative to placebo, lead to better performance on untrained measures of affective control. Pre- to post-training change in affective control covaried with pre- to post-training change in mental health problems in the AffeCT but not the placebo group. These mental health benefits of AffeCT were only observed immediately following training and did not extend to 1 month or year post-training. CONCLUSION: In conclusion, the study provides preliminary evidence that AffeCT may confer short-term preventative benefits for adolescent mental health.
Assuntos
Regulação Emocional , Saúde Mental , Humanos , Adolescente , Regulação Emocional/fisiologiaRESUMO
BACKGROUND: Emotion regulation tendencies are well-known transdiagnostic markers of psychopathology, but their neurobiological foundations have mostly been examined within the theoretical framework of cortical-subcortical interactions. METHODS: We explored the connectome-wide neural correlates of emotion regulation tendencies using functional and diffusion magnetic resonance images of healthy young adults (N = 99; age 20-30; 28 females). We first tested the importance of considering both the functional and structural connectome through intersubject representational similarity analyses. Then, we employed a canonical correlation analysis between the functional-structural hybrid connectome and 23 emotion regulation strategies. Lastly, we sought to externally validate the results on a transdiagnostic adolescent sample (N = 93; age 11-19; 34 females). RESULTS: First, interindividual similarity of emotion regulation profiles was significantly correlated with interindividual similarity of the functional-structural hybrid connectome, more so than either the functional or structural connectome. Canonical correlation analysis revealed that an adaptive-to-maladaptive gradient of emotion regulation tendencies mapped onto a specific configuration of covariance within the functional-structural hybrid connectome, which primarily involved functional connections in the motor network and the visual networks as well as structural connections in the default mode network and the subcortical-cerebellar network. In the transdiagnostic adolescent dataset, stronger functional signatures of the found network were associated with higher general positive affect through more frequent use of adaptive coping strategies. CONCLUSIONS: Taken together, our study illustrates a gradient of emotion regulation tendencies that is best captured when simultaneously considering the functional and structural connections across the whole brain.
Assuntos
Conectoma , Regulação Emocional , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Regulação Emocional/fisiologia , Adulto , Adulto Jovem , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Adaptação Psicológica/fisiologia , CriançaRESUMO
BACKGROUND: Attitudes toward risk and ambiguity significantly influence how individuals assess and value rewards. This fMRI study examines the reward valuation process under conditions of uncertainty and investigates the associated neural mechanisms in individuals who engage in nonsuicidal self-injury (NSSI) as a coping mechanism for psychological pain. METHODS: The study involved 44 unmedicated individuals who reported five or more NSSI episodes in the past year, along with 42 age-, sex-, handedness-, IQ-, and socioeconomic status-matched controls. During the fMRI scans, all participants were presented with decision-making scenarios involving uncertainty, both in terms of risk (known probabilities) and ambiguity (unknown probabilities). RESULTS: In the NSSI group, aversive attitudes toward ambiguity were correlated with increased emotion reactivity and greater method versatility. Whole-brain analysis revealed notable group-by-condition interactions in the right middle cingulate cortex and left hippocampus. Specifically, the NSSI group showed decreased neural activation under ambiguity v. risk compared to the control group. Moreover, reduced hippocampal activation under ambiguity in the NSSI group was associated with increased emotion regulation problems. CONCLUSIONS: This study presents the first evidence of reduced brain activity in specific regions during value-based decision-making under conditions of ambiguity in individuals with NSSI. These findings have important clinical implications, particularly concerning emotion dysregulation in this population. This study indicates the need for interventions that support and guide individuals with NSSI to promote adaptive decision-making in the face of ambiguous uncertainty.
RESUMO
BACKGROUND: While evidence shows that people with early psychosis are flexible in using different emotion regulation (ER) strategies to manage the varying contextual demands, no studies have examined the effectiveness of such regulatory flexibility in this population. We addressed this issue by investigating whether and how ER flexibility relate to different dynamic aspects (variability, instability, inertia, and recovery) of negative affect (NA) in a combined early psychosis sample, consisting of both individuals at high clinical risk for psychosis and those diagnosed with first-episode psychosis. METHODS: Participants were 148 individuals from the INTERACT project, a multi-center randomized controlled trial on the efficacy of acceptance and commitment therapy in early psychosis. We utilized data from the baseline assessment, during which all participants completed six days of experience sampling assessment of momentary NA, as well as end-of-day assessments of ER strategy use. RESULTS: Multilevel models of within-person associations showed that greater ER flexibility was associated with more stable NA, and quicker recovery of NA from stressors during the day. Linear regression analyses of between-person associations showed that people who had more variable and unstable NA reported greater ER flexibility generally. No evidence was found for associations with NA inertia. CONCLUSIONS: The current study identified unique within-person and between-person links between ER flexibility and dynamics of NA in early psychosis. These findings further provide evidence for ER flexibility in early psychosis, emphasizing the adaptive nature of regulatory flexibility in relation to reduced instability in NA and faster recovery from NA in everyday life.
Assuntos
Avaliação Momentânea Ecológica , Regulação Emocional , Transtornos Psicóticos , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Terapia de Aceitação e Compromisso , Afeto/fisiologia , Regulação Emocional/fisiologia , Transtornos Psicóticos/psicologia , Transtornos Psicóticos/fisiopatologia , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Screen time in infancy is linked to changes in social-emotional development but the pathway underlying this association remains unknown. We aim to provide mechanistic insights into this association using brain network topology and to examine the potential role of parent-child reading in mitigating the effects of screen time. METHODS: We examined the association of screen time on brain network topology using linear regression analysis and tested if the network topology mediated the association between screen time and later socio-emotional competence. Lastly, we tested if parent-child reading time was a moderator of the link between screen time and brain network topology. RESULTS: Infant screen time was significantly associated with the emotion processing-cognitive control network integration (p = 0.005). This network integration also significantly mediated the association between screen time and both measures of socio-emotional competence (BRIEF-2 Emotion Regulation Index, p = 0.04; SEARS total score, p = 0.04). Parent-child reading time significantly moderated the association between screen time and emotion processing-cognitive control network integration (ß = -0.640, p = 0.005). CONCLUSION: Our study identified emotion processing-cognitive control network integration as a plausible biological pathway linking screen time in infancy and later socio-emotional competence. We also provided novel evidence for the role of parent-child reading in moderating the association between screen time and topological brain restructuring in early childhood.
Assuntos
Relações Pais-Filho , Leitura , Tempo de Tela , Humanos , Masculino , Feminino , Desenvolvimento Infantil/fisiologia , Lactente , Pré-Escolar , Criança , Encéfalo/fisiologia , Emoções/fisiologia , Habilidades Sociais , Imageamento por Ressonância Magnética , Regulação Emocional/fisiologiaRESUMO
BACKGROUND: Non-suicidal self-injury (NSSI) is prevalent in major depressive disorder (MDD) during adolescence, but the underlying neural mechanisms are unclear. This study aimed to investigate microstructural abnormalities in the cingulum bundle associated with NSSI and its clinical characteristics. METHODS: 130 individuals completed the study, including 35 healthy controls, 47 MDD patients with NSSI, and 48 MDD patients without NSSI. We used tract-based spatial statistics (TBSS) with a region of interest (ROI) analysis to compare the fractional anisotropy (FA) of the cingulum bundle across the three groups. receiver-operating characteristics (ROC) analysis was employed to evaluate the ability of the difficulties with emotion regulation (DERS) score and mean FA of the cingulum to differentiate between the groups. RESULTS: MDD patients with NSSI showed reduced cingulum integrity in the left dorsal cingulum compared to MDD patients without NSSI and healthy controls. The severity of NSSI was negatively associated with cingulum integrity (r = -0.344, p = 0.005). Combining cingulum integrity and DERS scores allowed for successful differentiation between MDD patients with and without NSSI, achieving a sensitivity of 70% and specificity of 83%. CONCLUSIONS: Our study highlights the role of the cingulum bundle in the development of NSSI in adolescents with MDD. The findings support a frontolimbic theory of emotion regulation and suggest that cingulum integrity and DERS scores may serve as potential early diagnostic tools for identifying MDD patients with NSSI.
Assuntos
Transtorno Depressivo Maior , Comportamento Autodestrutivo , Substância Branca , Humanos , Adolescente , Transtorno Depressivo Maior/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Depressão , Imagem de Tensor de Difusão , Comportamento Autodestrutivo/diagnóstico por imagem , AnisotropiaRESUMO
BACKGROUND: The modulation of brain circuits of emotion is a promising pathway to treat borderline personality disorder (BPD). Precise and scalable approaches have yet to be established. Two studies investigating the amygdala-related electrical fingerprint (Amyg-EFP) in BPD are presented: one study addressing the deep-brain correlates of Amyg-EFP, and a second study investigating neurofeedback (NF) as a means to improve brain self-regulation. METHODS: Study 1 combined electroencephalography (EEG) and simultaneous functional magnetic resonance imaging to investigate the replicability of Amyg-EFP-related brain activation found in the reference dataset (N = 24 healthy subjects, 8 female; re-analysis of published data) in the replication dataset (N = 16 female individuals with BPD). In the replication dataset, we additionally explored how the Amyg-EFP would map to neural circuits defined by the research domain criteria. Study 2 investigated a 10-session Amyg-EFP NF training in parallel to a 12-weeks residential dialectical behavior therapy (DBT) program. Fifteen patients with BPD completed the training, N = 15 matched patients served as DBT-only controls. RESULTS: Study 1 replicated previous findings and showed significant amygdala blood oxygenation level dependent activation in a whole-brain regression analysis with the Amyg-EFP. Neurocircuitry activation (negative affect, salience, and cognitive control) was correlated with the Amyg-EFP signal. Study 2 showed Amyg-EFP modulation with NF training, but patients received reversed feedback for technical reasons, which limited interpretation of results. CONCLUSIONS: Recorded via scalp EEG, the Amyg-EFP picks up brain activation of high relevance for emotion. Administering Amyg-EFP NF in addition to standardized BPD treatment was shown to be feasible. Clinical utility remains to be investigated.