RESUMO
Soilborne diseases cause significant economic losses in agricultural production around the world. They are difficult to control because a host plant is invaded by multiple pathogens, and chemical control often does not work well. In this study, we isolated and identified an endophytic Streptomyces sp. NEAU-DD186 from moss, which showed broad-spectrum antifungal activity against 17 soilborne phytopathogenic fungi, with Bipolaris sorokiniana being the most prominent. The strain also exhibited strong antibacterial activity against soilborne phytopathogenic bacteria Ralstonia solanacearum. To evaluate its biocontrol potential, the strain was prepared into biofertilizer by solid-state fermentation. Response surface methodology was employed to optimize the fermentation conditions for maximizing spore production and revealed that the 1:1 ratio of vermicompost to wheat bran, a temperature of 28°C, and 50% water content with an inoculation amount of 15% represented the optimal parameters. Pot experiments showed that the application of biofertilizer with a spore concentration of 108 CFU/g soil could effectively suppress the occurrence of tomato bacterial wilt caused by R. solanacearum and wheat root rot caused by B. sorokiniana, and the biocontrol efficacy was 81.2 and 72.2%, respectively. Chemical analysis of strain NEAU-DD186 extracts using nuclear magnetic resonance spectrometry and mass analysis indicated that 25-O-malonylguanidylfungin A and 23-O-malonylguanidylfungin A were the main active constituents, which showed high activity against R. solanacearum (EC50 of 2.46 and 2.58 µg ml-1) and B. sorokiniana (EC50 of 3.92 and 3.95 µg ml-1). In conclusion, this study demonstrates that Streptomyces sp. NEAU-DD186 can be developed as biofertilizer to control soilborne diseases.
Assuntos
Doenças das Plantas , Streptomyces , Doenças das Plantas/prevenção & controle , Agricultura , Antibacterianos , AntifúngicosRESUMO
Endophytic bacteria inhabit all or part of their life cycle within the tissues of healthy plants, without causing any apparent symptoms of disease. They are treasure trove of several hydrolytic enzymes with distinct characteristics. Esterase is one of such enzymes and this study aims to characterize esterase produced by endophytic actinobacteria Cellulomonas fimi DB19 isolated from Zanthoxylum armatum with its capacity to degrade diesel oil. The enzyme was purified with purification fold 8.22 and specific activity 124.72 U/mg with 16.43% recovery. The purified enzyme showed a single protein band on SDS-PAGE having molecular mass of approximately 39 kDa. The Km and Vmax value for p-nitrophenyl acetate were 2.23 mM and 22.04 U/mL, respectively. The enzyme was stable in the pH range 6-9 with its optimal activity at pH 8.0. The enzyme was stable at 40 °C and retained more than 80% activity after incubation for two h. The enzyme activity was positively influenced in the presence of Na+, Ba2+, Ca2+, and negatively by Mn2+, and Mg2+. The EDTA and PMSF inhibited the enzyme activity and retained its activity in the presence of SDS, H2O2, ß-mercaptoethanol, and organic solvents. Application of the isolate in degradation of diesel showed that its growth and degradation capacity enhanced in media supplemented with 0.2-4% of diesel oil with maximum at 3% of diesel oil. Furthermore, esterase activity was greater in media containing diesel than control which is suggesting the plausible role of esterase produced by Cellulomonas fimi DB19 in the degradation of diesel oil.
Assuntos
Esterases , Zanthoxylum , Compostos Azo , Cellulomonas , Estabilidade Enzimática , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , TemperaturaRESUMO
BACKGROUND: Antibiotic resistance poses a major threat to human health globally. Consequently, new antibiotics are desperately required to discover and develop from unexplored habitats to treat life-threatening infections. Microbial natural products (NP) are still remained as primary sources for the discovery of new antibiotics. Endophytic actinobacteria (EA) which are well-known producers of bioactive compounds could provide novel antibiotic against pathogenic bacteria. This research aimed to isolate EA from the Citrullus colocynthis plant and explore the antibacterial properties of their metabolites against pathogenic bacteria. RESULTS: The healthy samples were collected, dissected and surface-sterilized before cultured on four different selection media at 28 °C. Six endophytic actinobacteria were isolated from Citrullus colocynthis plant. They were taxonomically classified into two family namely Streptomycetaceae and Nocardiopsaceae, based on colony morphological features, scanning electron microscope analysis and molecular identification of isolates. This is the first report on the identification of EA form Citrullus colocynthis and their antibacterial activity. The strains generated a chain of vibrio-comma, cubed or cylindrical shaped spores with indenting or smooth surfaces. Three of those were reported as endophytes for the first time. The strain KUMS-C1 showed 98.55% sequence similarity to its closely related strains which constitutes as a novel species/ strain for which the name Nocardiopsis colocynthis sp. was proposed for the isolated strain. Five isolated strains had antagonist activity against S. aureus, P. aeruginosa, and E. coli. Among those, stain KUMS-C6 showed the broadest spectrum of antibacterial activity against all test bacteria, whereas the strain KUMS-C4 had no antibacterial activity. CONCLUSIONS: NPs have a long history of safe and efficient use for development of pharmaceutical products. Our study highlights that Citrullus colocynthis is an untapped source for the isolation of EA, generating novel and bioactive metabolites by which might lead to discovery of new antibiotic(s). This study reveals the future of new antibiotic developments looks bright against multi-drug resistance diseases by mining under- or unexplored habitats.
Assuntos
Actinobacteria , Produtos Biológicos , Citrullus colocynthis , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Preparações Farmacêuticas , Pseudomonas aeruginosa , Staphylococcus aureusRESUMO
BACKGROUND: The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT: The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS: We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.
Assuntos
Actinobacteria/fisiologia , Antibiose/fisiologia , Endófitos/fisiologia , Solanum tuberosum/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Chile , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Pectobacterium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tubérculos/microbiologia , Percepção de Quorum , Streptomyces/classificação , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/fisiologiaRESUMO
Two strains of Actinobacteria, designated CRXT-Y-14T and CRXT-G-22T, were isolated from the healthy leaves and seeds, respectively, of a medicinal plant Xanthium sibiricum. Their taxonomic positions were determined using a polyphasic approach. Strain CRXT-Y-14T produced flexuous chains of smooth-surfaced spores. Strain CRXT-G-22T produced straight chains of smooth-surfaced spores. Their morphological features were consistent with the diagnostic characteristics of members of the genus Streptomyces. The results of 16S rRNA gene sequence analyses indicated two strains represented members of the genus Streptomyces. CRXT-Y-14T shared 99.3, 98.9, 98.8â% sequence similarities to Streptomyces atriruber NRRL B-24165T, Streptomyces avermitilis MA-4680T and Streptomyces davaonensis JCM 4913T, respectively. Whilst CRXT-G-22T exhibited highest similarity to Streptomyces acidiscabies ATCC 49003T (98.9â%). The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the closest phylogenetic neighbours of strains CRXT-Y-14T and CRXT-G-22T were S. atriruber NRRL B-24165T and S. acidiscabies ATCC 49003T, respectively. The phylogenomic analyses further confirmed the relative relationship between strain CRXT-G-22T and S. acidiscabies ATCC 49003T, but indicated that CRXT-Y-14T could represent a novel species of the genus Streptomyce. However, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between CRXT-Y-14T and strain CRXT-G-22T, between CRXT-Y-14T and S. atriruber NRRL B-24165T, and between CRXT-G-22T and S. acidiscabies ATCC 49003T were 85.4 and 23.2â%, 85.8 and 23.9â% and 89.1 and 34.1â%, respectively, far below the 95~96 and 70â% cut-off points recommended for delineating species. Furthermore, these two novel isolates were distinctly differentiated from their relatives in the genus Streptomyces with respect to phenotypic and chemotaxonomic characteristics. On the basis of these data, CRXT-Y-14T and CRXT-G-22T clearly represent two novel species within the genus Streptomyces, for which the names Streptomyces xanthii sp. nov. (type strain CRXT-Y-14T = MCCC 1K04966T= JCM 34527T) and Streptomyces roseirectus sp. nov. (type CRXT-G-22T = MCCC 1K04979T= JCM 34565T) are proposed.
Assuntos
Filogenia , Streptomyces , Xanthium/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Plantas Medicinais/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/isolamento & purificaçãoRESUMO
One new virginiamycin derivative, 'beilunmycin' (1), and three known virginiamycin antibiotics, 16-hydroxy-virginiamycin M1 (2), virginiamycin M2 (3), and virginiamycin M1 (4), were isolated from the culture of a mangrove-derived endophytic Streptomyces sp. 2BBP-J2. The structures were characterized on the basis of their spectroscopic data, and the absolute configuration of 1 was established by ECD calculations. Compounds 1-4 exhibited antibacterial activities against Gram-positive bacteria, with MIC values in the range of 0.5-16 µg/ml. All the compounds demonstrated strong protein translation-stalling activity, with minimal concentrations detected with pDualrep2 in the range of 1.9-5.9 nmol.
Assuntos
Streptomyces , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Biossíntese de Proteínas , Streptomyces/metabolismo , Virginiamicina/metabolismoRESUMO
Two bacterial strains, YZYP 306T and YZGP 509, were isolated from the halophyte Suaeda aralocaspica collected from the southern edge of the Gurbantunggut desert, north-west China. Cells were Gram-stain-positive, aerobic, non-motile, short rods. Strain YZYP 306T grew at 4-40 °C, while strain YZGP 509 grew at 4-42 °C, with optimum growth at 28 °C, and they both grew at pH 6.0-12.0 and 0-15â% (w/v) NaCl. Phylogenetic analyses of the 16S rRNA gene sequences placed the two strains within the genus Microbacterium with the highest similarities to Microbacterium indicum BBH6T (97.8â%) and Microbacterium sorbitolivorans SZDIS-1-1T (97.2â%). The average nucleotide identity value between YZYP 306T and M. indicum BBH6T was 78.3â%. The genomic DNA G+C contents of strains YZYP 306T and YZGP 509 were 68.49 and 68.53 mol%, respectively. The characteristic cell-wall amino acid was ornithine. Whole-cell sugars were galactose, mannose and ribose. The acyl type of the peptidoglycan was glycolyl. The major cellular fatty acids were anteiso-C15â:â0, anteiso-C17â:â0 and iso-C16â:â0. The major menaquinones were MK-10 and MK-11. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid and an unidentified glycolipid. These results are consistent with the classification of the two strains into the genus Microbacterium. On the basis of the evidence presented in this study, strains YZYP 306T and YZGP 509 are representatives of a novel species in the genus Microbacterium, for which the name Microbacterium suaedae sp. nov. is proposed. The type strain is YZYP 306T (=CGMCC 1.16261T=KCTC 49101T).
Assuntos
Actinobacteria/classificação , Chenopodiaceae/microbiologia , Clima Desértico , Filogenia , Plantas Tolerantes a Sal/microbiologia , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/químicaRESUMO
A novel endophytic actinobacterium, designated strain EGI 6500139T, was isolated from the surface-sterilized roots of Anabasis aphylla L., collected from Xinjiang, northwest PR China, and subjected to polyphasic taxonomic characterization. Strain EGI 6500139T formed sparse aerial mycelium with rod-like spores. Whole-cell hydrolysates of the isolate contained meso-diaminopimelic acid as the cell-wall diamino acid, glucose as major sugar, and mannose, galactose, xylose and ribose as minor sugars. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, one unidentified glycolipid, one unidentified phospholipid and four unidentified polar lipids. The major fatty acids identified were anteiso-C17â:â0, anteiso-C15â:â0, iso-C15â:â0 and iso-C16â:â0. The predominant menaquinones detected were MK-11 and MK-11(H2). The G+C content of the genomic DNA of strain EGI 6500139T was 70.4 mol%. Strain EGI 6500139T showed the highest 16S rRNA gene sequence similarity to Glycomyces lacisalsi XHU 5089T (96.3â%). Phylogenetic analysis showed that strain EGI 6500139T fell within the clade of the genus Glycomyces, and formed a clade with G. lacisalsi XHU 5089T and G. albus CCTCC AA 2013004T. Based on phenotypic, chemotaxonomic and phylogenetic data, strain EGI 6500139T represents a novel species of the genus Glycomyces, for which the name Glycomyces anabasis sp. nov. (type strain EGI 6500139T=JCM 30088T=KCTC 29495T) is proposed.
Assuntos
Actinomycetales/classificação , Chenopodiaceae/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Glicolipídeos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/químicaRESUMO
Antibiotics are considered "wonder drugs" due to the fact that they are the most extensively utilised medication in the world. They are used to cure a broad spectrum of diseases and lethal infections. A variety of bacteria and fungi produce antibiotics as a result of secondary metabolism; however, their production is dominated by a special class of bacteria, namely Actinobacteria. Actinobacteria are gram-positive bacteria with high G+C content and unparalleled antibiotic-producing ability. They produce numerous polyenes, tetracyclines, ß-lactams, macrolides, and peptides. Actinobacteria are ubiquitous in nature and are isolated from various sources, such as marine and terrestrial endophytes of plants and air. They are studied for their relative antibiotic-producing ability along with the mechanism that the antibiotics follow to annihilate the pathogenic agents that include bacteria, fungi, protozoans, helminths, etc. Actinobacteria isolated from endophytes of medicinal plants have amassed significant attention as they interfere with the metabolism of medicinal plants and acquire enormous benefits from it in the form of conspicuous novel antibiotic-producing ability. Actinobacteria is not only an antibiotic but also a rich source of anticancer compounds that are widely used owing to its remarkable tumorigenic potential. Today, amongst Actinobacteria, class Streptomyces subjugates the area of antibiotic production, producing 70% of all known antibiotics. The uniqueness of bioactive Actinobacteria has turned the attention of scientists worldwide in order to explore its potentiality as effective "micronanofactories". This study provides a brief overview of the production of antibiotics from Actinobacteria inhabiting diverse environments and the methods involved in the screening of antibiotics.
RESUMO
Plant biotechnology helps to develop different types of new products with increased resistance to disease, greater tolerance to drought and salt stress, and better nutritional value. The interaction of plants and microorganisms will play a significant role to achieve this purpose. The aims of this study were to isolate endophyte Actinobacteria strains of some medicinal plants and the investigation of their bioactive potential. 15 Actinobacteria strains were selectively isolated from Persian iris and Echium amoenum plants, and then their belonging to Actinobacteria phylum was confirmed using an Actinobacteria-specific primer pair. The antioxidant activity of the crude extract obtained from the isolated strains was investigated based on DPPH method. Investigating the antioxidant activity of the crude extract showed that at a concentration of 100 µg/mL, the two strains EG1 and EG2 had 71% and 78% antioxidant activity, respectively. According to the phylogeny studies, it was determined that two strains belonged to the Streptomyces genus. The effect of supernatant achieved from selected endophytic strain on 35-day wheat plants showed that the supernatant considerably promotes root and shoot growth and chlorophyll content under salinity stress (150 mM NaCl). In general, it can be concluded strains that live symbiotically with medicinal plants are rich sources of bioactive compounds. Therefore, identification of the bioactive compounds in the extract of isolated Actinobacteria from medicinal plants and further studies on their metabolism are suggested.
RESUMO
Soil-borne diseases cause significant economic losses in global agricultural production. These diseases are challenging to control due to the invasion of multiple pathogens into host plants, and traditional chemical control methods often yield unsatisfactory results. In this study, we isolated and identified an endophytic Streptomyces, designated as NEAU-ZSY13, from the leaf of Perilla frutescens. This isolate exhibited broad-spectrum antifungal activity against 17 soil-borne phytopathogenic fungi, with Bipolaris sorokiniana being the most prominent. Additionally, it displayed strong antibacterial activity against the soil-borne phytopathogenic bacterium Ralstonia solanacearum. To assess its biocontrol potential, the isolate was utilized to produce a biofertilizer through solid-state fermentation. The fermentation conditions were optimized using response surface methodology to maximize the spore production. The results revealed that more abundant spores were produced with a 1:2 ratio of vermicompost to wheat bran, 60% water content, 20% inoculation amount and 28°C. Subsequent pot experiments demonstrated that the application of the biofertilizer with a spore concentration of 108 CFU/g soil effectively suppressed the occurrence of tomato bacterial wilt caused by R. solanacearum and wheat root rot caused by B. sorokiniana, with biocontrol efficacies of 72.2 and 78.3%, respectively. Chemical analysis of NEAU-ZSY13 extracts, using nuclear magnetic resonance spectrometry and mass analysis, identified niphimycin C and niphimycin A as the primary active constituents. These compounds exhibited high activity against R. solanacearum (EC50 of 3.6 and 2.4 µg mL-1) and B. sorokiniana (EC50 of 3.9 and 3.4 µg mL-1). In conclusion, this study demonstrates the potential of Streptomyces sp. NEAU-ZSY13 as a biofertilizer for the control of soil-borne diseases.
RESUMO
Background: Plant-derived endophytic actinobacteria are the center of attention due to their capacity to produce diverse antimicrobial and anticancer compounds and their metabolites influence plant growth. Methods: In this study, 40 endophytic actinobacteria strains were isolated from the roots of eight medicinal plants used as folk medicine in South Asian region. The isolates were characterized morphologically, biochemically and physiologically and the genus level identification of the selected strains was done by 16SrRNA gene sequencing. In small scale cultivation (50ml broth), the isolates were grown in A-medium to prepare the crude extracts. These crude extracts were subsequently evaluated for their antimicrobial, anticancer and antioxidant activity and the metabolomics profile of each of the extract was determined by TLC and HPLC-UV/MS. Results: The taxonomic studies showed that the isolates belong to the group actinobacteria based on their morphological and physiological characteristics and the 16SrRNA gene sequencing of the selected strains identified the genera including Streptomyces, Micromonospora and Nocardia. Cumulatively,53% of extracts exhibited anti-Gram-(+) activity,47% exhibited anti-Gram-(-) activity,32% exhibited antifungal activity and 30% were cytotoxic to PC3 and A549 cancer cell lines and most of the extracts have shown antioxidant activity greater than 50%. The metabolomics analysis predicted the presence of an array of low molecular weight metabolites and indicated the promising isolates in collection for further studies for novel bioactive metabolite isolation and structure elucidation. Conclusion: Overall the study provides an overview of the endophytic actinobacteria residing in the roots of the selected medicinal plants prevalent in south Asian region and their potential to produce the medicinally and biotechnologically useful compounds.
RESUMO
Anthracnose disease caused by Colletotrichum gloeosporioides is one of the devastating diseases of yams (Dioscorea sp.) worldwide. In this study, we aimed to isolate endophytic actinobacteria from yam plants and to evaluate their potential for the control of yam anthracnose based on bioassays and genomic analyses. A total of 116 endophytic actinomycete strains were isolated from the surface-sterilized yam tissues from a yam orchard in Hainan Province, China. In total, 23 isolates showed antagonistic activity against C. gloeosporioides. An endophytic actinomycete, designated HNM0140T, which exhibited strong antifungal activities, multiple biocontrol, and plant growth-promoting (PGP) traits was subsequently selected to colonize in the tissue-cultured seedlings of yam and was tested for its in vivo biocontrol potential on yam anthracnose. The results showed that treatment with strain HNM0140T markedly reduced the severity and incidence of yam anthracnose under greenhouse conditions. Morphological and chemotaxonomic analyses showed that strain HNM0140T was assigned to the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain HNM0140T formed a separate cluster together with Streptomyces lydicus ATCC 25470T (99.45%), Streptomyces chattanoogensis NRRL ISP-5002T (99.45%), and Streptomyces kronopolitis NEAU-ML8T (98.97%). The phylogenomic tree also showed that strain HNM0140T stably clustered with Streptomyces lydicus ATCC 25470T. The ANI and dDDH between strain HNM0140T and its closest related-type species were well below the recommended thresholds for species demarcation. Hence, based on the phylogenetic, genomic, and phenotypic analyses, strain HNM0140T should represent a new streptomycete species named Streptomyces endophytica sp. nov. Genomic analysis revealed that strain HNM0140T harbored 18 putative BGCs for secondary metabolites, some PGP-related genes, and several genes coding for antifungal enzymes. The presented results indicated that strain HNM0140T was a promising biocontrol agent for yam anthracnose.
RESUMO
Endophytic microbes are vital for nutrient solubilization and uptake, growth, and survival of plants. Here, 88 endophytic actinobacteria (EnA) associated with five tea clones were isolated, assessed for their diversity, plant growth promoting (PGP), and biocontrol traits, and then used as an inoculant for PGP and disease control in host and non-host plants. Polyphasic methods, including phenotypic and genotypic characteristics led to their identification as Streptomyces, Microbacterium, Curtobacterium, Janibacter, Rhodococcus, Nocardia, Gordonia, Nocardiopsis, and Kribbella. Out of 88 isolates, 35 (39.77%) showed antagonistic activity in vitro against major fungal pathogens, viz. Fusarium oxysporum, Rhizoctonia solani, Exobasidium vexans, Poria hypobrunnea, Phellinus lamaensis, and Nigrospora sphaerica. Regarding PGP activities, the percentage of isolates that produced indole acetic acid, siderophore, and ammonia, as well as P-solubilisation and nitrogen fixation, were 67.05, 75, 80.68, 27.27, 57.95, respectively. A total of 51 and 42 isolates showed chitinase and 1-aminocyclopropane-1-carboxylic acid deaminase activity, respectively. Further, two potent Streptomyces strains KA12 and MA34, selected based on the bonitur scale, were screened for biofilm formation ability and tested in vivo under nursery conditions. Confocal laser scanning microscopy and the crystal violet staining technique revealed that these Streptomyces strains can form biofilms, indicating the potential for plant colonization. In the nursery experiment, they significantly enhanced the shoot and root biomass, shoot and root length, and leaf number in host tea plants. Additionally, treatment of tomato seeds by KA12 suppressed the growth of fungal pathogen Fusarium oxysporum, increased seed germination, and improved root architecture, demonstrating its ability to be used as a seed biopriming agent. Our results confirm the potential of tea endophytic actinobacterial strains with multifarious beneficial traits to enhance plant growth and suppress fungal pathogens, which may be used as bioinoculant for sustainable agriculture.
RESUMO
Endophytic actinobacteria aid in plant development and disease resistance by boosting nutrient uptake or producing secondary metabolites. For the first time, we investigated the culturable endophytic actinobacteria associated with ten epiphytic orchid species of Assam, India. 51 morphologically distinct actinobacteria were recovered from surface sterilized roots and leaves of orchids and characterized based on different PGP and antifungal traits. According to the 16S rRNA gene sequence, these isolates were divided into six families and eight genera, where Streptomyces was most abundant (n=29, 56.86%), followed by Actinomadura, Nocardia, Nocardiopsis, Nocardioides, Pseudonocardia, Microbacterium, and Mycolicibacterium. Regarding PGP characteristics, 25 (49.01%) isolates demonstrated phosphate solubilization in the range of 61.1±4.4 - 289.7±11.9 µg/ml, whereas 27 (52.94%) isolates biosynthesized IAA in the range of 4.0 ± 0.08 - 43.8 ± 0.2 µg/ml, and 35 (68.62%) isolates generated ammonia in the range of 0.9 ± 0.1 - 5.9 ± 0.2 µmol/ml. These isolates also produced extracellular enzymes, viz. protease (43.13%), cellulase (23.52%), pectinase (21.56%), ACC deaminase (27.45%), and chitinase (37.25%). Out of 51 isolates, 27 (52.94%) showed antagonism against at least one test phytopathogen. In molecular screening, most isolates with antifungal and chitinase producing traits revealed the presence of 18 family chitinase genes. Two actinobacterial endophytes, Streptomyces sp. VCLA3 and Streptomyces sp. RVRA7 were ranked as the best strains based on PGP and antifungal activity on bonitur scale. GC-MS examination of ethyl acetate extract of these potent strains displayed antimicrobial compound phenol, 2,4-bis-(1,1-dimethylethyl) as the major metabolite along with other antifungal and plant growth beneficial bioactive chemicals. SEM analysis of fungal pathogen F. oxysporum (MTCC 4633) affected by Streptomyces sp. VCLA3 revealed significant destruction in the spore structure. An in vivo plant growth promotion experiment with VCLA3 and RVRA7 on chili plants exhibited statistically significant (p<0.05) improvements in all of the evaluated vegetative parameters compared to the control. Our research thus gives insight into the diversity, composition, and functional significance of endophytic actinobacteria associated with orchids. This research demonstrates that isolates with multiple plant development and broad-spectrum antifungal properties are beneficial for plant growth. They may provide a viable alternative to chemical fertilizers and pesticides and a sustainable solution for chemical inputs in agriculture.
RESUMO
Colorectal cancer (CRC) is a common, and deadly disease. Despite the improved knowledge on CRC heterogeneity and advances in the medical sciences, there is still an urgent need to cope with the challenges and side effects of common treatments for the disease. Natural products (NPs) have always been of interest for the development of new medicines. Actinobacteria are known to be prolific producers of a wide range of bioactive NPs, and scientific evidence highlights their important protective role against CRC. This review is a holistic picture on actinobacter-derived cytotoxic compounds against CRC that provides a good perspective for drug development and design in near future. This review also describes the chemical structure of 232 NPs presenting anti-CRC activity with the being majority of quinones, lactones, alkaloids, peptides, and glycosides. The study reveals that most of these NPs are derived from marine actinobacteria followed by terrestrial and endophytic actinobacteria, respectively. They are predominantly produced by Streptomyces, Micromonospors, Saliniospors and Actinomadura, respectively, in which Streptomyces, as the predominant contributor generating over 76% of compounds exclusively. Besides it provides a valuable snapshot of the chemical structure-activity relationship of compounds, highlighting the presence or absence of some specific atoms and chemical units in the structure of compounds can greatly influence their biological activities. To the best of our knowledge, this is the first comprehensive review on natural actinobacterial compounds affecting different types of CRC. Our study reveals that the high diversity of actinobacterial strains and their NPs derivatives, described here provides a new perspective and direction for the production of new anti-CRC drugs and paves the way to innovation for drugs discovery in the future. The knowledge obtain from this review can help us to understand the pivotal application of actinobacteria in future drugs development.
RESUMO
Three hundred and twenty endophytic actinobacterial strains were isolated from psammophytes collected from Taklamakan Desert and identified. Among them, three strains already had been identified as new species of two genera and sixteen isolates showed relatively low 16S rRNA similarities < 98.6% to validly described species. Seventy-five of the isolates were selected as representative strains to screen antibacterial activity and mechanism. Forty-seven strains showed antagonistic activity against at least one of the indicator bacteria. Two Streptomyces strains produced bioactive compounds inducing DNA damage, and two Streptomyces strains produced bioactive compounds with inhibitory activity on protein biosynthesis. Notably, the strain Streptomyces sp. 8P21H-1 that demonstrated both strong antibacterial activity and inhibitory activity on protein biosynthesis was prioritized for exploring new antibiotics. Under the strategy of integrating genetics-based discovery program and MS/MS-based molecular networking, two new streptogramin-type antibiotics, i.e., acetyl-griseoviridin and desulphurizing griseoviridin, along with known griseoviridin, were isolated from the culture broth of strain 8P21H-1. Their chemical structures were determined by HR-MS, and 1D and 2D NMR. Desulphurizing griseoviridin and griseoviridin exhibited antibacterial activities by inhibiting translation.
RESUMO
The concern regarding the emergence of phytopathogens strains which are resistant to conventional agrochemicals has given support to the search for alternatives on the use of chemical pesticides in agriculture. In this context, microorganisms are considered as promising sources of useful natural compounds and actinobacteria are particularly relevant since they are known to produce several bioactive metabolites. The objective of this work was to investigate the production of secondary metabolites with antifungal activity by a strain of the actinobacteria Streptomyces lunalinharesii (A54A) under axenic conditions and in co-cultivation with the phytopathogen Rhizoctonia solani. Tests to evaluate antifungal activity of the extracts indicated the presence of diffusable molecules capable of inhibiting the growth of R. solani produced by S. lunalinharesii, especially when in the presence of the fungus during fermentation. Metabolomic analyzes allowed the putative annotation of the bioactive compounds desferrioxamine E and anisomycin, in addition to the evaluation of the metabolic profile of the isolate when grown in axenic mode and in co-cultivation, while statistical analyzes enabled the comparison of such profiles and the identification of metabolites produced in greater relative quantities in the elicitation condition. Such methodologies provided the selection of unknown features with high bioactive potential for dereplication, and several metabolites of S. lunalinharesii possibly represent novel compounds.
Assuntos
Interações Microbianas , Rhizoctonia , Streptomyces , Antifúngicos/farmacologia , Metabolômica , Interações Microbianas/fisiologia , Rhizoctonia/fisiologia , Metabolismo Secundário , Streptomyces/metabolismoRESUMO
Plants fine-tune the growth-defense trade-off to survive when facing pathogens. Meanwhile, plant-associated microbes, such as the endophytes inside plant tissues, can benefit plant growth and stress resilience. However, the mechanisms for the beneficial microbes to increase stress resistance with little yield penalty in host plants remain poorly understood. In the present study, we report that endophytic Streptomyces hygroscopicus OsiSh-2 can form a sophisticated interaction with host rice, maintaining cellular homeostasis under pathogen-infection stress, and optimize plant growth and disease resistance in rice. Four-year field trials consistently showed that OsiSh-2 could boost host resistance to rice blast pathogen Magnaporthe oryzae while still maintaining a high yield. The integration of the proteomic, physiological, and transcriptional profiling analysis revealed that OsiSh-2 induced rice defense priming and controlled the expression of energy-consuming defense-related proteins, thus increasing the defense capability with the minimized costs of plant immunity. Meanwhile, OsiSh-2 improved the chloroplast development and optimally maintained the expression of proteins related to plant growth under pathogen stress, thus promoting the crop yield. Our results provided a representative example of an endophyte-mediated modulation of disease resistance and fitness in the host plant. The multilayer effects of OsiSh-2 implicate a promising future of using endophytic actinobacteria for disease control and crop yield promotion. IMPORTANCE Under disease stress, activation of defense response in plants often comes with the cost of a reduction in growth and yield, which is referred as the growth-defense trade-off. The microorganisms which can be recruited by plants to mitigate the growth-defense trade-off are of great value in crop breeding. Here, we reported a rice endophytic actinomycetes Streptomyces hygroscopicus OsiSh-2, which can improve host performances on resistance to rice blast while still sustaining high yield in the 4-year field trials. The proteomic, physiological, and transcriptional profiling data offer insights into the molecular basis underlying the balancing between defense and growth in OsiSh-2-rice symbiont. The findings provide an example for the endophyte-mediated modulation of growth-defense trade-offs in plants and indicated the promising application of endophytic actinobacterial strains in agriculture to breed "microbe-optimized crops."
Assuntos
Resistência à Doença/genética , Endófitos/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Streptomyces/metabolismo , Agricultura/métodos , Endófitos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Desenvolvimento Vegetal/genética , Doenças das Plantas/microbiologia , Streptomyces/genéticaRESUMO
Thirty-one endophytic streptomycete and non-streptomycete actinobacteria were isolated from healthy date palm root tissues. In vitro screening revealed that the antifungal action of isolate #16 was associated with the production of cell-wall degrading enzymes, whereas with diffusible antifungal metabolites in isolate #28, albeit their production of volatile antifungal compounds. According to the 16S rRNA gene sequencing, isolates #16 and #28 were identified as Streptomyces polychromogenes UAE2 (Sp; GenBank Accession #: OK560620) and Streptomyces coeruleoprunus UAE1 (Sc; OK560621), respectively. The two antagonists were recovered from root tissues until 12 weeks after inoculation, efficiently colonized root cortex and xylem vessels, indicating that the date palm roots are a suitable habitat for these endophytic isolates. At the end of the greenhouse experiments, the development of sudden decline syndrome (SDS) was markedly suppressed by 53% with the application of Sp and 86% with Sc, confirming their potential in disease management. Results showed that the estimated disease severity indices in diseased seedlings were significantly (p < 0.05) reduced from 4.75 (scale of 5) to 2.25 or 0.67 by either Sp or Sc, respectively. In addition, conidial numbers of the pathogen significantly (p < 0.05) dropped by 38% and 76% with Sp and Sc, respectively, compared to infected seedlings with F. solani (control). Thus, the suppression of disease symptoms was superior in seedlings pre-inoculated with S. coeruleoprunus, indicating that the diffusible antifungal metabolites were responsible for F. solani retardation in these plants. This is the first report of actinobacteria naturally existing in date palm tissues acting as microbial antagonists against SDS on date palm.