Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Environ Manage ; 190: 170-175, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28043023

RESUMO

The effect of the combined application of nano-hydroxyapatite (NHAP) or nano-carbon black (NCB) on the phytoextraction of Pb by ryegrass was investigated as an enhanced remediation technique for soils by field-scale experiment. After the addition of 0.2% NHAP or NCB to the soil, temporal variation of the uptake of Pb in aboveground parts and roots were observed. Ryegrass shoot concentrations of Pb were lower with nano-materials application than without nano-materials for the first month. However, the shoot concentrations of Pb were significantly increased with nano-materials application, in particular NHAP groups. The ryegrass root concentrations of Pb were lower with nano-materials application for the first month. These results indicated that nano-materials had significant effects on stabilization of lead, especially at the beginning of the experiment. Along with the experimental proceeding, phytotoxicity was alleviated after the incorporation of nano-materials. The ryegrass biomass was significantly higher with nano-materials application. Consequently, the Pb phytoextraction potential of ryegrass significantly increased with nano-materials application compared to the gounps without nano-materials application. The total removal rates of soil Pb were higher after combined application of NHAP than NCB. NHAP is more suitable than NCB for in-situ remediation of Pb-contaminated soils. The ryegrass translocation factor exhibited a marked increase with time. It was thought that the major role of NHP and NBA might be to alleviate the Pb phytotoxicity and increase biomass of plants.


Assuntos
Biodegradação Ambiental , Chumbo/isolamento & purificação , Lolium/metabolismo , Nanoestruturas , Poluentes do Solo/isolamento & purificação , Biomassa , Carbono , China , Durapatita , Chumbo/farmacocinética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Rizosfera , Solo/química , Poluentes do Solo/farmacocinética , Distribuição Tecidual
2.
Environ Sci Pollut Res Int ; 31(3): 3964-3975, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097832

RESUMO

Maximizing amendment potential is an emphasis in the HM-contaminated field of phytoremediation by hyperaccumulators due to the low bioavailability of HMs in soils and small biomass yields of plants. This study investigated the influence of different types and concentrations of plant growth regulators on Cd phytoremediation by Solanum nigrum in contaminated soil. Our conclusions showed that the shoot Cd extractions (µg plant-1) and the root and shoot biomasses at all the treatments remarkedly increased compared with that of the CK (p < 0.05), while the Cd concentrations at root and aboveground parts by S. nigrum, the extractable Cd concentrations, and pH value of soils did not change significantly compared with the CK (p < 0.05). Furthermore, correlation analysis showed that the shoot Cd phytoaccumulation and the root and aboveground biomasses of S. nigrum were particularly dependent upon the application of CTK and GA3 concentration gradient (p < 0.05). Moreover, some related physicochemical indexes were determined for supervising the growth conditions of plants, and these results pointed out that after exogenous PGRs treatments, the chlorophyll content and antioxidative enzymes POD and SOD activities in vivo of plants clearly advanced, while the H2O2 and MDA contents and CAT apparently declined. These consequence demonstrated that the exogenous PGR addition prominently reinforced the Cd phytoextraction capacity of S. nigrum in contaminated soil by stimulating plant growth and increasing shoot yields.


Assuntos
Poluentes do Solo , Solanum nigrum , Biodegradação Ambiental , Reguladores de Crescimento de Plantas/análise , Cádmio/análise , Peróxido de Hidrogênio/análise , Poluentes do Solo/análise , Solo/química , Raízes de Plantas/química
3.
Chemosphere ; 352: 141317, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286306

RESUMO

The efficacy of using plants to phytoremediate heavy metal (HM) contaminated soils can be improved using soil amendments. These amendments may both increase plant biomasses and HMs uptake. We aimed to determine the composite effect of ammonium sulfate ((NH4)2SO4) combined with the application of an aqueous stem-extracted bio-chelator (Bidens tripartita L) on the plant biomasses and cadmium (Cd) phytoextraction by Solanum nigrum L. The constant (NH4)2SO4 application mode plus bio-chelator additives collectively enhanced the shoot Cd extraction ability owing to the increased plant biomass and shoot Cd concentration by S. nigrum. The shoot Cd extraction and the soil Cd decreased concentration confirmed the optimal Cd phytoextraction pattern in K8 and K9 treatments (co-application of (NH4)2SO4 and twofold/threefold bio-chelators). Accordingly, Cd contamination risk in the soil (2 mg kg-1) could be completely eradicated (<0.2 mg kg-1) after three rounds of phytoremediation by S.nigrum based on K8 and K9 treatments through calculating soil Cd depletion. The microorganism counts and enzyme activities in rhizosphere soils at treatments with the combined soil additives apparently advanced. In general, co-application mode of (NH4)2SO4 and aqueous bio-chelator was likely to be a perfect substitute for conventional scavenger agents on account of its environmental friendliness and cost saving for field Cd contamination phytoremediation by S. nigrum.


Assuntos
Poluentes do Solo , Solanum nigrum , Cádmio/análise , Quelantes , Sulfato de Amônio/farmacologia , Poluentes do Solo/análise , Biodegradação Ambiental , Solo , Raízes de Plantas/química
4.
Sci Total Environ ; 870: 161982, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36739040

RESUMO

In this study, the spatial distribution of eight metal(loid)s in the soil of an abandoned coking plant in Shanxi, China, was mapped, and the ecological and health risks of the coking plant were assessed. The results showed that the soil Pb content of the coking plant greatly exceeded the background value, and Hg, Cd and Pb were the most polluting factors contributing to the considerable ecological risk level. There was also a non-carcinogenic risk in the coking plant, in which oral intake was the main pathway, and As, Pb and Cr were the main contributors. As the main contributor to ecological risk and non-carcinogenic risks and the most polluting metal, Pb was selected as a priority pollutant in the coking plant. Based on the detected concentration of Pb in the coking plant soil and in consideration of phytostabilization, ryegrass, alfalfa and castor were employed to study the phytoremediation and electrokinetic-enhanced phytoremediation effect in a series of Pb-contaminated soils (0, 100, 200, 300 and 400 mg/kg). It was found that the underground parts of alfalfa and castor had stronger Pb enrichment ability, and their biomass and Pb absorption capacity were improved in electrokinetic remediation methods. The Pb absorption capacities of the tested plants and the promotion efficiencies of electrokinetic-enhanced phytoremediation followed the order castor > ryegrass > alfalfa. Under the optimal electrical conditions, the remediation efficiency of castor was increased by 106 %, 83 %, 51 % and 48 % in 100, 200, 300, and 400 mg/kg Pb-contaminated soils, respectively.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Biodegradação Ambiental , Chumbo/análise , Plantas/metabolismo , China , Poluentes do Solo/análise , Metais Pesados/análise , Cádmio/análise
5.
Chemosphere ; 306: 135581, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35798158

RESUMO

Heavy metals contamination in soil and water resources is a great threat to developing countries because of the lack of waste treatment facilities. A majority of wastewater treatment methods are known to be expensive and out of reach for municipalities and small pollution treatment enterprises. Phytotechnology is a promising, sustainable, environment-friendly, and cost-effective technique for domestic and industrial wastewater treatment in places where land is available. However, interest in conventional remediation methods and the lack of information on recent advances in a significant portion of the society in developing countries have restrained the applications of phytoremediation. This review discusses the concept of phytoremediation, mechanisms of heavy metals removal by plants, and the potential application of enhanced phytoremediation technologies in developing countries like Nepal. The authors also review the commercially viable hyperaccumulator species with their native distribution, heavy metals intake capacity, and their availability in Nepal. Those native plants can be utilized locally or introduced strategically in other parts/countries as well. Thus, for a flora-rich country like Nepal, this study holds great potential and presents enhanced phytoremediation as an effective and sustainable strategy for the future.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Nepal , Plantas , Solo
6.
Heliyon ; 8(11): e11451, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36406724

RESUMO

The combination of electro-enhanced and hydroponic phytoremediation hereinafter referred to as electro-enhanced phytoremediation (EP) system, has been employed for rapid removal of trace metal concentration of lead (II) from contaminated water using Kentucky bluegrass (Poa pratensis L.) as accumulator plant. In this study, for rapid assessment the effectiveness of two-dimensional (2D) electrode configuration in electro-enhanced system was evaluated by agar media for 48h period of time. Furthermore, these configurations were applied to enhance the EP system for 9d period of time. Also, a common agrochemical-urea as chaotropic agent to facilitate the healthy growth of plant in contaminated water was evaluated. The results showed that the accumulation of lead (II) concentration was higher in the plant roots (i.e. high bioaccumulation coefficient (BC) value) than in aerial parts of plant (i.e. low translocation factor (TF) value). Also, the accumulation of lead (II) concentration in plant was higher under the treated urea of EP system. The chlorophyll content, biomass accumulation productivity, and water content (i.e. dry weight-fresh weight (DW/FW) ratio) of plant either under the treated urea or untreated urea with high accumulation of lead (II) concentration revealed that the Kentucky bluegrass has able to hold out the plant stress.

7.
Chemosphere ; 230: 510-518, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31125879

RESUMO

Soil heavy metal contamination is a serious environmental problem needed to be addressed due to the toxicities of metals to both humans and living organisms. In this study, the remediation efficiencies of washing-coupled phytoremediation on Cd and Zn contaminated soils were evaluated with multiple washing reagents (i.e., hydrochloric acid (HCl), ethylene diamine tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), several biodegradable natural low molecular mass organic acids (LMMOAs)) and ryegrass (Lolium perenne L.). Results indicated that soil washing with different reagents (at 100 mM) effectively removed metals from contaminated soils with the rates ranged from 4.73% to 81.0% and from 12.3% to 43.5% for Cd and Zn, respectively. Metal varieties and the properties washing reagents affected the detoxification performance. As for Cd, the removal rates decreased from over 80% to less than 10% in the order of EDTA > HCl > NTA > LMMOAs. By comparison, HCl and LMMOAs had higher removal efficiencies for Zn than other chelating reagents. The leaching of metals in the acid-extractable fraction was the main contribution to the overall metal removed. Additionally, soil nutrient contents, Ca specifically, were significantly decreased after washing, and the germination and growth of ryegrass were partly inhibited. Despite that, soil biota and enzyme activities responded differently among different treatments. This research also showed LMMOAs, especially citric acid (CA), were more suitable than HCl, EDTA, and NTA as reagents for the combined soil washing and phytoremediation, regarding their comparable metal removal efficiencies and less disturbing on soil fertilities and plant growth.


Assuntos
Cádmio/análise , Quelantes/química , Recuperação e Remediação Ambiental/métodos , Lolium/efeitos dos fármacos , Poluentes do Solo/análise , Zinco/análise , Biodegradação Ambiental , Quelantes/toxicidade , Estudos de Viabilidade , Humanos , Lolium/crescimento & desenvolvimento , Solo/química
8.
J Environ Radioact ; 208-209: 106036, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493563

RESUMO

In order to develop an artificially constructed plant community plot for the enhanced phytoremediation of uranium contaminated soils, three uranium accumulators including Bamboo-willow (Salix sp.), Paspalum scrobiculatum linn and Macleaya cordata were used to construct four artificial plant community plots, and greenhouse experiments were conducted to investigate the bioaccumulation of uranium by the plants and the organic acid content, enzyme activity, and the change of microbial community structure in their rhizosphere soils. The transfer factor (TF) and the total bioaccumulation amount (TBA) of uranium were used to describe remediation efficiencies in this paper. It was found that their remediation efficiencies were in the order Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn-Macleaya cordata > Bamboo-willow (Salix sp.)-Macleaya cordata > Paspalum scrobiculatum linn-Macleaya cordata > Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn. The bioaccumulation amount of uranium by each plant in the Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn-Macleaya cordata community plot was significantly (P < 0.05) higher than that by its single population, the bioaccumulation amounts of uranium by Bamboo-willow (Salix sp.), Paspalum scrobiculatum linn and Macleaya cordata were 0.29, 0.32 and 2.19 mg/plant, respectively, and they were increased by 31.82%, 77.78% and 146.07%, respectively, and the transfer efficiencies by the plants were increased by 150%, 110% and 52.17%, respectively. The interaction between the plants' roots and the microorganisms in the rhizosphere soil of the Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn-Macleaya cordata community plot resulted in the high content of organic acids such as oxalic acid in the rhizosphere soil of the plant community plot, which was significantly (P < 0.05) higher than that of its single population. The chelation of the organic acids with uranium led to an increase in the proportion of exchangeable uranium in soil solution. In addition, Burkholderia, which is an iron-producing carrier bacterium and can increase the uptake and accumulation of uranium by plants, and Leptolyngbya, which is a plant growth promoting rhizobacteria and can increase the biomass of plants, emerged in the rhizosphere soil of the plant community plot. These may be the mechanisms by which the phytoremediation of the uranium contaminated soils was enhanced by the plant community plot.


Assuntos
Biodegradação Ambiental , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo
9.
Sci Total Environ ; 653: 658-666, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30759591

RESUMO

The present study was conducted to explore the mechanisms of surfactant-enhanced phytoremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs), focusing on the bioavailability of PAHs and microbial diversity. We investigated the remediation efficiencies of phenanthrene and pyrene after the addition of mixed surfactants (sodium dodecyl benzene sulfonate (SDBS) and Tween 80) of different ratios (1:1, 1:2, and 2:1) at the concentration of 100 mg/kg to soils cultured with ryegrass (Lolium multiflorum L.). The fractions of phenanthrene and pyrene were determined using a sequential extraction method, and the microbial diversity was evaluated using 16S rRNA gene high-throughput sequencing. The results showed that mixed surfactants could enhance the remediation efficiencies of PAHs, and mainly occurred in the initial 21 days. Mixed surfactants at the ratio of 1:1 (HM1) showed the best remediation efficiency in enhancing the dissipation of pyrene in 21 days. Mixed surfactants showed little effects on the removal of phenanthrene. In general, HM1 significantly decreased the bioavailable, bound and residual fractions of pyrene; additionally, higher abundances of PAH-degradation bacteria and degradation-related genes were observed. Pearson correlation analysis among PAH degraders, degradation-related genes and bioavailable fraction of PAHs was performed. Our results indicated that mixed surfactants could promote the transformation of pyrene from the bound and residual fractions to bioavailable fractions and enhance the abundances of PAH degradation bacteria and PAH degradation-related genes, thereby enhancing the degradation of pyrene.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos/análise , Microbiologia do Solo , Poluentes do Solo/análise , Tensoativos/química , Benzenossulfonatos/química , Biodegradação Ambiental , Biodiversidade , China , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Microbiota/genética , Modelos Teóricos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Polissorbatos/química , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Solo/química , Poluentes do Solo/metabolismo
10.
Plant Sci ; 256: 170-185, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28167031

RESUMO

Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed.


Assuntos
Biodegradação Ambiental , Poluição Ambiental , Plantas , Poluentes do Solo , Solo/química
11.
Environ Pollut ; 225: 129-140, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28365510

RESUMO

Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Tensoativos/química , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Poluentes do Solo/análise , Soluções
12.
Front Plant Sci ; 6: 80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741356

RESUMO

A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: (i) non-inoculated plants; (ii) plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A); (iii) plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4, and Pseudoxanthomonas sp. P4V6 (B), and (iv) plants inoculated with all five bacterial strains (AB). The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA