Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417795

RESUMO

Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.


Assuntos
Defeitos Congênitos da Glicosilação , Transferência Ressonante de Energia de Fluorescência , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Animais , Humanos , Masculino , Ratos , Envelhecimento/metabolismo , Encéfalo/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência
2.
Proteomics ; 24(3-4): e2200471, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38282202

RESUMO

Enzymatic catalysis is one of the fundamental processes that drives the dynamic landscape of post-translational modifications (PTMs), expanding the structural and functional diversity of proteins. Here, we assessed enzyme specificity using a top-down ion mobility spectrometry (IMS) and tandem mass spectrometry (MS/MS) workflow. We successfully applied trapped IMS (TIMS) to investigate site-specific N-ε-acetylation of lysine residues of full-length histone H4 catalyzed by histone lysine acetyltransferase KAT8. We demonstrate that KAT8 exhibits a preference for N-ε-acetylation of residue K16, while also adding acetyl groups on residues K5 and K8 as the first degree of acetylation. Achieving TIMS resolving power values of up to 300, we fully separated mono-acetylated regioisomers (H4K5ac, H4K8ac, and H4K16ac). Each of these separated regioisomers produce unique MS/MS fragment ions, enabling estimation of their individual mobility distributions and the exact localization of the N-ε-acetylation sites. This study highlights the potential of top-down TIMS-MS/MS for conducting enzymatic assays at the intact protein level and, more generally, for separation and identification of intact isomeric proteoforms and precise PTM localization.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Espectrometria de Mobilidade Iônica/métodos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação
3.
Biochem Biophys Res Commun ; 709: 149822, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547604

RESUMO

Aromatic nitriles are of considerable environmental concern, because of their hazardous impacts on the health of both humans and wildlife. In the present study, Burkholderia sp. strain BC1 was observed to be capable of utilizing toxic benzonitrile and hydroxybenzonitrile isomers singly, as sole carbon and energy sources. The results of chromatographic and spectrometric analyses in combination with oxygen uptake and enzyme activity studies, revealed the metabolism of benzonitrile as well as 2-, 3-, and 4-hydroxybenzonitriles by nitrile hydratase-amidase to the corresponding carboxylates. These carboxylates were further metabolized via central pathways, namely benzoate-catechol, salicylate-catechol, 3-hydroxybenzoate-gentisate and 4-hydroxybenzoate-protocatechute pathways in strain BC1, ultimately leading to the TCA cycle intermediates. Studies also evaluated substrate specificity profiles of both nitrile hydratase and amidase(s) involved in the denitrification of the nitriles. In addition, a few metabolic crosstalk events due to the induction of multiple operons by central metabolites were appraised in strain BC1. The present study illustrates the broad degradative potential of strain BC1, harboring diverse catabolic machinery of biotechnological importance, elucidating pathways for the assimilation of benzonitrile and that of hydroxybenzonitrile isomers for the first time.


Assuntos
Burkholderia , Humanos , Nitrilas/química , Amidoidrolases/metabolismo , Catecóis , Biodegradação Ambiental
4.
Cells Tissues Organs ; : 1-13, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39353407

RESUMO

INTRODUCTION: Mitochondrial studies are crucial for assessing livestock health and performance. While extensive research has been done on cattle and pigs, the influence of mitochondria in Indian buffalo remains unexplored. Therefore, in order to understand functions of mitochondria, their energy-related processes, or any additional mitochondrial traits in buffaloes, it is imperative to isolate high-yield mitochondria with purity and functionality. Mitochondria are extracted by few conventional buffers. These buffers were previously characterized for their effectiveness in isolating mitochondria from rodent and human tissues. Therefore, the present study is to assess the performance of mitochondria isolation buffers specifically in buffalo tissues. METHODS: The study involved isolation of mitochondria from four different tissues, i.e., liver, brain, heart and muscles of slaughtered buffalo (n = 3), using: (i) Tris-Mannitol buffer (ii) Tris-Sucrose buffer, and (iii) MOPS-Sucrose buffer. Buffer efficiency in preserving high fidelity during mitochondria isolation was assessed by comparison with Cayman's MitoCheck® Mitochondrial Isolation Kit (control). Further mitochondrial purity and functionality was assessed through comparative estimation of protein concentration and marker enzyme assays, respectively. RESULTS: Our results revealed insights into the suitability of specific buffer for functional mitochondria isolation from specific type of buffalo tissue. Notably for obtaining high quality functional mitochondria from buffalo, MOPS-Sucrose buffer appeared optimal for soft tissues (liver and brain), while Tris-Mannitol buffer was efficient for hard tissues (muscles and heart). CONCLUSIONS: Thus, our research highlights the influence of buffer composition and tissue-specific variations in buffer effectiveness on mitochondrial activity in different tissues, leading to improved mitochondrial isolation in buffalo.

5.
Extremophiles ; 28(1): 15, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300354

RESUMO

Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.


Assuntos
Basidiomycota , Saccharomyces cerevisiae , Arginase/genética , Basidiomycota/genética , Arginina , Escherichia coli
6.
Pestic Biochem Physiol ; 203: 105984, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084788

RESUMO

This study focuses on dilution effect of target-site resistance (TSR) to acetolactate synthase (ALS) inhibitors in Schoenoplectiella juncoides, which harbors two ALS genes, ALS1 and ALS2. We assessed gene expression, enzyme activity, and whole-plant resistance profiles across four S. juncoides lines: the susceptible line, the parental resistant lines with a homozygous mutation in either ALS1 or ALS2, and the bred progeny line with homozygous mutations in both ALS1 and ALS2. Gene expression and enzyme function showed a proportional relationship that the expression ratios of ALS1 to ALS2, approximately 70:30, were consistent with the functional ratio predicted by the double-sigmoidal plateau positions observed in enzyme assays. However, at the whole-plant level, resistance did not correlate to the putative abundance of susceptible enzyme, but the parental lines showed similar resistance to each other despite different enzyme-level resistances. This suggests a non-proportional mechanism in the reflection of physiological enzymatic profiles to whole-plant resistance profiles. These findings highlight the complexity of herbicide resistance and the need for further research to understand the mechanisms that influence resistance outcomes. Understanding these relationships is essential for developing strategies to manage herbicide resistance effectively.


Assuntos
Acetolactato Sintase , Cyperaceae , Resistência a Herbicidas , Herbicidas , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Acetolactato Sintase/antagonistas & inibidores , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Cyperaceae/genética , Cyperaceae/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação , Genes de Plantas
7.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337695

RESUMO

Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.


Assuntos
Besouros , Inativação Metabólica , Monoterpenos , Picea , Animais , Monoterpenos/metabolismo , Monoterpenos/farmacologia , Picea/metabolismo , Picea/genética , Besouros/metabolismo , Besouros/genética , Besouros/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Casca de Planta/química , Casca de Planta/metabolismo
8.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398599

RESUMO

Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity.


Assuntos
Proteínas do Citoesqueleto , NAD , Humanos , Cromatografia Líquida de Alta Pressão , Proteínas do Domínio Armadillo
9.
Metab Eng ; 77: 21-31, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863604

RESUMO

The dominant strategy for tailoring the chain-length distribution of free fatty acids (FFA) synthesized by heterologous hosts is expression of a selective acyl-acyl carrier protein (ACP) thioesterase. However, few of these enzymes can generate a precise (greater than 90% of a desired chain-length) product distribution when expressed in a microbial or plant host. The presence of alternative chain-lengths can complicate purification in situations where blends of fatty acids are not desired. We report the assessment of several strategies for improving the dodecanoyl-ACP thioesterase from the California bay laurel to exhibit more selective production of medium-chain free fatty acids to near exclusivity. We demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) was an effective library screening technique for identification of thioesterase variants with favorable shifts in chain-length specificity. This strategy proved to be a more effective screening technique than several rational approaches discussed herein. With this data, we isolated four thioesterase variants which exhibited a more selective FFA distribution over wildtype when expressed in the fatty acid accumulating E. coli strain, RL08. We then combined mutations from the MALDI isolates to generate BTE-MMD19, a thioesterase variant capable of producing free fatty acids consisting of 90% of C12 products. Of the four mutations which conferred a specificity shift, we noted that three affected the shape of the binding pocket, while one occurred on the positively charged acyl carrier protein landing pad. Finally, we fused the maltose binding protein (MBP) from E. coli to the N - terminus of BTE-MMD19 to improve enzyme solubility and achieve a titer of 1.9 g per L of twelve-carbon fatty acids in a shake flask.


Assuntos
Escherichia coli , Ácidos Graxos não Esterificados , Ácidos Graxos não Esterificados/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Ácidos Graxos/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Plantas
10.
Bioorg Med Chem Lett ; 83: 129177, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764468

RESUMO

Based on a hit from a high-throughput screen, a series of phenyltetrazole amides was synthesized and assayed for inhibitory potency against DapE from Haemophilus influenzae (HiDapE). The inhibitory potency was modest but confirmed, with the most potent analog containing an aminothiazole moiety displaying an IC50 = 50.2 ± 5.0 µM. Docking reveals a potential binding mode wherein the amide carbonyl bridges both zinc atoms in the active site, and the tetrazole forms key hydrogen bonds with Arg330.


Assuntos
Antibacterianos , Zinco , Antibacterianos/farmacologia , Domínio Catalítico , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Zinco/química , Tetrazóis/química
11.
Bioorg Med Chem ; 91: 117415, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459673

RESUMO

Growing antibiotic resistance by pathogenic bacteria has led to a global crisis. The bacterial enzyme N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) provides a very attractive target for the discovery of a new class of antibiotics, as it resides exclusively in many pathogenic bacterial strains and is a key enzyme in the lysine biosynthetic pathway. This pathway is responsible for the production of lysine as well as meso-diaminopimelate (m-DAP), both of which are required for peptidoglycan cell-wall synthesis, and lysine for peptide synthesis. The enzyme DapE catalyzes the hydrolysis of N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) to succinate and l,l-diaminopimelic acid (l,l-DAP), and due to its absence in humans, inhibition of DapE avoids mechanism-based side effects. We have executed the asymmetric synthesis of N,N-dimethyl-SDAP, an l,l-SDAP substrate analog and an analog of the synthetic substrate of our previously described DapE assay. Previous modeling studies advocated that N,N-dimethyl-SDAP might function as an inhibitor, however the compound behaves as a substrate, and we have demonstrated the use of N,N-dimethyl-SDAP as the substrate in a modified ninhydrin-based DapE assay. Thermal shift experiments of DapE in the presence of N,N-dimethyl-SDAP are consistent with a melt temperature (Tm) shifted by succinate, the product of enzymatic hydrolysis.


Assuntos
Lisina , Succinatos , Humanos , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Farmacorresistência Bacteriana
12.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835060

RESUMO

Controlling post-prandial hyperglycemia and hyperlipidemia, particularly by regulating the activity of digestive enzymes, allows managing type 2 diabetes and obesity. The aim of this study was to assess the effects of TOTUM-63, a formulation of five plant extracts (Olea europaea L., Cynara scolymus L., Chrysanthellum indicum subsp. afroamericanum B.L.Turner, Vaccinium myrtillus L., and Piper nigrum L.), on enzymes involved in carbohydrate and lipid absorption. First, in vitro inhibition assays were performed by targeting three enzymes: α-glucosidase, α-amylase, and lipase. Then, kinetic studies and binding affinity determinations by fluorescence spectrum changes and microscale thermophoresis were performed. The in vitro assays showed that TOTUM-63 inhibited all three digestive enzymes, particularly α-glucosidase (IC50 of 13.1 µg/mL). Mechanistic studies on α-glucosidase inhibition by TOTUM-63 and molecular interaction experiments indicated a mixed (full) inhibition mechanism, and higher affinity for α-glucosidase than acarbose, the reference α-glucosidase inhibitor. Lastly, in vivo data using leptin receptor-deficient (db/db) mice, a model of obesity and type 2 diabetes, indicated that TOTUM-63 might prevent the increase in fasting glycemia and glycated hemoglobin (HbA1c) levels over time, compared with the untreated group. These results show that TOTUM-63 is a promising new approach for type 2 diabetes management via α-glucosidase inhibition.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Extratos Vegetais , alfa-Glucosidases , Animais , Camundongos , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Cinética , Lipase/metabolismo , Obesidade , Extratos Vegetais/farmacologia
13.
Molecules ; 28(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836816

RESUMO

The toxic effects of antimony pose risks to human health. Therefore, simple analytical techniques for its widescale monitoring in water sources are in demand. In this study, a sensitive microplate apta-enzyme assay for Sb3+ detection was developed. The biotinylated aptamer A10 was hybridized with its complementary biotinylated oligonucleotide T10 and then immobilized on the surface of polysterene microplate wells. Streptavidin labeled with horseradish peroxidase (HRP) bound to the biotin of a complementary complex and transformed the 3,3',5,5'-tetramethylbenzidine substrate, generating an optical signal. Sb3+ presenting in the sample bounded to an A10 aptamer, thus releasing T10, preventing streptavidin-HRP binding and, as a result, reducing the optical signal. This effect allowed for the detection of Sb3+ with a working range from 0.09 to 2.3 µg/mL and detection limit of 42 ng/mL. It was established that the presence of Ag+ at the stage of A10/T10 complex formation promoted dehybridization of the aptamer A10 and the formation of the A10/Sb3+ complex. The working range of the Ag+-enhanced microplate apta-enzyme assay for Sb3+ was determined to be 8-135 ng/mL, with a detection limit of 1.9 ng/mL. The proposed enhanced approach demonstrated excellent selectivity against other cations/anions, and its practical applicability was confirmed through an analysis of drinking and spring water samples with recoveries of Sb3+ in the range of 109.0-126.2% and 99.6-106.1%, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Prata , Humanos , Estreptavidina , Oligonucleotídeos , Cátions , Ensaios Enzimáticos/métodos , Peroxidase do Rábano Silvestre , Água , Limite de Detecção
14.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562866

RESUMO

Transglutaminase 2 (TGase 2) is a multifunctional protein which is involved in various physiological and pathophysiological processes. The latter also include its participation in the development and progression of malignant neoplasms, which are often accompanied by increased protein synthesis. In addition to the elucidation of the molecular functions of TGase 2 in tumor cells, knowledge of its concentration that is available for targeting by theranostic agents is a valuable information. Herein, we describe the application of a recently developed fluorescence anisotropy (FA)-based assay for the quantitative expression profiling of TGase 2 by means of transamidase-active enzyme in cell lysates. This assay is based on the incorporation of rhodamine B-isonipecotyl-cadaverine (R-I-Cad) into N,N-dimethylated casein (DMC), which results in an increase in the FA signal over time. It was shown that this reaction is not only catalyzed by TGase 2 but also by TGases 1, 3, and 6 and factor XIIIa using recombinant proteins. Therefore, control measurements in the presence of a selective irreversible TGase 2 inhibitor were mandatory to ascertain the specific contribution of TGase 2 to the overall FA rate. To validate the assay regarding the quality of quantification, spike/recovery and linearity of dilution experiments were performed. A total of 25 cancer and 5 noncancer cell lines were characterized with this assay method in terms of their activatable TGase 2 concentration (fmol/µg protein lysate) and the results were compared to protein synthesis data obtained by Western blotting. Moreover, complementary protein quantification methods using a biotinylated irreversible TGase 2 inhibitor as an activity-based probe and a commercially available ELISA were applied to selected cell lines to further validate the results obtained by the FA-based assay. Overall, the present study demonstrates that the FA-based assay using the substrate pair R-I-Cad and DMC represents a facile, homogenous and continuous method for quantifying TGase 2 activity in cell lysates.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Bioensaio , Cadaverina/farmacologia , Caseínas , Polarização de Fluorescência , Transglutaminases/metabolismo
15.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806492

RESUMO

Mitochondrial respiratory chain (MRC) disorders are a complex group of diseases whose diagnosis requires a multidisciplinary approach in which the biochemical investigations play an important role. Initial investigations include metabolite analysis in both blood and urine and the measurement of lactate, pyruvate and amino acid levels, as well as urine organic acids. Recently, hormone-like cytokines, such as fibroblast growth factor-21 (FGF-21), have also been used as a means of assessing evidence of MRC dysfunction, although work is still required to confirm their diagnostic utility and reliability. The assessment of evidence of oxidative stress may also be an important parameter to consider in the diagnosis of MRC function in view of its association with mitochondrial dysfunction. At present, due to the lack of reliable biomarkers available for assessing evidence of MRC dysfunction, the spectrophotometric determination of MRC enzyme activities in skeletal muscle or tissue from the disease-presenting organ is considered the 'Gold Standard' biochemical method to provide evidence of MRC dysfunction. The purpose of this review is to outline a number of biochemical methods that may provide diagnostic evidence of MRC dysfunction in patients.


Assuntos
Doenças Mitocondriais , Transporte de Elétrons , Humanos , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/metabolismo , Ácido Pirúvico/metabolismo , Reprodutibilidade dos Testes
16.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232503

RESUMO

Pancreatic lipase (PNLIP, EC 3.1.1.3) plays a pivotal role in the digestion of dietary lipids, a metabolic pathway directly related to obesity. One of the effective strategies in obesity treatment is the inhibition of PNLIP, which is possible to be achieved by specific phenolic compounds occurring in high abundance in some plants. In this study, a multidisciplinary approach is presented investigating the PNLIP inhibitory effect of 33 plants belonging in the Asteraceae botanical family. In the first stage of the study, a rapid and cost-efficient PNLIP assay in a 96-microwell plate format was developed and important parameters were optimized, e.g., the enzyme substrate. Upon PNLIP assay optimization, aqueous and dichloromethane Asteraceae plant extracts were tested and a cut-off inhibition level was set to further analyze only the samples with a significant inhibitory effect (inhibitory rate > 40%), using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) method. Specifically, a metabolomic suspect screening was performed and 69 phenolic compounds were tentatively identified, including phenolic acids, flavonoids, flavonoid-3-O-glycosides, and flavonoid-7-O-glycosides, amongst others. In the case of aqueous extracts, phytochemicals known for inducing PNLIP inhibitory effect, e.g., compounds containing galloyl molecules or caffeoylquinic acids, were monitored in Chrysanthemum morifolium, Grindella camporum and Hieracium pilosella extracts. All in all, the presented approach combines in vitro bioactivity measurements to high-end metabolomics to identify phenolic compounds with potential medicinal and/or dietary applications.


Assuntos
Asteraceae , Asteraceae/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Flavonoides/química , Glicosídeos , Lipase , Lipídeos , Espectrometria de Massas , Cloreto de Metileno , Obesidade , Fenóis/análise , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia
17.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335330

RESUMO

Aphid, Aphis craccivora Koch (Hemiptera: Aphididae), is a major sap-sucking insect pest of leguminous crops and also transmits plant viruses, leading to economic yield loss. Indiscriminate and repeated use of insecticides for control of aphid leads to the development of resistance, and is harmful to the environment, non-target organisms, etc. Plant-based extracts/seed oils (SO) are the best alternatives to insecticides. Insecticidal activities of Triadica sebifera have not been reported against A. craccivora and other insect pests to date. In the current study, the main objective was to study the insecticidal activities of leaf/bark extracts/fractions, seed oil, isolated compounds, and their combinations against A. craccivora. Results showed that, among the extracts, ethanolic bark extract 80% (LC50 = 5115.98 mg/L) was more effective against A. craccivora. Among fractions, the n-hexane fraction of leaves (LC50 = 425.73 mg/L) and the ethyl acetate fraction of bark (LC50 = 813.45 mg/L) were promising. Among compounds, gallic acid was the most effective (LC50 = 1303.68 mg/L) compared to shikimic acid and quercetin. SO (LC50 = 850.94 mg/L) was superior compared to extracts/fractions/compounds. All the combinations showed toxicity and synergistic activity. Leaf/bark extracts and SO significantly inhibited the AChE and GST activity in A. craccivora. Based on field bio-efficacy, the leaf extract/SO or their combinations can be recommended for the control of aphids.


Assuntos
Afídeos , Inseticidas , Animais , Euphorbiaceae , Inseticidas/farmacologia , Casca de Planta , Óleos de Plantas/farmacologia
18.
Molecules ; 27(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268608

RESUMO

Hepatitis E virus (HEV) is an understudied pathogen that causes infection through fecal contaminated drinking water and is prominently found in South Asian countries. The virus affects ~20 million people annually, leading to ~60,000 infections per year. The positive-stranded RNA genome of the HEV genotype 1 has four conserved open reading frames (ORFs), of which ORF1 encodes a polyprotein of 180 kDa in size, which is processed into four non-structural enzymes: methyltransferase (MTase), papain-like cysteine protease, RNA-dependent RNA polymerase, and RNA helicase. MTase is known to methylate guanosine triphosphate at the 5'-end of viral RNA, thereby preventing its degradation by host nucleases. In the present study, we cloned, expressed, and purified MTase spanning 33-353 amino acids of HEV genotype 1. The activity of the purified enzyme and the conformational changes were established through biochemical and biophysical studies. The binding affinity of MTase with magnesium ions (Mg2+) was studied by isothermal calorimetry (ITC), microscale thermophoresis (MST), far-UV CD analysis and, fluorescence quenching. In summary, a short stretch of nucleotides has been cloned, coding for the HEV MTase of 37 kDa, which binds Mg2+ and modulate its activity. The chelation of magnesium reversed the changes, confirming its role in enzyme activity.


Assuntos
Vírus da Hepatite E
19.
J Biol Chem ; 295(15): 4881-4892, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32127400

RESUMO

2',5'/3',5'-cGMP-AMP (cGAMP) is a second messenger produced in response to cytosolic dsDNA that activates the stimulator of interferon genes (STING) pathway. We recently discovered that cGAMP is exported by cancer cells and that this extracellular signal is an immunotransmitter key to tumor detection and elimination by the innate immune system. The enhancement of extracellular cGAMP levels therefore holds great promise for managing cancer. However, there is still much more to understand about the basic biology of cGAMP before its full therapeutic potential can be realized. To answer these questions, we must be able to detect and quantitate cGAMP with an assay that is high-throughput, sensitive, and precise. Existing assays fall short of these needs. Here, we describe the development of cGAMP-Luc, a coupled enzyme assay that relies on the degradation of cGAMP to AMP by ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) and an optimized assay for the detection of AMP by luciferase. We also developed STING-CAP, a STING-mediated method to concentrate and purify cGAMP from any type of biological sample. We conclude that cGAMP-Luc is an economical high-throughput assay that matches the accuracy of and surpasses the detection limit of MS, the current gold standard of cGAMP quantitation. We propose that cGAMP-Luc is a powerful tool that may enable discoveries that advance insights into extracellular cGAMP levels in healthy and diseased tissues, such as cancer.


Assuntos
Ensaios Enzimáticos/métodos , Luciferases/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/patologia , Nucleotídeos Cíclicos/análise , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Células HEK293 , Células HeLa , Humanos , Luciferases/genética , Proteínas de Membrana/genética , Neoplasias/metabolismo , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Transdução de Sinais
20.
Glycobiology ; 31(9): 1093-1101, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34080004

RESUMO

N-Deacetylase/N-sulfotransferases (NDSTs) are critical enzymes in heparan sulfate (HS) biosynthesis. Radioactive labeling assays are the preferred methods to determine the N-sulfotransferase activity of NDST. In this study, we developed a fluorometric coupled enzyme assay that is suitable for the study of enzyme kinetics and inhibitory properties of drug candidates derived from a large-scale in silico screening targeting the sulfotransferase moiety of NDST1. The assay measures recombinant mouse NDST1 (mNDST1) sulfotransferase activity by employing its natural substrate adenosine 3'-phophoadenosine-5'-phosphosulfate (PAPS), a bacterial analog of desulphated human HS, Escherichia coli K5 capsular polysaccharide (K5), the fluorogenic substrate 4-methylumbelliferylsulfate and a double mutant of rat phenol sulfotransferase SULT1A1 K56ER68G. Enzyme kinetic analysis of mNDST1 performed with the coupled assay under steady state conditions at pH 6.8 and 37°C revealed Km (K5) 34.8 µM, Km (PAPS) 10.7 µM, Vmax (K5) 0.53 ± 0.13 nmol/min/µg enzyme, Vmax (PAPS) 0.69 ± 0.05 nmol/min/µg enzyme and the specific enzyme activity of 394 pmol/min/µg enzyme. The pH optimum of mNDST1 is pH 8.2. Our data indicate that mNDST1 is specific for K5 substrate. Finally, we showed that the mNDST1 coupled assay can be utilized to assess potential enzyme inhibitors for drug development.


Assuntos
Heparitina Sulfato , Sulfotransferases , Animais , Ensaios Enzimáticos , Inibidores Enzimáticos/farmacologia , Heparitina Sulfato/química , Cinética , Camundongos , Ratos , Sulfotransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA