Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Res ; 243: 117852, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065385

RESUMO

Large quantities of sediments in urban sewer systems pose significant risk of pipe clogging and corrosion. Owing to their gel-like structure, sewer sediments have strong resistance to hydraulic shear stress. This study proposed a novel approach to weaken the erosion resistance of sewer sediments by destroying viscous gel-like biopolymers in sediments with low doses of calcium peroxide (CaO2). After treatment with 10-50 mg g-1 TS of CaO2, the critical erosion shear stress was significantly reduced by 25.7%-59.9%. The sediment aggregates gradually disintegrated into small diameter particles with increasing CaO2 dosage. Further analysis showed that the strong oxidizing and alkaline environment induced by CaO2 treatment led to cell lysis and changes in the composition and property of extracellular polymeric substances (EPS). After CaO2 treatment, aromatic proteins and humic acid-like substances associated with adhesion translocated from the inner EPS layers to outer layers while being disintegrated into small organic molecules. Concomitantly, CaO2 treatment disrupted the main functional groups (-OH, COO-, C-N, CO, and CN) in inner EPS layers, thus weakening EPS adhesion. Analysis of protein secondary structure and zeta potential reflected the reduced aggregation capacity of sediment microorganisms and loosening of sediment structure after CaO2 treatment. Thus, CaO2 treatment facilitated fragmentation and disaggregation of the gelatinous structure of sewer sediments. Such green strategy decreased the cost of sewer sediment disposal by 42.10-68.95% when compared to water flushing, and it would improve the self-cleaning capacity of sewer system and efficiency of dredging equipment.


Assuntos
Sedimentos Geológicos , Esgotos , Peróxidos , Alimentos
2.
Environ Res ; 244: 117956, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128598

RESUMO

In recent years, the preparation of new microbial dust suppressants based on microbial induced carbonate precipitation (MICP) technology through enriched urease-producing microbial communities has become a new topic in the field of coal dust control. The deposition of CaCO3 was the key to suppress coal dust. However, deposition characteristics in the field is not sufficient and the relationship between deposition characteristics and erosion resistance is not clear, which hinders the development of engineering application of new microbial dust suppressant. Therefore, based on X-CT technology, this paper observed and quantified micro-deposition of bio-consolidated coal dust with different calcium sources. Furthermore, a conceptual framework for deposition was proposed and its correlation with erosion resistance was revealed. The results showed that CaCO3 induced by calcium chloride and calcium lactate was aggregate deposited. Aggregate deposited CaCO3 was small in volume, showed the distribution of aggregation in the central area and loose outside, and mosaiced pores. CaCO3 induced by calcium nitrate was surface deposition due to attached biomass. Surface deposition was mostly large volume CaCO3 expanding from the inside out, which could cover coal dust to a high degree and completely cemented pores. In addition, the threshold detachment velocity of coal dust cemented by surface deposition was increased by 17.6-19.1% compared to aggregate deposition. This depended on the abundance and strength of CaCO3 bonding between coal dust particles under different deposition. The two-factor model based on porosity and CaCO3 coverage can well express relationship between erosion resistance and depositional characteristics. Those results will help the engineering application of MICP technology in coal dust suppression.


Assuntos
Carvão Mineral , Poeira , Poeira/análise , Minerais , Biomassa , Cálcio
3.
J Environ Manage ; 345: 118847, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673010

RESUMO

Poor cementation between soil particles is a fundamental cause of soil erosion and desertification. In recent decades, many polymers have been used to cement soil particles and improve the physical and chemical properties of soils. The contributions of polymers with different structures and functional groups to soil improvement vary considerably. In this study, a mixture comprising polyacrylamide (PAM), sodium polyacrylate (PAAS), hydroxypropyl methylcellulose (HPMC), and polyvinyl alcohol (PVA) was investigated to meet the requirements of soil water retention, erosion resistance, and plant growth. The results showed that the time required for the modified soil to reach drought conditions was extended by 4-7 days. The PAM/HPMC, PAM/PVA and PAM/PAAS experimental groups reduced the erosion rate by 99.57%, 98.3% and 96.38%, respectively, compared to that of the control group. The belowground plant biomass was significantly increased by PAM/HPMC, PAM/PAAS, and PAM/PVA, with increases of 115.92%, 145.23%, and 205.67%, respectively. HPMC contributed more to the soil erosion resistance and water-holding capacity, PAAS improved the soil porosity substantially, and PVA significantly increased the plant biomass. The rigid structures of the polymer chains enhanced the structural stability of the soil, and the hydrophilic functional groups increased the hydrophilicity of the amended soil. This study indicates different polymers that may be used to improve soil properties.


Assuntos
Areia , Solo , Polímeros , Álcool de Polivinil , Erosão do Solo
4.
J Environ Manage ; 324: 116209, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155083

RESUMO

External-soil spray seeding (ESSS) is a method often used for the ecological restoration of bare rock slopes. However, the direct use of ESSS is normally less satisfactory due to the erosion of sprayed soil and low survival rate of the plants on rock slopes. This study proposes a novel approach to addressing this issue through the combined use of ESSS with polyvinyl acetate (PVA) based soil stabilization. The PVA solutions are added to the soil to stabilize soil and improve soil strength while possessing high water and nutrient retention favorable for plant growth. A series of experimental tests on the mechanical properties, water stability, erosion resistance, water retention, and plant growth of the PVA-stabilized soil were conducted to assess the efficacy of the proposed method. The results showed that the proposed method could be promising for rock slope ecological restoration. A proper curing time (e.g., >3 days) was required to achieve beneficial effects of PVA on the soil properties. A shorter curing time would otherwise result in the decrease in the strength with the increased PVA content. It was found that the optimum PVA content was 3% for achieving the maximum water stability, erosion resistance, water retention, and plant growth. The cohesion increased by up to 50% and the internal friction angle increased by 3.5° compared to the natural soil. The disintegration rate of the stabilized soil was generally < 3e-3%/min. The maximum reduction in erosion was up to 83% when the PVA content ≥3%. The mechanisms behind the findings are also discussed.


Assuntos
Polivinil , Solo , Plantas , Água
5.
J Therm Spray Technol ; 31(1-2): 234-246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38624694

RESUMO

Machines operating in aqueous environments may be subjected to cavitation damage during operation. This study aims to evaluate the cavitation resistance of WC-10Co4Cr and WC-20CrC-7Ni coatings under cavitation erosion conditions with additional electrochemical effects. The coatings were deposited on AISI 1040 steel substrates using a high velocity air fuel thermal spray process. The microstructure of the coatings was observed by a scanning electron microscope, while their phase composition was analyzed using an energy-dispersive microanalysis system. In addition, the microhardness of the coatings and substrate was measured, and the surface topography of the eroded surface layers was observed using a 3D optical profilometer. The results revealed that the cavitation resistance of the WC-20CrC-7Ni coatings was better than that of the WC-10Co4Cr coatings. The observation of the structure and surface topography made it possible to identity the reasons for the differences between the cavitation resistance of both coatings: The WC-20CrC-7Ni coatings had a finer grain structure, lower pore density, and lower as-sprayed surface roughness. These differences, along with the presence of a high Cr and Ni content in the feedstock powder, that increased the coating corrosion resistance, contributed to improving the cavitation resistance and reducing the material loss of the WC-20CrC-7Ni coatings.

6.
J Environ Manage ; 276: 111267, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32866753

RESUMO

Shallow erosion is caused by processes such as landsliding, snow gliding, avalanches, animal trampling, or human activities and frequently occurs on high mountain grasslands. It can lead to significant long-term losses of grassland and related ecosystem services, e.g. fodder production, or water retention. Since restoration of subalpine and alpine ecosystems is difficult, prevention of shallow erosion is of vital importance for damage control. However, current knowledge on relationships between grassland ecology, management and shallow erosion resistance is very limited. In this study, we assessed relationships between the surface-mat stability of the topsoil (0-10 cm depth), vegetation cover, species diversity, growth patterns, indicator plant species for high and low tensile strength, soil texture, total nitrogen, and soil organic carbon. Vegetation composition significantly influenced the surface-mat stability of subalpine grasslands. Some key species were associated with higher reinforcement than other species. However, surface-mat stability neither depended on the vegetation type (grass or forb), nor on the root type, but rather on individual species characteristics such as roots and clonal structures as well as a certain plant and structural diversity. A balanced nutrient supply was associated with higher surface-mat stability, while soil texture had no effect. We hypothesized that stabilizing effects of plant-plant connections in tightly interwoven, dense root and clonal structure systems dominate over effects of root-soil connections. Thus, effects of soil texture may be negligible for the surface-mat stability. In general, our results show that adapted grassland management can be used as preventive erosion control measure on subalpine grasslands.


Assuntos
Ecossistema , Pradaria , Carbono , Humanos , Plantas , Solo
7.
Sensors (Basel) ; 19(5)2019 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-30832442

RESUMO

Silicone rubber material is widely used in high-voltage external insulation systems due to its excellent hydrophobicity and hydrophobicity transfer performance. However, silicone rubber is a polymeric material with a poor ability to resist electrical tracking and erosion; therefore, some fillers must be added to the material for performance enhancement. The inclined plane test is a standard method used for evaluating the tracking and erosion resistance by subjecting the materials to a combination of voltage stress and contaminate droplets to produce failure. This test is time-consuming and difficult to apply in field inspection. In this paper, a new and faster way to evaluate the tracking and erosion resistance performance is proposed using laser-induced breakdown spectroscopy (LIBS). The influence of filler content on the tracking and erosion resistance performance was studied, and the filler content was characterized by thermogravimetric analysis and the LIBS technique. In this paper, the tracking and erosion resistance of silicone rubber samples was correctly classified using principal component analysis (PCA) and neural network algorithms based on LIBS spectra. The conclusions of this work are of great significance to the performance characterization of silicone rubber composite materials.

8.
Int J Biol Macromol ; 262(Pt 2): 130042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342266

RESUMO

This paper introduces the synthesis of an environmentally friendly emulsion that can be used as a soil anti-water erosion material. SSPS-g-P(BA-co-MMA-co-AA) emulsions were prepared using free radical copolymerization with soybean soluble polysaccharide (SSPS), acrylic acid (AA), butyl acrylate (BA), and methyl methacrylate (MMA). The structure, thermal stability, and morphology were characterized using FT-IR,TG,SEM, and particle diameter analysis. The resistance to water erosion, compressive strength and water retention of emulsion-treated loess/laterite was studied and germination tests were conducted. The results demonstrated that the duration of washout resistance of loess with 0.50 wt% emulsion exceeded 99 h, and the water erosion rate was 56.0 % after 72 h, while the water erosion rate of pure loess is 100.0 % after 4 min;the duration of washout resistance of laterite with 0.50 wt% emulsion exceeded 2 h, which was 8 times longer than pure laterite;The compressive strengths of 0.5 wt% emulsion-treated loess/laterite were 3.5 Mpa and 5.8 MPa, respectively, which were 7 and 9 times higher than that of pure soil. The plant seeds germinated normally half a month after planting. These findings suggest that emulsions can be used to control soil erosion without affecting the germination of plant seeds.


Assuntos
Acrilatos , Glycine max , Erosão do Solo , Emulsões/química , Espectroscopia de Infravermelho com Transformada de Fourier , Solo , Polissacarídeos/química , Água
9.
Ultrason Sonochem ; 107: 106920, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805885

RESUMO

Cavitation erosion is a general phenomenon in the fields of aviation, navigation, hydraulic machinery, and so on, causing great damage to fluid machinery. With the vast requirements in deep ocean applications, it is urgent to study the mechanism of cavitation erosion and the cavitation erosion resistance of different materials under high hydrostatic pressure to predict and avoid the effect of cavitation erosion. In this work, the spatially confined cavitation bubble cloud associated with Gaussian-like intensity distribution sonoluminescence (SL) was produced by a spherically focused ultrasound transducer with two opening ends near metallic plates under different hydrostatic pressures (0.1, 3, 6, and 10 MPa). The cavitation erosion effects on copper, 17-4PH stainless steel and tungsten plates were studied. Through coupling analysis towards the SL intensity distribution, the macro/micro morphology of cavitation erosion, and the physical parameters of different metallic materials (hardness, yield strength, and melting point), it is found that with increasing hydrostatic pressure, the erosion effect is intensified, the depth of cavitation pits increases, the phenomenon of melting can be observed on materials with relatively low melting points, and the cavitation erosion experienced an evolution process from high-temperature creep to fracture. This work has also established a method for the evaluation of materials' cavitation erosion resistance with measurable SL intensity distribution, which is promising to promote the designing and selection of anti-cavitation materials in deep-sea applications.

10.
Materials (Basel) ; 17(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124306

RESUMO

Sand solidification of earth-rock dams is the key to flood discharge capacity and collapse prevention of earth-rock dams. It is urgent to find an economical, environmentally friendly, and durable sand solidification technology. However, the traditional grouting reinforcement method has some problems, such as high costs, complex operations, and environmental pollution. Enzyme-induced calcium carbonate precipitation (EICP) is an anti-seepage reinforcement technology emerging in recent years with the characteristics of economy, environmental protection, and durability. The erosion resistance and shear strength of earth-rock dams solidified by EICP need further verification. In this paper, EICP-solidified standard sand is taken as the research object, and EICP-cemented standard sand is carried out by a consolidated undrained triaxial test. A two-stage pouring method is adopted to pour samples, and the effects of dry density, cementation times, standing time, and confining pressure on the shear strength of cemented standard sand are emphatically analyzed. The relationship between cohesion, internal friction angle, and CaCO3 formation was analyzed. After the optimal curing conditions are obtained through the triaxial shear strength test, the erosion resistance model test is carried out. The effects of erosion angle, erosion flow rate, and erosion time on the erosion resistance of EICP-solidified sand were analyzed through an erosion model test. The results of triaxial tests show that the standard sand solidified by EICP exhibits strain softening, and the peak strength increases with the increase in initial dry density, cementation times, standing time, and confining pressure. When the content of CaCO3 increases from 2.84 g to 12.61 g, the cohesive force and internal friction angle change to 23.13 times and 1.18 times, and the determination coefficients reach 0.93 and 0.94, respectively. Erosion model test results indicate that the EICP-solidified sand dam has good erosion resistance. As the increase in erosion angle, erosion flow rate, and erosion time, the breach of solidified samples gradually becomes larger. Due to the deep solidification of sand by EICP, the development of breaches is relatively slow. Under different erosion conditions, the solidified samples did not collapse and the dam broke. The research results have important reference value and scientific significance for the practice of sand consolidation engineering in earth-rock dams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA