Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 47(5): 835-847.e4, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29150238

RESUMO

Immune response (Ir) genes, originally proposed by Baruj Benacerraf to explain differential antigen-specific responses in animal models, have become synonymous with the major histocompatibility complex (MHC). We discovered a non-MHC-linked Ir gene in a T cell receptor (TCR) locus that was required for CD8+ T cell responses to the Plasmodium berghei GAP5040-48 epitope in mice expressing the MHC class I allele H-2Db. GAP5040-48-specific CD8+ T cell responses emerged from a very large pool of naive Vß8.1+ precursors, which dictated susceptibility to cerebral malaria and conferred protection against recombinant Listeria monocytogenes infection. Structural analysis of a prototypical Vß8.1+ TCR-H-2Db-GAP5040-48 ternary complex revealed that germline-encoded complementarity-determining region 1ß residues present exclusively in the Vß8.1 segment mediated essential interactions with the GAP5040-48 peptide. Collectively, these findings demonstrated that Vß8.1 functioned as an Ir gene that was indispensable for immune reactivity against the malaria GAP5040-48 epitope.


Assuntos
Antígeno de Histocompatibilidade H-2D/genética , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Receptores de Antígenos de Linfócitos T/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Regiões Determinantes de Complementaridade , Epitopos , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/imunologia
2.
J Neuroinflammation ; 21(1): 119, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715061

RESUMO

BACKGROUND: Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS: Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNß or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS: In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNß, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNß or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION: Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Malária Cerebral , Camundongos Endogâmicos C57BL , Neurônios , Fator de Transcrição STAT1 , Regulação para Cima , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Camundongos Knockout , Neurônios/metabolismo , Plasmodium berghei , Transdução de Sinais/fisiologia , Fator de Transcrição STAT1/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
BMC Microbiol ; 23(1): 264, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735351

RESUMO

BACKGROUND: Plasmodium berghei has been used as a preferred model for studying human malaria, but only a limited number of disease-associated genes of P. berghei have been reported to date. Identification of new disease-related genes as many as possible will provide a landscape for better understanding the pathogenesis of P. berghei. METHODS: Network module analysis method was developed and applied to identify disease-related genes in P. berghei genome. Sequence feature identification, gene ontology annotation, and T-cell epitope analysis were performed on these genes to illustrate their functions in the pathogenesis of P. berghei. RESULTS: 33,314 genes were classified into 4,693 clusters. 4,127 genes shared by six malaria parasites were identified and are involved in many aspects of biological processes. Most of the known essential genes belong to shared genes. A total of 63 clusters consisting of 405 P. berghei genes were enriched in rodent malaria parasites. These genes participate in various stages of parasites such as liver stage development and immune evasion. Combination of these genes might be responsible for P. berghei infecting mice. Comparing with P. chabaudi, none of the clusters were specific to P. berghei. P. berghei lacks some proteins belonging to P. chabaudi and possesses some specific T-cell epitopes binding by class-I MHC, which might together contribute to the occurrence of experimental cerebral malaria (ECM). CONCLUSIONS: We successfully identified disease-associated P. berghei genes by network module analysis. These results will deepen understanding of the pathogenesis of P. berghei and provide candidate parasite genes for further ECM investigation.


Assuntos
Genes Essenciais , Plasmodium berghei , Humanos , Animais , Camundongos , Plasmodium berghei/genética , Ontologia Genética , Evasão da Resposta Imune , Anotação de Sequência Molecular
4.
Nano Lett ; 22(1): 211-219, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34967631

RESUMO

Human malaria is a global life-threatening infectious disease. Cerebral malaria (CM) induced by Plasmodium falciparum parasites accounts for 90% of malaria deaths. Treating CM is challenging due to inadequate treatment options and the development of drug resistance. We describe a nanoparticle formulation of the antimalarial drug dihydroartemisinin that is coated in a biomimetic membrane derived from brain microvascular endothelial cells (BMECs) and test its therapeutic efficacy in a mouse model of experimental cerebral malaria (ECM). The membrane-coated nanoparticle drug has a prolonged drug-release profile and enhanced dual targeting killing efficacy toward parasites residing in red blood cells (iRBCs) and iRBCs obstructed in the BMECs (for both rodent and human). In a mice ECM model, the nanodrug protects the brain, liver, and spleen from infection-induced damage and improves the survival rate of mice. This so-called nanodrug offers new insight into engineering nanoparticle-based therapeutics for malaria and other parasitic pathogen infections.


Assuntos
Antimaláricos , Malária Cerebral , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Encéfalo , Modelos Animais de Doenças , Células Endoteliais , Malária Cerebral/tratamento farmacológico , Camundongos , Plasmodium falciparum
5.
J Infect Dis ; 225(4): 705-714, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34932816

RESUMO

BACKGROUND: We explored a metabolic etiology of cerebral malaria (CM) coma. METHODS: Plasma metabolites were compared between Malawian children with CM and mild Plasmodium falciparum malaria. A candidate molecule was further studied in animal models of malaria. RESULTS: Clinically abnormal concentrations of pipecolic acid (PA) were present in CM plasma, and nearly normal in mild malaria samples. PA is renally cleared and the elevated PA blood levels were associated with renal insufficiency, which was present only in CM subjects. Prior studies demonstrate that PA has neuromodulatory effects and is generated by malaria parasites. PA brain levels in Plasmodium berghei ANKA-infected animals in the experimental cerebral malaria (ECM) model inversely correlated with normal behavior and correlated with blood-brain barrier (BBB) permeability. Mice infected with malaria species that do not induce neurological abnormalities or manifest BBB permeability had elevated plasma PA levels similar to ECM plasma at 7 days postinfection; however, they had low PA levels in the brain compared to ECM mice brains at 7 days postinfection. CONCLUSIONS: Our model suggests that malaria-generated PA induces coma in CM and in ECM. The role of BBB permeability and the mechanisms of PA neuromodulation in CM will require additional investigation.


Assuntos
Encefalopatias , Malária Cerebral , Animais , Encéfalo/metabolismo , Coma , Modelos Animais de Doenças , Humanos , Malária Cerebral/complicações , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Pipecólicos , Plasmodium berghei
6.
J Proteome Res ; 21(10): 2261-2276, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36169658

RESUMO

Malaria varies in severity, with complications ranging from uncomplicated to severe malaria. Severe malaria could be attributed to peripheral hyperparasitemia or cerebral malaria. The metabolic interactions between the host and Plasmodium species are yet to be understood during these infections of varied pathology and severity. An untargeted metabolomics approach utilizing the liquid chromatography-mass spectrometry platform has been used to identify the affected host metabolic pathways and associated metabolites in the serum of murine malaria models with uncomplicated malaria, hyperparasitemia, and experimental cerebral malaria. We report that mice with malaria share similar metabolic attributes like higher levels of bile acids, bile pigments, and steroid hormones that have been reported for human malaria infections. Moreover, in severe malaria, upregulated levels of metabolites like phenylalanine, histidine, valine, pipecolate, ornithine, and pantothenate, with decreased levels of arginine and hippurate, were observed. Metabolites of sphingolipid metabolism were upregulated in experimental cerebral malaria. Higher levels of 20-hydroxy-leukotriene B4 and epoxyoctadecamonoenoic acids were found in uncomplicated malaria, with lower levels observed for experimental cerebral malaria. Our study provides insights into host biology during different pathological stages of malaria disease and would be useful for the selection of animal models for evaluating diagnostic and therapeutic interventions against malaria. The raw data files are available via MetaboLights with the identifier MTBLS4387.


Assuntos
Malária Cerebral , Animais , Arginina , Ácidos e Sais Biliares , Pigmentos Biliares , Modelos Animais de Doenças , Hipuratos , Histidina , Hormônios , Humanos , Camundongos , Ornitina , Fenilalanina , Plasmodium berghei , Esfingolipídeos , Valina
7.
Proc Natl Acad Sci U S A ; 115(51): E12024-E12033, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514812

RESUMO

The deadliest complication of Plasmodium falciparum infection is cerebral malaria (CM), with a case fatality rate of 15 to 25% in African children despite effective antimalarial chemotherapy. No adjunctive treatments are yet available for this devastating disease. We previously reported that the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) rescued mice from experimental CM (ECM) when administered late in the infection, a time by which mice had already suffered blood-brain barrier (BBB) dysfunction, brain swelling, and hemorrhaging. Herein, we used longitudinal MR imaging to visualize brain pathology in ECM and the impact of a new DON prodrug, JHU-083, on disease progression in mice. We demonstrate in vivo the reversal of disease markers in symptomatic, infected mice following treatment, including the resolution of edema and BBB disruption, findings usually associated with a fatal outcome in children and adults with CM. Our results support the premise that JHU-083 is a potential adjunctive treatment that could rescue children and adults from fatal CM.


Assuntos
Diazo-Oxo-Norleucina/antagonistas & inibidores , Diazo-Oxo-Norleucina/uso terapêutico , Glutamina/antagonistas & inibidores , Imageamento por Ressonância Magnética/métodos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/patologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/patologia , Adulto , Animais , Antimaláricos/uso terapêutico , Biomarcadores , Barreira Hematoencefálica/patologia , Encéfalo/parasitologia , Encéfalo/patologia , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/patologia , Criança , Diazo-Oxo-Norleucina/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Malária Cerebral/diagnóstico por imagem , Malária Cerebral/parasitologia , Malária Falciparum/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/patogenicidade
8.
Immunology ; 159(2): 193-204, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31631339

RESUMO

Excessive inflammatory immune responses during infections with Plasmodium parasites are responsible for severe complications such as cerebral malaria (CM) that can be studied experimentally in mice. Dendritic cells (DCs) activate cytotoxic CD8+ T-cells and initiate immune responses against the parasites. Batf3-/- mice lack a DC subset, which efficiently induces strong CD8 T-cell responses by cross-presentation of exogenous antigens. Here we show that Batf3-/- mice infected with Plasmodium berghei ANKA (PbA) were protected from experimental CM (ECM), characterized by a stable blood-brain barrier (BBB) and significantly less infiltrated peripheral immune cells in the brain. Importantly, the absence of ECM in Batf3-/- mice correlated with attenuated responses of cytotoxic T-cells, as their parasite-specific lytic activity as well as the production of interferon gamma and granzyme B were significantly decreased. Remarkably, spleens of ECM-protected Batf3-/- mice had elevated levels of regulatory immune cells and interleukin 10. Thus, protection from ECM in PbA-infected Batf3-/- mice was associated with the absence of strong CD8+ T-cell activity and induction of immunoregulatory mediators and cells.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Encéfalo/imunologia , Células Dendríticas/imunologia , Malária Cerebral/prevenção & controle , Plasmodium berghei/patogenicidade , Proteínas Repressoras/deficiência , Linfócitos T Citotóxicos/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/parasitologia , Encéfalo/metabolismo , Encéfalo/parasitologia , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Modelos Animais de Doenças , Feminino , Granzimas/imunologia , Granzimas/metabolismo , Interações Hospedeiro-Parasita , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium berghei/imunologia , Proteínas Repressoras/genética , Baço/imunologia , Baço/metabolismo , Baço/parasitologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/parasitologia
9.
Malar J ; 18(1): 431, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852507

RESUMO

BACKGROUND: The development of Plasmodium resistance to the last effective anti-malarial drugs necessitates the urgent development of new anti-malarial therapeutic strategies. To this end, plants are an important source of new molecules. The objective of this study was to evaluate the anti-malarial effects of Terminalia albida, a plant used in Guinean traditional medicine, as well as its anti-inflammatory and antioxidant properties, which may be useful in treating cases of severe malaria. METHODS: In vitro antiplasmodial activity was evaluated on a chloroquine-resistant strain of Plasmodium falciparum (K-1). In vivo efficacy of the plant extract was measured in the experimental cerebral malaria model based on Plasmodium berghei (strain ANKA) infection. Mice brains were harvested on Day 7-8 post-infection, and T cells recruitment to the brain, expression levels of pro- and anti-inflammatory markers were measured by flow cytometry, RT-qPCR and ELISA. Non-malarial in vitro models of inflammation and oxidative response were used to confirm Terminalia albida effects. Constituents of Terminalia albida extract were characterized by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation patterns. RESULTS: In vitro antiplasmodial activity of Terminalia albida was confirmed with an IC50 of 1.5 µg/mL. In vivo, Terminalia albida treatment greatly increased survival rates in P. berghei-infected mice. Treated mice were all alive until Day 12, and the survival rate was 50% on Day 20. Terminalia albida treatment also significantly decreased parasitaemia by 100% on Day 4 and 89% on Day 7 post-infection. In vivo anti-malarial activity was related to anti-inflammatory properties, as Terminalia albida treatment decreased T lymphocyte recruitment and expression of pro-inflammatory markers in brains of treated mice. These properties were confirmed in vitro in the non-malarial model. In vitro, Terminalia albida also demonstrated a remarkable dose-dependent neutralization activity of reactive oxygen species. Twelve compounds were putatively identified in Terminalia albida stem bark. Among them, several molecules already identified may be responsible for the different biological activities observed, especially tannins and triterpenoids. CONCLUSION: The traditional use of Terminalia albida in the treatment of malaria was validated through the combination of in vitro and in vivo studies.


Assuntos
Anti-Inflamatórios/farmacologia , Antimaláricos/farmacologia , Malária Cerebral/prevenção & controle , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Terminalia/química , Animais , Antimaláricos/química , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos
10.
Infect Immun ; 85(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28264905

RESUMO

Human cerebral malaria (HCM) is a serious complication of Plasmodium falciparum infection. The most severe outcomes for patients include coma, permanent neurological deficits, and death. Recently, a large-scale magnetic resonance imaging (MRI) study in humans identified brain swelling as the most prominent predictor of fatal HCM. Therefore, in this study, we sought to define the mechanism controlling brain edema through the use of the murine experimental cerebral malaria (ECM) model. Specifically, we investigated the ability of CD8 T cells to initiate brain edema during ECM. We determined that areas of blood-brain barrier (BBB) permeability colocalized with a reduction of the cerebral endothelial cell tight-junction proteins claudin-5 and occludin. Furthermore, through small-animal MRI, we analyzed edema and vascular leakage. Using gadolinium-enhanced T1-weighted MRI, we determined that vascular permeability is not homogeneous but rather confined to specific regions of the brain. Our findings show that BBB permeability was localized within the brainstem, olfactory bulb, and lateral ventricle. Concurrently with the initiation of vascular permeability, T2-weighted MRI revealed edema and brain swelling. Importantly, ablation of the cytolytic effector molecule perforin fully protected against vascular permeability and edema. Furthermore, perforin production specifically by CD8 T cells was required to cause fatal edema during ECM. We propose that CD8 T cells initiate BBB breakdown through perforin-mediated disruption of tight junctions. In turn, leakage from the vasculature into the parenchyma causes brain swelling and edema. This results in a breakdown of homeostatic maintenance that likely contributes to ECM pathology.


Assuntos
Edema Encefálico/patologia , Linfócitos T CD8-Positivos/imunologia , Expressão Gênica , Malária Cerebral/complicações , Proteínas Citotóxicas Formadoras de Poros/biossíntese , Animais , Edema Encefálico/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Malária Cerebral/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674030

RESUMO

Artesunate remains the mainstay of treatment for cerebral malaria, but it is less effective in later stages of disease when the host inflammatory response and blood-brain barrier integrity dictate clinical outcomes. Nitric oxide (NO) is an important regulator of inflammation and microvascular integrity, and impaired NO bioactivity is associated with fatal outcomes in malaria. Endogenous NO bioactivity in mammals is largely mediated by S-nitrosothiols (SNOs). Based on these observations, we hypothesized that animals deficient in the SNO-metabolizing enzyme, S-nitrosoglutathione reductase (GSNOR), which exhibit enhanced S-nitrosylation, would have improved outcomes in a preclinical model of cerebral malaria. GSNOR knockout (KO) mice infected with Plasmodium berghei ANKA had significantly delayed mortality compared to WT animals (P < 0.0001), despite higher parasite burdens (P < 0.01), and displayed markedly enhanced survival versus the wild type (WT) when treated with the antimalarial drug artesunate (77% versus 38%; P < 0.001). Improved survival was associated with higher levels of protein-bound NO, decreased levels of CD4+ and CD8+ T cells in the brain, improved blood-brain barrier integrity, and improved coma scores, as well as higher levels of gamma interferon. GSNOR KO animals receiving WT bone marrow had significantly reduced survival following P. berghei ANKA infection compared to those receiving KO bone barrow (P < 0.001). Reciprocal transplants established that survival benefits of GSNOR deletion were attributable primarily to the T cell compartment. These data indicate a role for GSNOR in the host response to malaria infection and suggest that strategies to disrupt its activity will improve clinical outcomes by enhancing microvascular integrity and modulating T cell tissue tropism.


Assuntos
Álcool Desidrogenase/deficiência , Malária Cerebral/patologia , Plasmodium berghei/patogenicidade , Animais , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Artesunato , Modelos Animais de Doenças , Feminino , Malária Cerebral/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Análise de Sobrevida , Linfócitos T/imunologia , Resultado do Tratamento
12.
Immunology ; 151(1): 110-121, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28066899

RESUMO

Several previous studies outlined the importance of the histone H2A deubiquitinase MYSM1 in the regulation of stem cell quiescence and haematopoiesis. In this study we investigated the role of MYSM1 in T-cell development. Using mouse models that allow conditional Mysm1 ablation at late stages of thymic development, we found that MYSM1 is intricately involved in the maintenance, activation and survival of CD8+ T cells. Mysm1 ablation resulted in a twofold reduction in CD8+ T-cell numbers, and also led to a hyperactivated CD8+ T-cell state accompanied by impaired proliferation and increased pro-inflammatory cytokine production after ex vivo stimulation. These phenotypes coincided with an increased apoptosis and preferential up-regulation of p53 tumour suppressor protein in CD8+ T cells. Lastly, we examined a model of experimental cerebral malaria, in which pathology is critically dependent on CD8+ T cells. In the mice conditionally deleted for Mysm1 in the T-cell compartment, CD8+ T-cell numbers remained reduced following infection, both in the periphery and in the brain, and the mice displayed improved survival after parasite challenge. Collectively, our data identify MYSM1 as a novel factor for CD8+ T cells in the immune system, increasing our understanding of the role of histone H2A deubiquitinases in cytotoxic T-cell biology.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Endopeptidases/metabolismo , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Citocinas/metabolismo , Citotoxicidade Imunológica/genética , Endopeptidases/genética , Mediadores da Inflamação/metabolismo , Ativação Linfocitária/genética , Malária Cerebral/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Transativadores , Proteína Supressora de Tumor p53/genética , Proteases Específicas de Ubiquitina
13.
Immunology ; 150(2): 155-161, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27546479

RESUMO

Tacrolimus and mycophenolate mofetil are immunosuppressants frequently used in human organ transplantation. Tacrolimus is also reported to inhibit Plasmodium falciparum growth in vitro. Here, we report that tacrolimus prevented the death from cerebral malaria of Plasmodium berghei ANKA-infected C57BL/6J mice, but not their death from malaria due to the high parasitaemia and severe anaemia. The mycophenolate mofetil-treated mice showed higher mortality from cerebral malaria and succumbed to malaria earlier than tacrolimus-treated littermates. Tacrolimus attenuated the infiltration of mononuclear cells including pathogenic CD8+ T cells into the brain. It appears to prevent murine cerebral malaria through the inhibition of cerebral infiltration of CD8+ T cells.


Assuntos
Encéfalo/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Imunossupressores/uso terapêutico , Malária Cerebral/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Tacrolimo/uso terapêutico , Anemia/tratamento farmacológico , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/parasitologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Micofenólico/uso terapêutico , Parasitemia/tratamento farmacológico , Plasmodium berghei/fisiologia
14.
Eur J Immunol ; 45(5): 1354-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25682948

RESUMO

Cerebral malaria, a severe complication of Plasmodium falciparum infection, can be modeled in murine Plasmodium berghei ANKA (PbA) infection. PbA-induced experimental cerebral malaria (ECM) is CD8(+) T-cell mediated, and influenced by TH 1/TH 2 balance. Here, we show that IL-33 expression is increased in brain undergoing ECM and we address the role of the IL-33/ST2 pathway in ECM development. ST2-deficient mice were resistant to PbA-induced neuropathology. They survived >20 days with no ECM neurological sign and a preserved cerebral microcirculation, while WT mice succumbed within 10 days with ECM, brain vascular leakage, distinct microvascular pathology obstruction, and hemorrhages. Parasitemia and brain parasite load were similar in ST2-deficient and WT mice. Protection was accompanied by reduced brain sequestration of activated CD4(+) T cells and perforin(+) CD8(+) T cells. While IFN-γ and T-cell-attracting chemokines CXCL9 and CXCL10 were not affected in the absence of functional ST2 pathway, the local expression of ICAM-1, CXCR3, and LT-α, crucial for ECM development, was strongly reduced, and this may explain the diminished pathogenic T-cell recruitment and resistance to ECM. Therefore, IL-33 is induced in PbA sporozoite infection, and the pathogenic T-cell responses with local microvascular pathology are dependent on IL-33/ST2 signaling, identifying IL-33 as a new actor in ECM development.


Assuntos
Malária Cerebral/etiologia , Plasmodium berghei , Receptores de Interleucina/metabolismo , Animais , Encéfalo/imunologia , Encéfalo/parasitologia , Encéfalo/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Feminino , Inflamação/etiologia , Inflamação/imunologia , Inflamação/patologia , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/metabolismo , Ativação Linfocitária , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium berghei/imunologia , Plasmodium berghei/patogenicidade , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética
15.
J Infect Dis ; 212(8): 1322-31, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25883389

RESUMO

Plasmodium falciparum infection can result in severe disease that is associated with elevated inflammation and vital organ dysfunction; however, malaria-endemic residents gain protection from lethal outcomes and manifest only mild symptoms during infection. To characterize host responses associated with this more effective antimalarial response, we characterized whole-blood transcriptional profiles in Rwandan adults during a mild malaria episode and compared them with findings from a convalescence sample. We observed transcriptional up-regulation in many pathways, including type I interferon, interferon γ, complement activation, and nitric oxide during malaria infection, which provide benchmarks of mild disease physiology. Transcripts encoding negative regulators of T-cell activation, such as programmed death ligand 1 (PD-L1), programmed death 1 ligand 2 (PD-L2), and the butyrophilin family member butyrophilin-like 2 (BTNL2) were also increased. To support an important functional role for BTNL2 during malaria infection, we studied chimeric mice reconstituted with BTNL2(-/-) or wild-type hematopoietic cells that were inoculated with Plasmodium berghei ANKA, a murine model of cerebral malaria. We found that BTNL2(-/-) chimeric mice had a significant decrease in survival compared with wild-type counterparts. Collectively these data characterize the immune responses associated with mild malaria and uncover a novel role for BTNL2 in the host response to malaria.


Assuntos
Malária Cerebral/imunologia , Malária Falciparum/imunologia , Glicoproteínas de Membrana/metabolismo , Plasmodium falciparum/imunologia , Adulto , Animais , Antígeno B7-H1/imunologia , Butirofilinas , Ativação do Complemento , Doenças Endêmicas , Feminino , Humanos , Interferon Tipo I/imunologia , Interferon gama/imunologia , Ativação Linfocitária , Malária/epidemiologia , Malária/imunologia , Malária/parasitologia , Malária Cerebral/epidemiologia , Malária Cerebral/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Plasmodium berghei/imunologia , Ruanda/epidemiologia , Regulação para Cima , Adulto Jovem
16.
Biochim Biophys Acta ; 1832(12): 2009-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23872112

RESUMO

Oxidative stress has been attributed both a key pathogenic and rescuing role in cerebral malaria (CM). In a Plasmodium berghei ANKA murine model of CM, host redox signaling and functioning were examined during the course of neurological damage. Host antioxidant defenses were early altered at the transcriptional level indicated by the gradually diminished expression of superoxide dismutase-1 (sod-1), sod-2, sod-3 and catalase genes. During severe disease, this led to the dysfunctional activity of superoxide dismutase and catalase enzymes in damaged brain regions. Vitagene associated markers (heat shock protein 70 and thioredoxin-1) also showed a decaying expression pattern that paralleled reduced expression of the transcription factors Parkinson disease 7, Forkhead box O 3 and X-box binding protein 1 with a role in preserving brain redox status. However, the oxidative stress markers reactive oxygen/nitrogen species were not accumulated in the brains of CM mice and redox proteomics and immunohistochemistry failed to detect quantitative or qualitative differences in protein carbonylation. Thus, the loss of antioxidant capacity was compensated for in all cerebral regions by progressive upregulation of heme oxygenase-1, and in specific regions by early glutathione peroxidase-1 induction. This study shows for the first time a scenario of cooperative glutathione peroxidase and heme oxygenase-1 upregulation to suppress superoxide dismutase, catalase, heat shock protein-70 and thioredoxin-1 downregulation effects in experimental CM, counteracting oxidative damage and maintaining redox equilibrium. Our findings reconcile the apparent inconsistency between the lack of oxidative metabolite build up and reported protective effect of antioxidant therapy against CM.


Assuntos
Encéfalo/patologia , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Malária Cerebral/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Western Blotting , Encéfalo/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Malária Cerebral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxirredução , Carbonilação Proteica , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo
17.
Eur J Immunol ; 43(10): 2683-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23780878

RESUMO

Cerebral malaria is a severe complication of Plasmodium falciparum infection. Although T-cell activation and type II IFN-γ are required for Plasmodium berghei ANKA (PbA)-induced murine experimental cerebral malaria (ECM), the role of type I IFN-α/ß in ECM development remains unclear. Here, we address the role of the IFN-α/ß pathway in ECM devel-opment in response to hepatic or blood-stage PbA infection, using mice deficient for types I or II IFN receptors. While IFN-γR1⁻/⁻ mice were fully resistant, IFNAR1⁻/⁻ mice showed delayed and partial protection to ECM after PbA infection. ECM resistance in IFN-γR1⁻/⁻ mice correlated with unaltered cerebral microcirculation and absence of ischemia, while WT and IFNAR1⁻/⁻ mice developed distinct microvascular pathologies. ECM resistance appeared to be independent of parasitemia. Instead, key mediators of ECM were attenuated in the absence of IFNAR1, including PbA-induced brain sequestration of CXCR3⁺-activated CD8⁺ T cells. This was associated with reduced expression of Granzyme B, IFN-γ, IL-12Rß2, and T-cell-attracting chemokines CXCL9 and CXCL10 in IFNAR1⁻/⁻ mice, more so in the absence of IFN-γR1. Therefore, the type I IFN-α/ß receptor pathway contributes to brain T-cell responses and microvascular pathology, although it is not as essential as IFN-γ for the development of cerebral malaria upon hepatic or blood-stage PbA infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Cerebelo/imunologia , Interferon Tipo I/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Animais , Linfócitos T CD8-Positivos/parasitologia , Movimento Celular/genética , Cerebelo/parasitologia , Citotoxicidade Imunológica/genética , Progressão da Doença , Humanos , Isquemia/genética , Malária Cerebral/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação/genética , Modelos Animais , Receptores CXCR3/metabolismo , Receptores de Interferon/genética , Esporozoítos/imunologia
18.
Int J Parasitol Drugs Drug Resist ; 25: 100539, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38621317

RESUMO

Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.


Assuntos
Malária Cerebral , Camundongos Endogâmicos C57BL , Plasmodium berghei , Animais , Malária Cerebral/tratamento farmacológico , Camundongos , Plasmodium berghei/efeitos dos fármacos , Administração Oral , Inflamação/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Encéfalo/patologia , Encéfalo/parasitologia , Encéfalo/efeitos dos fármacos , Feminino , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Neuropatologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Classe Ib de Fosfatidilinositol 3-Quinase
19.
Exp Anim ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069480

RESUMO

In humans, cerebral malaria is the most common cause of malaria-related mortality. Mouse C57BL/6 (B6) sub-strains are the major model system for experimental cerebral malaria (ECM) as they show similar pathophysiology to human cerebral malaria after infection with the rodent malaria parasite Plasmodium berghei ANKA. This model system has been used to analyze the molecular mechanisms of cerebral malaria. To develop new mouse models, we analyzed the ECM susceptibility of NOD/Shi (NOD) and NSY/Hos (NSY) strains established from the non-inbred ICR strain. Both NOD and NSY strains exhibited clinical symptoms and pathologies similar to ECM in C57BL/6J (B6J) mice and died within 11 days of infection. Thus, the NOD and NSY strains are susceptible to ECM and may be useful as new ECM models. The ECM susceptibility of both strains is suggested to be due to homozygosity for the cerebral malaria susceptibility allele of the ECM susceptible ICR strain. Although analyses using B6 sub-strains have proposed that complement component 5 (C5) plays an important role in ECM pathogenesis, we found that C5 was not essential as the ECM susceptible NOD strain is C5 deficient. Thus, results obtained from B6 sub-strains may not reflect the full picture of ECM in mice. Comparative analyses of multiple ECM models will contribute to a more accurate identification of the factors essential for ECM.

20.
CNS Neurosci Ther ; 30(3): e14431, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37697956

RESUMO

INTRODUCTION: Cerebral malaria (CM) is a lethal neuroinflammatory disease caused by Plasmodium infection. Immune cells and brain parenchyma cells contribute to the pathogenesis of CM. However, a systematic examination of the changes that occur in the brain parenchyma region during CM at the single-cell resolution is still poorly studied. AIMS: To explore cell composition and CD8+ T cell infiltration, single-cell RNA sequencing (scRNA-seq) was performed on the brainstems of healthy and experimental cerebral malaria (ECM) mice. Then CD8+ T cell infiltration was confirmed by flow cytometry and immunofluorescence assays. Subsequently, the characteristics of the brain-infiltrated CD8+ T cells were analyzed. Finally, the interactions between parenchyma cells and brain-infiltrated CD8+ T cells were studied with an astrocytes-CD8+ T cell cocultured model. RESULTS: The brainstem is the most severely damaged site during ECM. ScRNA-seq revealed a large number of CD8+ T cells infiltrating into the brainstem in ECM mice. Brain-infiltrated CD8+ T cells were highly activated according to scRNA-seq, immunofluorescence, and flow cytometry assays. Further analysis found a subset of ki-67+ CD8+ T cells that have a higher transcriptional level of genes related to T cell function, activation, and proliferation, suggesting that they were exposed to specific antigens presented by brain parenchyma cells. Brain-infiltrated CD8+ T cells were the only prominent source of IFN-γ in this single-cell analysis. Astrocytes, which have a high interferon response, act as cross-presenting cells to recruit and re-activate brain-infiltrated CD8+ T cells. We also found that brain-infiltrated CD8+ T cells were highly expressed immune checkpoint molecule PD-1, while parenchyma cells showed up-regulation of PD-L1 after infection. CONCLUSIONS: These findings reveal a novel interaction between brain-infiltrated CD8+ T cells and parenchyma cells in the ECM brainstem, suggesting that the PD-1/PD-L1 signal pathway is a promising adjunctive therapeutic strategy for ECM targeting over-activated CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Malária Cerebral , Camundongos , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Tronco Encefálico , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA