Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 261(3): 335-348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37650293

RESUMO

FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

2.
Mol Pharm ; 15(11): 4827-4834, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30247920

RESUMO

Our work has focused on defining the utility of fluorine (19F)-labeled bile acid analogues and magnetic resonance imaging (MRI) to identify altered bile acid transport in vivo. In the current study, we explored the ability of this approach to differentiate fibroblast growth factor-15 (FGF15)-deficient from wild-type (WT) mice, a potential diagnostic test for bile acid diarrhea, a commonly misdiagnosed disorder. FGF15 is the murine homologue of human FGF19, an intestinal hormone whose deficiency is an underappreciated cause of bile acid diarrhea. In a pilot and three subsequent pharmacokinetic studies, we treated mice with two 19F-labeled bile acid analogues, CA-lys-TFA and CA-sar-TFMA. After oral dosing, we quantified 19F-labeled bile acid analogue levels in the gallbladder, liver, small and large intestine, and plasma using liquid chromatography mass spectrometry (LC-MS/MS). Both 19F bile acid analogues concentrated in the gallbladders of FGF15-deficient and WT mice, attaining peak concentrations at approximately 8.5 h after oral dosing. However, analogue levels in gallbladders of FGF15-deficient mice were several-fold less compared to those in WT mice. Live-animal 19F MRI provided agreement with our LC-MS/MS-based measures; we detected robust CA-lys-TFA 19F signals in gallbladders of WT mice but no signals in FGF15-deficient mice. Our finding that 19F MRI differentiates FGF15-deficient from WT mice provides additional proof-of-concept for the development of 19F bile acid analogues and 19F MRI as a clinical test to diagnose bile acid diarrhea due to FGF19 deficiency and other disorders.


Assuntos
Ácidos e Sais Biliares/farmacocinética , Diarreia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Sondas Moleculares/farmacocinética , Animais , Ácidos e Sais Biliares/administração & dosagem , Ácidos e Sais Biliares/química , Diarreia/genética , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Flúor/química , Vesícula Biliar/diagnóstico por imagem , Vesícula Biliar/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sondas Moleculares/administração & dosagem , Sondas Moleculares/química , Distribuição Tecidual
3.
Endocrinology ; 165(11)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39253796

RESUMO

Fibroblast growth factor (FGF) 21 is an endocrine hormone that signals to multiple tissues to regulate metabolism. FGF21 and another endocrine FGF, FGF15/19, signal to target tissues by binding to the co-receptor ß-klotho (KLB), which then facilitates the interaction of these different FGFs with their preferred FGF receptor. KLB is expressed in multiple metabolic tissues, but the specific cell types and spatial distribution of these cells are not known. Furthermore, while circulating FGF21 is primarily produced by the liver, recent publications have indicated that brain-derived FGF21 impacts memory and learning. Here we use reporter mice to comprehensively assess KLB and FGF21 expression throughout the body. These data provide an important resource for guiding future studies to identify important peripheral and central targets of FGFs and to determine the significance of nonhepatic FGF21 production.


Assuntos
Fatores de Crescimento de Fibroblastos , Proteínas Klotho , Fígado , Transdução de Sinais , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Proteínas Klotho/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Encéfalo/metabolismo
4.
Cell Mol Gastroenterol Hepatol ; 16(5): 847-856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572734

RESUMO

BACKGROUND & AIMS: Glucagon-like peptide (GLP)-2 may exert antifibrotic effects on hepatic stellate cells (HSCs). Thus, we aimed to test whether application of the GLP-2 analogue teduglutide has hepatoprotective and antifibrotic effects in the Mdr2/Abcb4-/- mouse model of sclerosing cholangitis displaying hepatic inflammation and fibrosis. METHODS: Mdr2-/- mice were injected daily for 4 weeks with teduglutide followed by gene expression profiling (bulk liver; isolated HSCs) and immunohistochemistry. Activated HSCs (LX2 cells) and immortalized human hepatocytes and human intestinal organoids were treated with GLP-2. mRNA profiling by reverse transcription polymerase chain reaction and electrophoretic mobility shift assay using cytosolic and nuclear protein extracts was performed. RESULTS: Hepatic inflammation, fibrosis, and reactive cholangiocyte phenotype were improved in GLP-2-treated Mdr2-/- mice. Primary HSCs isolated from Mdr2-/- mice and LX2 cells exposed to GLP-2 in vitro displayed significantly increased mRNA expression levels of NR4a1/Nur77 (P < .05). Electrophoretic mobility shift assay revealed an increased nuclear NR4a1 binding after GLP-2 treatment in LX2 cells. Moreover, GLP-2 alleviated the Tgfß-mediated reduction of NR4a1 nuclear binding activity. In vivo, GLP-2 treatment of Mdr2-/- mice resulted in increased intrahepatic levels of muricholic acids (accordingly Cyp2c70 mRNA expression was significantly increased), and in reduced mRNA levels of Cyp7a1 and FXR. Serum Fgf15 levels were increased in Mdr2-/- mice treated with GLP-2. Accordingly, GLP-2 treatment of human intestinal organoids activated their FXR-FGF19 signaling axis. CONCLUSIONS: GLP-2 treatment increased NR4a1/Nur77 activation in HSCs, subsequently attenuating their activation. GLP-2 promoted intestinal Fxr-Fgf15/19 signaling resulting in reduced Cyp7a1 and increased Cyp2c70 expression in the liver, contributing to hepatoprotective and antifibrotic effects of GLP-2 in the Mdr2-/- mouse model.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Humanos , Animais , Células Estreladas do Fígado/metabolismo , Camundongos Knockout , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Modelos Animais de Doenças , RNA Mensageiro/metabolismo , Inflamação/metabolismo
5.
JHEP Rep ; 5(11): 100874, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37841639

RESUMO

Background & Aims: The nuclear receptor farnesoid X receptor (FXR) is a key regulator of hepatic bile acid (BA) and lipid metabolism, inflammation and fibrosis. Here, we aimed to explore the potential of cilofexor (GS-9674), a non-steroidal FXR agonist, as a therapeutic approach for counteracting features of cholestatic liver injury by evaluating its efficacy and mechanisms in the Mdr2/Abcb4 knockout (-/-) mouse model of sclerosing cholangitis. Methods: FVB/N wild-type and Mdr2-/- or BALB/c wild-type and Mdr2-/- mice were treated with 0, 10, 30 or 90 mg/kg cilofexor by gavage every 24 h for 10 weeks. Serum biochemistry, gene expression profile, hydroxyproline content, and picrosirius red and F4/80 immunostaining, were investigated. Bile flow, biliary bicarbonate and BA output, and hepatic BA profile, were assessed. Results: Cilofexor treatment improved serum levels of aspartate aminotransferase, alkaline phosphatase as well as BAs in Mdr2-/- animals. Hepatic fibrosis was improved, as reflected by the reduced picrosirius red-positive area and hydroxyproline content in liver sections of cilofexor-treated Mdr2-/- mice. Intrahepatic BA concentrations were lowered in cilofexor-treated Mdr2-/- mice, while hepatobiliary bile flow and bicarbonate output were increased. Conclusion: Collectively the current data show that cilofexor treatment improves cholestatic liver injury and decreases hepatic fibrosis in the Mdr2-/- mouse model of sclerosing cholangitis. Impact and implications: Treatment with cilofexor, a non-steroidal farnesoid X receptor (FXR) agonist, improved histological features of sclerosing cholangitis, cholestasis and hepatic fibrosis in the Mdr2-/- mouse model. These findings indicate, that pharmacological stimulation of intestinal FXR-mediated gut-liver signaling, via fibroblast growth factor 15 (thereby reducing bile acid synthesis), may be sufficient to attenuate cholestatic liver injury in the Mdr2-/- mouse model of sclerosing cholangitis, thus arguing for potential therapeutic properties of cilofexor in cholestatic liver diseases.

6.
Mech Ageing Dev ; 202: 111630, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026209

RESUMO

Sarcopenia is the age-related decrease in skeletal muscle mass, and current therapies for this disease are ineffective. We previously showed that ileal farnesoid X receptor (FXR)-fibroblast growth factor 15/19 (FGF15/19) signaling acts as a regulator of gut microbiota to mediate host skeletal muscle. However, the therapeutic potential of this pathway for sarcopenia is unknown. This study showed that ileal FXR-FGF15/19 signaling was downregulated in older men and aged male mice due to changes in the gut microbiota and microbial bile acid metabolism during aging. In addition, the intestine-specific FXR agonist fexaramine increased skeletal muscle mass and improve muscle performance in aged mice. Ileal FXR activation increased skeletal muscle protein synthesis in a FGF15/19-dependent way, indicating that ileal FXR-FGF15/19 signaling is a potential therapeutic target for sarcopenia.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Idoso , Animais , Ácidos e Sais Biliares/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Receptores Citoplasmáticos e Nucleares/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-34856412

RESUMO

In addition to maintaining bile acid, cholesterol and glucose homeostasis, farnesoid X receptor (FXR) also regulates fatty acid ß-oxidation (FAO). To explore the different roles of hepatic and intestinal FXR in liver FAO, FAO-associated metabolites, including acylcarnitines and fatty acids, and FXR target gene mRNAs were profiled using an integrated metabolomic and transcriptomic analysis in control (Fxrfl/fl), liver-specific Fxr-null (FxrΔHep) and intestine-specific Fxr-null (FxrΔIE) mice, treated either with the FXR agonist obeticholic acid (OCA) or vehicle (VEH). Activation of FXR by OCA treatment significantly increased fatty acyl-CoA hydrolysis (Acot1) and decreased FAO-associated mRNAs in Fxrfl/fl mice, resulting in reduced levels of total acylcarnitines and relative accumulation of long/medium chain acylcarnitines and fatty acids in liver. FxrΔHep mice responded to OCA treatment in a manner similar to Fxrfl/fl mice while FxrΔIE mice responded differently, thus illustrating that intestinal FXR plays a critical role in the regulation of hepatic FAO. A significant negative-correlation between intestinal FXR-FGF15 and hepatic CREB-PGC1A pathways was observed after both VEH and OCA treatment, suggesting that OCA-induced activation of the intestinal FXR-FGF15 axis downregulates hepatic PGC1α signaling via inactivation of hepatic CREB, thus repressing FAO. This mechanism was confirmed in experiments based on human recombinant FGF19 treatment and intestinal Fgf15-null mice. This study revealed an important role for the intestinal FXR-FGF15 pathway in hepatic FAO repression.


Assuntos
Ácidos e Sais Biliares
8.
Nutrients ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500979

RESUMO

Bile acids (BA) are amphiphilic molecules synthesized in the liver (primary BA) starting from cholesterol. In the small intestine, BA act as strong detergents for emulsification, solubilization and absorption of dietary fat, cholesterol, and lipid-soluble vitamins. Primary BA escaping the active ileal re-absorption undergo the microbiota-dependent biotransformation to secondary BA in the colon, and passive diffusion into the portal vein towards the liver. BA also act as signaling molecules able to play a systemic role in a variety of metabolic functions, mainly through the activation of nuclear and membrane-associated receptors in the intestine, gallbladder, and liver. BA homeostasis is tightly controlled by a complex interplay with the nuclear receptor farnesoid X receptor (FXR), the enterokine hormone fibroblast growth factor 15 (FGF15) or the human ortholog FGF19 (FGF19). Circulating FGF19 to the FGFR4/ß-Klotho receptor causes smooth muscle relaxation and refilling of the gallbladder. In the liver the binding activates the FXR-small heterodimer partner (SHP) pathway. This step suppresses the unnecessary BA synthesis and promotes the continuous enterohepatic circulation of BAs. Besides BA homeostasis, the BA-FXR-FGF19 axis governs several metabolic processes, hepatic protein, and glycogen synthesis, without inducing lipogenesis. These pathways can be disrupted in cholestasis, nonalcoholic fatty liver disease, and hepatocellular carcinoma. Thus, targeting FXR activity can represent a novel therapeutic approach for the prevention and the treatment of liver and metabolic diseases.


Assuntos
Fatores de Crescimento de Fibroblastos , Neoplasias Hepáticas , Humanos , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
9.
Cells ; 11(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159314

RESUMO

Fibroblast growth factors (FGFs) play important roles in various growth signaling processes, including proliferation, development, and differentiation. Endocrine FGFs, i.e., atypical FGFs, including FGF15/19, FGF21, and FGF23, function as endocrine hormones that regulate energy metabolism. Nutritional status is known to regulate the expression of endocrine FGFs through nuclear hormone receptors. The increased expression of endocrine FGFs regulates energy metabolism processes, such as fatty acid metabolism and glucose metabolism. Recently, a relationship was found between the FGF19 subfamily and stress signaling during stresses such as endoplasmic reticulum stress and oxidative stress. This review focuses on endocrine FGFs and the recent progress in FGF studies in relation to stress signaling. In addition, the relevance of the stress-FGF pathway to disease and human health is discussed.


Assuntos
Sistema Endócrino , Fatores de Crescimento de Fibroblastos , Sistema Endócrino/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Metabolismo dos Lipídeos , Estresse Oxidativo , Transdução de Sinais
10.
Ann Med ; 53(1): 508-522, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33783283

RESUMO

Background: Recent evidence indicates that host-gut microbiota crosstalk has nonnegligible effects on host skeletal muscle, yet gut microbiota-regulating mechanisms remain obscure.Methods: C57BL/6 mice were treated with a cocktail of antibiotics (Abx) to depress gut microbiota for 4 weeks. The profiles of gut microbiota and microbial bile acids were measured by 16S rRNA sequencing and ultra-performance liquid chromatography (UPLC), respectively. We performed qPCR, western blot and ELISA assays in different tissue samples to evaluate FXR-FGF15/19 signaling.Results: Abx treatment induced skeletal muscle atrophy in mice. These effects were associated with microbial dysbiosis and aberrant bile acid (BA) metabolism in intestine. Ileal farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signaling was inhibited in response to microbial BA disturbance. Mechanistically, circulating FGF15 was decreased, which downregulated skeletal muscle protein synthesis through the extracellular-signal-regulated protein kinase 1/2 (ERK1/2) signaling pathway. Treating Abx mice with FGF19 (human FGF15 ortholog) partly reversed skeletal muscle loss.Conclusions: These findings indicate that the BA-FXR-FGF15/19 axis acts as a regulator of gut microbiota to mediate host skeletal muscle.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Microbioma Gastrointestinal/genética , Músculo Esquelético/microbiologia , Atrofia Muscular/microbiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Antibacterianos/efeitos adversos , Ácidos e Sais Biliares/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/genética , Disbiose/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/induzido quimicamente , RNA Ribossômico 16S , Transdução de Sinais/genética
11.
J Adv Res ; 34: 109-122, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024184

RESUMO

Introduction: Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic total cholesterol (TC) and total triglyceride (TG) accumulation. In our previous study, we found that rats treated with hyperoside became resistant to hepatic lipid accumulation. Objectives: The present study aims to investigate the possible mechanisms responsible for the inhibitory effects of hyperoside on the lipid accumulation in the liver tissues of the NAFLD rats. Methods: Label-free proteomics and metabolomics targeting at bile acid (BA) metabolism were applied to disclose the mechanisms for hyperoside reducing hepatic lipid accumulation among the NAFLD rats. Results: In response to hyperoside treatment, several proteins related to the fatty acid degradation pathway, cholesterol metabolism pathway, and bile secretion pathway were altered, including ECI1, Acnat2, ApoE, and BSEP, etc. The expression of nuclear receptors (NRs), including farnesoid X receptor (FXR) and liver X receptor α (LXRα), were increased in hyperoside-treated rats' liver tissue, accompanied by decreased protein expression of catalyzing enzymes in the hepatic de novo lipogenesis and increased protein level of enzymes in the classical and alternative BA synthetic pathway. Liver conjugated BAs were less toxic and more hydrophilic than unconjugated BAs. The BA-targeted metabolomics suggest that hyperoside could decrease the levels of liver unconjugated BAs and increase the levels of liver conjugated BAs. Conclusions: Taken together, the results suggest that hyperoside could improve the condition of NAFLD by regulating the cholesterol metabolism as well as BAs metabolism and excretion. These findings contribute to understanding the mechanisms by which hyperoside lowers the cholesterol and triglyceride in NAFLD rats.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos e Sais Biliares , Colesterol , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Quercetina/análogos & derivados , Ratos
12.
Front Med (Lausanne) ; 7: 544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015098

RESUMO

Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol and have been shown to be essential for lipid homeostasis. BAs regulate a variety of metabolic functions via modulating nuclear and membrane receptors. Farnesoid X receptor (FXR) is the most important nuclear receptor for maintaining BA homeostasis. FXR plays a tissue-specific role in suppressing BA synthesis and promoting BA enterohepatic circulation. Disruption of FXR in mice have been implicated in liver diseases commonly occurring in humans, including cholestasis, non-alcoholic fatty liver diseases, and hepatocellular carcinoma. Strategically targeting FXR activity has been rapidly used to develop novel therapies for the prevention and/or treatment of cholestasis and non-alcoholic steatohepatitis. This review provides an updated literature review on BA homeostasis and FXR modulator development.

13.
Acta Pharm Sin B ; 9(4): 702-710, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31384531

RESUMO

Since metabolic process differs between humans and mice, studies were performed in hamsters, which are generally considered to be a more appropriate animal model for studies of obesity-related metabolic disorders. The modulation of gut microbiota, bile acids and the farnesoid X receptor (FXR) axis is correlated with obesity-induced insulin resistance and hepatic steatosis in mice. However, the interactions among the gut microbiota, bile acids and FXR in metabolic disorders remained largely unexplored in hamsters. In the current study, hamsters fed a 60% high-fat diet (HFD) were administered vehicle or an antibiotic cocktail by gavage twice a week for four weeks. Antibiotic treatment alleviated HFD-induced glucose intolerance, hepatic steatosis and inflammation accompanied with decreased hepatic lipogenesis and elevated thermogenesis in subcutaneous white adipose tissue (sWAT). In the livers of antibiotic-treated hamsters, cytochrome P450 family 7 subfamily B member 1 (CYP7B1) in the alternative bile acid synthesis pathway was upregulated, contributing to a more hydrophilic bile acid profile with increased tauro-ß-muricholic acid (TßMCA). The intestinal FXR signaling was suppressed but remained unchanged in the liver. This study is of potential translational significance in determining the role of gut microbiota-mediated bile acid metabolism in modulating diet-induced glucose intolerance and hepatic steatosis in the hamster.

14.
Cell Mol Gastroenterol Hepatol ; 5(3): 223-237, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29675448

RESUMO

BACKGROUND & AIMS: The organic solute transporter α-ß (OSTα-OSTß) mainly facilitates transport of bile acids across the basolateral membrane of ileal enterocytes. Therefore, inhibition of OSTα-OSTß might have similar beneficial metabolic effects as intestine-specific agonists of the major nuclear receptor for bile acids, the farnesoid X receptor (FXR). However, no OSTα-OSTß inhibitors have yet been identified. METHODS: Here, we developed a screen to identify specific inhibitors of OSTα-OSTß using a genetically encoded Förster Resonance Energy Transfer (FRET)-bile acid sensor that enables rapid visualization of bile acid efflux in living cells. RESULTS: As proof of concept, we screened 1280 Food and Drug Administration-approved drugs of the Prestwick chemical library. Clofazimine was the most specific hit for OSTα-OSTß and reduced transcellular transport of taurocholate across Madin-Darby canine kidney epithelial cell monolayers expressing apical sodium bile acid transporter and OSTα-OSTß in a dose-dependent manner. Moreover, pharmacologic inhibition of OSTα-OSTß also moderately increased intracellular taurocholate levels and increased activation of intestinal FXR target genes. Oral administration of clofazimine in mice (transiently) increased intestinal FXR target gene expression, confirming OSTα-OSTß inhibition in vivo. CONCLUSIONS: This study identifies clofazimine as an inhibitor of OSTα-OSTß in vitro and in vivo, validates OSTα-OSTß as a drug target to enhance intestinal bile acid signaling, and confirmed the applicability of the Förster Resonance Energy Transfer-bile acid sensor to screen for inhibitors of bile acid efflux pathways.

15.
Proc Nutr Soc ; 76(3): 192-202, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27846919

RESUMO

In addition to their well-known function as dietary lipid detergents, bile acids have emerged as important signalling molecules that regulate energy homeostasis. Recent studies have highlighted that disrupted bile acid metabolism is associated with metabolism disorders such as dyslipidaemia, intestinal chronic inflammatory diseases and obesity. In particular, type 2 diabetes (T2D) is associated with quantitative and qualitative modifications in bile acid metabolism. Bile acids bind and modulate the activity of transmembrane and nuclear receptors (NR). Among these receptors, the G-protein-coupled bile acid receptor 1 (TGR5) and the NR farnesoid X receptor (FXR) are implicated in the regulation of bile acid, lipid, glucose and energy homeostasis. The role of these receptors in the intestine in energy metabolism regulation has been recently highlighted. More precisely, recent studies have shown that FXR is important for glucose homeostasis in particular in metabolic disorders such as T2D and obesity. This review highlights the growing importance of the bile acid receptors TGR5 and FXR in the intestine as key regulators of glucose metabolism and their potential as therapeutic targets.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Mucosa Intestinal/metabolismo , Obesidade/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Pesquisa Biomédica/educação , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Glicemia/metabolismo , Congressos como Assunto , Diabetes Mellitus Tipo 2/sangue , Humanos , Ciências da Nutrição/educação , Ciências da Nutrição/métodos , Ciências da Nutrição/tendências , Obesidade/sangue , Sociedades Científicas
16.
Acta Pharm Sin B ; 5(2): 99-105, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26579434

RESUMO

The human body is now viewed as a complex ecosystem that on a cellular and gene level is mainly prokaryotic. The mammalian liver synthesizes and secretes hydrophilic primary bile acids, some of which enter the colon during the enterohepatic circulation, and are converted into numerous hydrophobic metabolites which are capable of entering the portal circulation, returned to the liver, and in humans, accumulating in the biliary pool. Bile acids are hormones that regulate their own synthesis, transport, in addition to glucose and lipid homeostasis, and energy balance. The gut microbial community through their capacity to produce bile acid metabolites distinct from the liver can be thought of as an "endocrine organ" with potential to alter host physiology, perhaps to their own favor. We propose the term "sterolbiome" to describe the genetic potential of the gut microbiome to produce endocrine molecules from endogenous and exogenous steroids in the mammalian gut. The affinity of secondary bile acid metabolites to host nuclear receptors is described, the potential of secondary bile acids to promote tumors, and the potential of bile acids to serve as therapeutic agents are discussed.

17.
Acta Pharm Sin B ; 5(2): 151-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26579441

RESUMO

The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homoeostasis and nutrient absorption, bile acids are also important metabolic regulators and function as signaling hormones by activating specific nuclear receptors, G-protein coupled receptors, and multiple signaling pathways. Recent studies identified a new signaling pathway by which conjugated bile acids (CBA) activate the extracellular regulated protein kinases (ERK1/2) and protein kinase B (AKT) signaling pathway via sphingosine-1-phosphate receptor 2 (S1PR2). CBA-induced activation of S1PR2 is a key regulator of sphingosine kinase 2 (SphK2) and hepatic gene expression. This review focuses on recent findings related to the role of bile acids/S1PR2-mediated signaling pathways in regulating hepatic lipid metabolism.

18.
Acta Pharm Sin B ; 5(2): 158-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26579442

RESUMO

Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα (peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure.

19.
Steroids ; 86: 62-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24819989

RESUMO

Bile salts play crucial roles in allowing the gastrointestinal system to digest, transport and metabolize nutrients. They function as nutrient signaling hormones by activating specific nuclear receptors (FXR, PXR, Vitamin D) and G-protein coupled receptors [TGR5, sphingosine-1 phosphate receptor 2 (S1PR2), muscarinic receptors]. Bile acids and insulin appear to collaborate in regulating the metabolism of nutrients in the liver. They both activate the AKT and ERK1/2 signaling pathways. Bile acid induction of the FXR-α target gene, small heterodimer partner (SHP), is highly dependent on the activation PKCζ, a branch of the insulin signaling pathway. SHP is an important regulator of glucose and lipid metabolism in the liver. One might hypothesize that chronic low grade inflammation which is associated with insulin resistance, may inhibit bile acid signaling and disrupt lipid metabolism. The disruption of these signaling pathways may increase the risk of fatty liver and non-alcoholic fatty liver disease (NAFLD). Finally, conjugated bile acids appear to promote cholangiocarcinoma growth via the activation of S1PR2.


Assuntos
Ácidos e Sais Biliares/metabolismo , Alimentos , Transdução de Sinais , Ácidos e Sais Biliares/sangue , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Doenças Metabólicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA