Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474998

RESUMO

A fully integrated 24-GHz radar transceiver with one transmitter (TX) and two receivers (RXs) for compact frequency modulated continuous wave (FMCW) radar applications is here presented. The FMCW synthesizer was realized using a fractional-N phase-locked loop (PLL) and programmable chirp generator, which are completely integrated in the proposed transceiver. The measured output phase noise of the synthesizer is -80 dBc/Hz at 100 kHz offset. The TX consists of a three-bit bridged t-type attenuator for gain control, a two-stage drive amplifier (DA) and a one-stage power amplifier (PA). The TX chain provides an output power of 13 dBm while achieving <0.5 dB output power variation within the range of 24 to 24.25 GHz. The RX with a direct conversion I-Q structure is composed of a two-stage low noise amplifier (LNA), I-Q generator, mixer, transimpedance amplifier (TIA), a two-stage biquad band pass filter (BPF), and a differential-to-single (DTS) amplifier. The TIA and the BPF employ a DC offset cancellation (DCOC) circuit to suppress the strong reflection signal and TX-RX leakage. The RX chain exhibits an overall gain of 100 dB. The proposed radar transceiver is fabricated using a 65 nm CMOS technology. The transceiver consumes 220 mW from a 1 V supply voltage and has 4.84 mm2 die size including all pads. The prototype FMCW radar is realized with the proposed transceiver and Yagi antenna to verify the radar functionality, such as the distance and angle of targets.

2.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000830

RESUMO

Millimeter-wave radar-based identification technology has a wide range of applications in persistent identity verification, covering areas such as security production, healthcare, and personalized smart consumption systems. It has received extensive attention from the academic community due to its advantages of being non-invasive, environmentally insensitive and privacy-preserving. Existing identification algorithms mainly rely on a single signal, such as breathing or heartbeat. The reliability and accuracy of these algorithms are limited due to the high similarity of breathing patterns and the low signal-to-noise ratio of heartbeat signals. To address the above issues, this paper proposes an algorithm for multimodal fusion for identity recognition. This algorithm extracts and fuses features derived from phase signals, respiratory signals, and heartbeat signals for identity recognition purposes. The spatial features of signals with different modes are first extracted by the residual network (ResNet), after which these features are fused with a spatial-channel attention fusion module. On this basis, the temporal features are further extracted with a time series-based self-attention mechanism. Finally, the feature vectors of the user's vital sign modality are obtained to perform identity recognition. This method makes full use of the correlation and complementarity between different modal signals to improve the accuracy and reliability of identification. Simulation experiments show that the algorithm identity recognition proposed in this paper achieves an accuracy of 94.26% on a 20-subject self-test dataset, which is much higher than that of the traditional algorithm, which is about 85%.


Assuntos
Algoritmos , Radar , Humanos , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia , Respiração
3.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065968

RESUMO

Human action recognition based on optical and infrared video data is greatly affected by the environment, and feature extraction in traditional machine learning classification methods is complex; therefore, this paper proposes a method for human action recognition using Frequency Modulated Continuous Wave (FMCW) radar based on an asymmetric convolutional residual network. First, the radar echo data are analyzed and processed to extract the micro-Doppler time domain spectrograms of different actions. Second, a strategy combining asymmetric convolution and the Mish activation function is adopted in the residual block of the ResNet18 network to address the limitations of linear and nonlinear transformations in the residual block for micro-Doppler spectrum recognition. This approach aims to enhance the network's ability to learn features effectively. Finally, the Improved Convolutional Block Attention Module (ICBAM) is integrated into the residual block to enhance the model's attention and comprehension of input data. The experimental results demonstrate that the proposed method achieves a high accuracy of 98.28% in action recognition and classification within complex scenes, surpassing classic deep learning approaches. Moreover, this method significantly improves the recognition accuracy for actions with similar micro-Doppler features and demonstrates excellent anti-noise recognition performance.


Assuntos
Redes Neurais de Computação , Radar , Humanos , Algoritmos , Aprendizado de Máquina , Atividades Humanas/classificação , Aprendizado Profundo , Reconhecimento Automatizado de Padrão/métodos
4.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000963

RESUMO

A 77 GHz frequency-modulated continuous wave (FMCW) radar was utilized to extract biomechanical parameters for gait analysis in indoor scenarios. By preprocessing the collected raw radar data and eliminating environmental noise, a range-velocity-time (RVT) data cube encompassing the subjects' information was derived. The strongest signals from the torso in the velocity and range dimensions and the enveloped signal from the toe in the velocity dimension were individually separated for the gait parameters extraction. Then, six gait parameters, including step time, stride time, step length, stride length, torso velocity, and toe velocity, were measured. In addition, the Qualisys system was concurrently utilized to measure the gait parameters of the subjects as the ground truth. The reliability of the parameters extracted by the radar was validated through the application of the Wilcoxon test, the intraclass correlation coefficient (ICC) value, and Bland-Altman plots. The average errors of the gait parameters in the time, range, and velocity dimensions were less than 0.004 s, 0.002 m, and 0.045 m/s, respectively. This non-contact radar modality promises to be employable for gait monitoring and analysis of the elderly at home.


Assuntos
Marcha , Radar , Humanos , Marcha/fisiologia , Fenômenos Biomecânicos/fisiologia , Masculino , Análise da Marcha/métodos , Feminino , Adulto , Reprodutibilidade dos Testes
5.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38544095

RESUMO

Micro-Doppler time-frequency analysis has been regarded as an important parameter extraction method for conical micro-motion objects. However, the micro-Doppler effect caused by micro-motion can modulate the frequency of lidar echo, leading to coupling between structure and micro-motion parameters. Therefore, it is difficult to extract parameters for micro-motion cones. We propose a new method for parameter extraction by combining the range profile of a micro-motion cone and the micro-Doppler time-frequency spectrum. This method can effectively decouple and accurately extract the structure and the micro-motion parameters of cones. Compared with traditional time-frequency analysis methods, the accuracy of parameter extraction is higher, and the information is richer. Firstly, the range profile of the micro-motion cone was obtained by using an FMCW (Frequency Modulated Continuous Wave) lidar based on simulation. Secondly, quantitative analysis was conducted on the edge features of the range profile and the micro-Doppler time-frequency spectrum. Finally, the parameters of the micro-motion cone were extracted based on the proposed decoupling parameter extraction method. The results show that our method can effectively extract the cone height, the base radius, the precession angle, the spin frequency, and the gravity center height within the range of a lidar LOS (line of sight) angle from 20° to 65°. The average absolute percentage error can reach below 10%. The method proposed in this paper not only enriches the detection information regarding micro-motion cones, but also improves the accuracy of parameter extraction and establishes a foundation for classification and recognition. It provides a new technical approach for laser micro-Doppler detection in accurate recognition.

6.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676065

RESUMO

This paper proposes a new approach for wide angle monitoring of vital signs in smart home applications. The person is tracked using an indoor radar. Upon detecting the person to be static, the radar automatically focuses its beam on that location, and subsequently breathing and heart rates are extracted from the reflected signals using continuous wavelet transform (CWT) analysis. In this way, leveraging the radar's on-chip processor enables real-time monitoring of vital signs across varying angles. In our experiment, we employ a commercial multi-input multi-output (MIMO) millimeter-wave FMCW radar to monitor vital signs within a range of 1.15 to 2.3 m and an angular span of -44.8 to +44.8 deg. In the Bland-Altman plot, the measured results indicate the average difference of -1.5 and 0.06 beats per minute (BPM) relative to the reference for heart rate and breathing rate, respectively.


Assuntos
Frequência Cardíaca , Radar , Frequência Cardíaca/fisiologia , Humanos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Respiração , Taxa Respiratória/fisiologia , Análise de Ondaletas , Processamento de Sinais Assistido por Computador , Algoritmos
7.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676158

RESUMO

This paper details the design and implementation of a harmonic frequency-modulated continuous-wave (FMCW) radar system, specialized in detecting harmonic tags and achieving precise range estimation. Operating within the 2.4-2.5 GHz frequency range for the forward channel and 4.8-5.0 GHz for the backward channel, this study delves into the various challenges faced during the system's realization. These challenges include selecting appropriate components, calibrating the system, processing signals, and integrating the system components. In addition, we introduce a single-layer passive harmonic tag, developed specifically for assessing the system, and provide an in-depth theoretical analysis and simulation results. Notably, the system is characterized by its low power consumption, making it particularly suitable for short-range applications. The system's efficacy is further validated through experimental evaluations in a real-world indoor environment across multiple tag positions. Our measurements underscore the system's robust ranging accuracy and its ability to mitigate self-interference, showcasing its significant potential for applications in harmonic tag detection and ranging.

8.
Sensors (Basel) ; 24(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38894339

RESUMO

Vital sign monitoring is dominated by precise but costly contact-based sensors. Contactless devices such as radars provide a promising alternative. In this article, the effects of lateral radar positions on breathing and heartbeat extraction are evaluated based on a sleep study. A lateral radar position is a radar placement from which multiple human body zones are mapped onto different radar range sections. These body zones can be used to extract breathing and heartbeat motions independently from one another via these different range sections. Radars were positioned above the bed as a conventional approach and on a bedside table as well as at the foot end of the bed as lateral positions. These positions were evaluated based on six nights of sleep collected from healthy volunteers with polysomnography (PSG) as a reference system. For breathing extraction, comparable results were observed for all three radar positions. For heartbeat extraction, a higher level of agreement between the radar foot end position and the PSG was found. An example of the distinction between thoracic and abdominal breathing using a lateral radar position is shown. Lateral radar positions could lead to a more detailed analysis of movements along the body, with the potential for diagnostic applications.


Assuntos
Frequência Cardíaca , Radar , Respiração , Sinais Vitais , Humanos , Sinais Vitais/fisiologia , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Frequência Cardíaca/fisiologia , Adulto , Masculino , Polissonografia/métodos , Feminino
9.
Sensors (Basel) ; 24(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257475

RESUMO

Heart rate is a key vital sign that can be used to understand an individual's health condition. Recently, remote sensing techniques, especially acoustic-based sensing, have received increasing attention for their ability to non-invasively detect heart rate via commercial mobile devices such as smartphones and smart speakers. However, due to signal interference, existing methods have primarily focused on monitoring a single user and required a large separation between them when monitoring multiple people. These limitations hinder many common use cases such as couples sharing the same bed or two or more people located in close proximity. In this paper, we present an approach that can minimize interference and thereby enable simultaneous heart rate monitoring of multiple individuals in close proximity using a commonly available smart speaker prototype. Our user study, conducted under various real-life scenarios, demonstrates the system's accuracy in sensing two users' heart rates when they are seated next to each other with a median error of 0.66 beats per minute (bpm). Moreover, the system can successfully monitor up to four people in close proximity.


Assuntos
Determinação da Frequência Cardíaca , Telemetria , Humanos , Frequência Cardíaca , Acústica , Computadores de Mão
10.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400215

RESUMO

With an aging population, numerous assistive and monitoring technologies are under development to enable older adults to age in place. To facilitate aging in place, predicting risk factors such as falls and hospitalization and providing early interventions are important. Much of the work on ambient monitoring for risk prediction has centered on gait speed analysis, utilizing privacy-preserving sensors like radar. Despite compelling evidence that monitoring step length in addition to gait speed is crucial for predicting risk, radar-based methods have not explored step length measurement in the home. Furthermore, laboratory experiments on step length measurement using radars are limited to proof-of-concept studies with few healthy subjects. To address this gap, a radar-based step length measurement system for the home is proposed based on detection and tracking using a radar point cloud followed by Doppler speed profiling of the torso to obtain step lengths in the home. The proposed method was evaluated in a clinical environment involving 35 frail older adults to establish its validity. Additionally, the method was assessed in people's homes, with 21 frail older adults who had participated in the clinical assessment. The proposed radar-based step length measurement method was compared to the gold-standard Zeno Walkway Gait Analysis System, revealing a 4.5 cm/8.3% error in a clinical setting. Furthermore, it exhibited excellent reliability (ICC(2,k) = 0.91, 95% CI 0.82 to 0.96) in uncontrolled home settings. The method also proved accurate in uncontrolled home settings, as indicated by a strong consistency (ICC(3,k) = 0.81 (95% CI 0.53 to 0.92)) between home measurements and in-clinic assessments.


Assuntos
Fragilidade , Humanos , Idoso , Radar , Reprodutibilidade dos Testes , Vida Independente , Velocidade de Caminhada , Marcha
11.
Sensors (Basel) ; 24(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39275716

RESUMO

This paper proposes a novel drone detection method based on a convolutional neural network (CNN) utilizing range-Doppler map images from a frequency-modulated continuous-wave (FMCW) radar. The existing drone detection and identification techniques, which rely on the micro-Doppler signature (MDS), face challenges when a drone is small or located far away, leading to performance degradation due to signal attenuation and faint (MDS). In order to address these issues, this paper suggests a method where multiple time-series range-Doppler images from an FMCW radar are overlaid onto a single image and fed to a CNN. The experimental results, using actual data for three different drone sizes, show significant performance improvements in drone detection accuracy compared to conventional methods.

12.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001094

RESUMO

Breathing is one of the body's most basic functions and abnormal breathing can indicate underlying cardiopulmonary problems. Monitoring respiratory abnormalities can help with early detection and reduce the risk of cardiopulmonary diseases. In this study, a 77 GHz frequency-modulated continuous wave (FMCW) millimetre-wave (mmWave) radar was used to detect different types of respiratory signals from the human body in a non-contact manner for respiratory monitoring (RM). To solve the problem of noise interference in the daily environment on the recognition of different breathing patterns, the system utilised breathing signals captured by the millimetre-wave radar. Firstly, we filtered out most of the static noise using a signal superposition method and designed an elliptical filter to obtain a more accurate image of the breathing waveforms between 0.1 Hz and 0.5 Hz. Secondly, combined with the histogram of oriented gradient (HOG) feature extraction algorithm, K-nearest neighbours (KNN), convolutional neural network (CNN), and HOG support vector machine (G-SVM) were used to classify four breathing modes, namely, normal breathing, slow and deep breathing, quick breathing, and meningitic breathing. The overall accuracy reached up to 94.75%. Therefore, this study effectively supports daily medical monitoring.


Assuntos
Algoritmos , Redes Neurais de Computação , Radar , Respiração , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Humanos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação
13.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339517

RESUMO

The compensation of temperature is critical in every structural health monitoring (SHM) system for achieving maximum damage detection performance. This paper analyses a novel approach based on seasonal trend decomposition to eliminate the temperature effect in a radar-based SHM system for wind turbine blades that operates in the frequency band from 58 to 63.5 GHz. While the original seasonal trend decomposition searches for the trend of a periodic signal in its entirety, the new method uses a moving average to determine trends for each point of a periodic signal. The points of the seasonal signal no longer need to have the same trend. Based on the determined trends, the measurement signal can be corrected by temperature effects, providing accurate damage detection results under changing temperature conditions. The performance of the trend decomposition is demonstrated with experimental data obtained during a full-scale fatigue test of a 31 m long wind turbine blade subjected to ambient temperature variations. For comparison, the well-known optimal baseline selection (OBS) approach is used, which is based on multiple baseline measurements at different temperature conditions. The use of metrics, such as the contrast in damage indicators, enables the performance assessment of both methods.

14.
Sensors (Basel) ; 24(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39205089

RESUMO

In the environment of smoke and suspended particles, the accurate detection of targets is one of the difficulties for frequency-modulated continuous-wave (FMCW) laser fuzes to work properly in harsh conditions. To weaken and eliminate the significant influence caused by the interaction of different systems in the photon transmission process and the smoke particle environment, it is necessary to increase the amplitude of the target echo signal to improve the signal-to-noise ratio (SNR), which contributes to enhancing the detection performance of the laser fuze for the ground target in the smoke. Under these conditions, the particle transmission of photons in the smoke environment is studied from the perspective of three-dimentional (3D) collisions between photons and smoke particles, and the modeling and Unity3D simulation of FMCW laser echo signal based on 3D particle collision is conducted. On this basis, a laser fuze structure based on multiple channel beam emission is designed for the combined effect of particle features from different systems and its impact on the target characteristics is researched. Simulation results show that the multiple channel laser emission enhances the laser target echo signal amplitude and also improves the anti-interference ability against the combined effects of multiple particle features compared with the single channel. Through the validation based on the laser prototype with four-channel beam emitting, the above conclusions are supported by the experimental results. Therefore, this study not only reveals the laser target properties under the 3D particle collision perspective, but also reflects the reasonableness and effectiveness of utilizing the target characteristics in the 3D particle collision mode to enhance the detection performance of FMCW laser fuze in the smoke.

15.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257622

RESUMO

Terahertz tomography is a promising method among non-destructive inspection techniques to detect faults and defects in dielectric samples. Recently, image quality was improved significantly through the incorporation of a priori information and off-axis data. However, this improvement has come at the cost of increased measurement time. To aim toward industrial applications, it is therefore necessary to speed up the measurement by parallelizing the data acquisition employing multi-channel setups. In this work, we present two tomographic frequency-modulated continuous wave (FMCW) systems working at a bandwidth of 230-320 GHz, equipped with an eight-channel detector array, and we compare their imaging results with those of a single-pixel setup. While in the first system the additional channels are used exclusively to detect radiation refracted by the sample, the second system features an f-θ lens, focusing the beam at different positions on its flat focal plane, and thus utilizing the whole detector array directly. The usage of the f-θ lens in combination with a scanning mirror eliminates the necessity of the formerly used slow translation of a single-pixel transmitter. This opens up the potential for a significant increase in acquisition speed, in our case by a factor of four to five, respectively.

16.
Methods ; 205: 167-178, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781052

RESUMO

The detection of sleep apnea is critical for assessing sleep quality. It is also a proven biometric in diagnosing cardiovascular and other diseases. Recent studies have shown that radar-based non-contact vital sign monitoring system can effectively detect sleep apnea. However, the detection accuracy in the current study still needs to be improved. In this paper, we propose a sleep apnea detection framework based on FMCW radar. First, the radar system is employed to record the sleep data throughout the night with polysomnography (PSG) comparison. Then, in order to extract more accurate respiratory signal from the raw radar data, the signal processing methods are investigated to solve the observed discontinuity phenomenon. Finally, machine learning methods are adopted. The apneic and not-apneic events are classified accurately by selecting effective features of respiratory signal. As shown in the experimental results, the proposed system could achieve a good classification performance with an accuracy of 95.53%, a sensitivity of 72.60%, a specificity of 97.32%, a Kappa of 0.68, and an F-score of 0.84.


Assuntos
Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Síndromes da Apneia do Sono , Humanos , Polissonografia/métodos , Síndromes da Apneia do Sono/diagnóstico
17.
Sensors (Basel) ; 24(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202999

RESUMO

This paper addresses the challenge of enhancing range precision in radar sensors through supervised learning. However, when the range precision surpasses the range resolution, it leads to a rapid increase in the number of labels, resulting in elevated learning costs. The removal of background noise in indoor environments is also crucial. In response, this study proposes a methodology aiming to increase range precision while mitigating the issue of a growing number of labels in supervised learning. Neural networks learned for a specific section are reused to minimize learning costs and maximize computational efficiency. Formulas and experiments confirmed that identical fractional multiple patterns in the frequency domain can be applied to analyze patterns in other FFT bin positions (representing different target positions). In conclusion, the results suggest that neural networks trained with the same data can be repurposed, enabling efficient hardware implementation.

18.
Sensors (Basel) ; 23(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37177685

RESUMO

This paper reports for the first time a drain-pumped (DP) mixer using Gallium Nitride (GaN) HEMT technology. Specifically, it describes a method aimed to predict the optimum bias conditions for active DP-mixers, leading to high conversion gain (CG) and linearity, along with the efficient use of the local oscillator drive level. A mixer prototype was designed and fabricated according to the discussed design principles; it exhibited a CG and an input third-order intercept point (IIP3) of +10dB and +11dBm, respectively, with a local oscillator power level of 20 dBm at about 3.7 GHz. In terms of gain and linearity, both figures exceed the documented limitations for the class of mixers considered in this work. To the authors' best knowledge, this is the first DP mixer operating in the S-band. The prototype was also tested in a radar-like setup operating in the S-band frequency-modulated continuous-wave (FMCW) mode. Measurements carried out in the radar setup resulted in +39.7dB and +34.7dB of IF signal-to-noise-ratio (SNR) for the DP and the resistive mixers, respectively. For comparison purposes, a resistive mixer was designed and fabricated using the same GaN HEMT technology; a detailed comparison between the two topologies is discussed in the paper, thus further highlighting the capability of the DP-mixer for system applications.

19.
Sensors (Basel) ; 23(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37631744

RESUMO

Human posture recognition technology is widely used in the fields of healthcare, human-computer interaction, and sports. The use of a Frequency-Modulated Continuous Wave (FMCW) millimetre-wave (MMW) radar sensor in measuring human posture characteristics data is of great significance because of its robust and strong recognition capabilities. This paper demonstrates how human posture characteristics data are measured, classified, and identified using FMCW techniques. First of all, the characteristics data of human posture is measured with the MMW radar sensors. Secondly, the point cloud data for human posture is generated, considering both the dynamic and static features of the reflected signal from the human body, which not only greatly reduces the environmental noise but also strengthens the reflection of the detected target. Lastly, six different machine learning models are applied for posture classification based on the generated point cloud data. To comparatively evaluate the proper model for point cloud data classification procedure-in addition to using the traditional index-the Kappa index was introduced to eliminate the effect due to the uncontrollable imbalance of the sampling data. These results support our conclusion that among the six machine learning algorithms implemented in this paper, the multi-layer perceptron (MLP) method is regarded as the most promising classifier.


Assuntos
Algoritmos , Radar , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Postura
20.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571465

RESUMO

Noncontact vital sign monitoring based on radar has attracted great interest in many fields. Heart Rate Variability (HRV), which measures the fluctuation of heartbeat intervals, has been considered as an important indicator for general health evaluation. This paper proposes a new algorithm for HRV monitoring in which frequency-modulated continuous-wave (FMCW) radar is used to separate echo signals from different distances, and the beamforming technique is adopted to improve signal quality. After the phase reflecting the chest wall motion is demodulated, the acceleration is calculated to enhance the heartbeat and suppress the impact of respiration. The time interval of each heartbeat is estimated based on the smoothed acceleration waveform. Finally, a joint optimization algorithm was developed and is used to precisely segment the acceleration signal for analyzing HRV. Experimental results from 10 participants show the potential of the proposed algorithm for obtaining a noncontact HRV estimation with high accuracy. The proposed algorithm can measure the interbeat interval (IBI) with a root mean square error (RMSE) of 14.9 ms and accurately estimate HRV parameters with an RMSE of 3.24 ms for MEAN (the average value of the IBI), 4.91 ms for the standard deviation of normal to normal (SDNN), and 9.10 ms for the root mean square of successive differences (RMSSD). These results demonstrate the effectiveness and feasibility of the proposed method in emotion recognition, sleep monitoring, and heart disease diagnosis.


Assuntos
Determinação da Frequência Cardíaca , Respiração , Humanos , Frequência Cardíaca/fisiologia , Monitorização Fisiológica/métodos , Algoritmos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA