Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(7): 250, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278765

RESUMO

A highly structured fluorometric bioassay has been proposed for screening Staphylococcus aureus (S. aureus). The study exploits (i) the spectral attributes of the hexagonal NaYF4:Yb,Er upconversion nanoparticle (UCNP)-coated 3-aminopropyl)triethoxysilane; (ii) the intrinsic non-fluorescent quenching features of the highly stable dark blackberry (BBQ®-650) receptor; (iii) the aptamer (Apt-) biorecognition and binding affinity, and (iv) the complementary DNA hybridizer-linkage efficacy. The principle relied on the excited state energy transfer between the donor Apt-labeled NH2-UCNPs at the 3' end, and cDNA-grafted BBQ®-650 at the 5' end, as the effective receptors. The donor moieties in proximity (< 10.0 nm) trigger hybridization with the cDNA-grafted dark BBQ®-650, as the receptors of energy from the 2F5/2 level of Yb3+ ions to initiate the Förster resonance energy transfer pathway. This was confirmed by the decline in the excited-state lifetimes from 223.52 µs (τ1) to 179.26 µs (τ2). The existence of the target S. aureus in the bioassay attracts the Apt- resulting in the detachment of the acceptor, and disintegration of the complex configuration via conformation reversal. The re-activated fluorescence monitored at λex/em = 980/652 nm, as a function of the logarithmic concentration of S. aureus (42 to 4.2 × 108 CFU mL-1), yielded an ultra-low detection response of 2.0 CFU mL-1. The bioassay screening of S. aureus in real samples revealed satisfactory recoveries (92.44-107.82%) and validation results (p > 0.05). Hence, the comprehensive Apt-labeled NH2-UCNPs-cDNA-grafted dark BBQ®-650 bioassay offered fast and precise S. aureus screening in food and environmental settings.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas , DNA Complementar/genética , Staphylococcus aureus/genética , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/química , Nanopartículas/química , Transferência Ressonante de Energia de Fluorescência/métodos
2.
J Biol Chem ; 291(36): 19108-17, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27422823

RESUMO

Glycolysis is the primary step for major energy production in the cell. There is strong evidence suggesting that glucose consumption and rate of glycolysis are highly modulated by cytosolic pH/[H(+)], but those can also be stimulated by an increase in the intracellular [HCO3 (-)]. Because proton and bicarbonate shift concomitantly, it remained unclear whether enhanced glucose consumption and glycolytic rate were mediated by the changes in intracellular [H(+)] or [HCO3 (-)]. We have asked whether glucose metabolism is enhanced by either a fall in intracellular [H(+)] or a rise in intracellular [HCO3 (-)], or by both, in mammalian astrocytes. We have recorded intracellular glucose in mouse astrocytes using a FRET-based nanosensor, while imposing different intracellular [H(+)] and [CO2]/[HCO3 (-)]. Glucose consumption and glycolytic rate were augmented by a fall in intracellular [H(+)], irrespective of a concomitant rise or fall in intracellular [HCO3 (-)]. Transport of HCO3 (-) into and out of astrocytes by the electrogenic sodium bicarbonate cotransporter (NBCe1) played a crucial role in causing changes in intracellular pH and [HCO3 (-)], but was not obligatory for the pH-dependent changes in glucose metabolism. Our results clearly show that it is the cytosolic pH that modulates glucose metabolism in cortical astrocytes, and possibly also in other cell types.


Assuntos
Astrócitos/metabolismo , Bicarbonatos/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Prótons , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Simportadores de Sódio-Bicarbonato/genética
3.
Nano Lett ; 15(8): 5025-32, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26203778

RESUMO

We developed a quantum-dot-based fluorescence resonance energy transfer (QD-FRET) nanosensor to visualize the activity of matrix metalloproteinase (MT1-MMP) at cell membrane. A bended peptide with multiple motifs was engineered to position the FRET pair at a close proximity to allow energy transfer, which can be cleaved by active MT1-MMP to result in FRET changes and the exposure of cell penetrating sequence. Via FRET and penetrated QD signals, the nanosensor can profile cancer cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Neoplasias/enzimologia , Peptídeos/metabolismo , Análise de Célula Única/métodos , Sequência de Aminoácidos , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/química , Células HeLa , Humanos , Metaloproteinase 14 da Matriz/análise , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Pontos Quânticos/química , Pontos Quânticos/metabolismo
4.
Cells ; 11(6)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35326460

RESUMO

G-protein-coupled receptors (GPCRs) represent a family with over 800 members in humans, and one-third of these are targets for approved drugs. A large number of GPCRs have unknown physiologic roles. Here, we investigated GPR27, an orphan GPCR belonging to the family of super conserved receptor expressed in the brain, with unknown functions. Cytosolic levels of L-lactate ([lactate]i), the end product of aerobic glycolysis, were measured with the Laconic fluorescence resonance energy transfer nanosensor. In single 3T3 wild-type (WT) embryonic cells, the application of 8535 (1 µM), a surrogate agonist known to activate GPR27, resulted in an increase in [lactate]i. Similarly, an increase was recorded in primary rat astrocytes, a type of neuroglial cell abundant in the brain, which contain glycogen and express enzymes of aerobic glycolysis. In CRISPR-Cas9 GPR27 knocked out 3T3 cells, the 8535-induced increase in [lactate]i was reduced compared with WT controls. Transfection of the GPR27-carrying plasmid into the 3T3KOGPR27 cells rescued the 8535-induced increase in [lactate]i. These results indicate that stimulation of GPR27 enhances aerobic glycolysis and L-lactate production in 3T3 cells and astrocytes. Interestingly, in the absence of GPR27 in 3T3 cells, resting [lactate]i was increased in comparison with controls, further supporting the view that GPR27 regulates L-lactate homeostasis.


Assuntos
Astrócitos , Ácido Láctico , Células 3T3 , Animais , Astrócitos/metabolismo , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Camundongos , Ratos , Receptores Acoplados a Proteínas G/metabolismo
5.
J Plant Physiol ; 215: 65-72, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28582731

RESUMO

Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu-2µ∆13 and FLIPglu-600µΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu-2µΔ13 was approximately 10.05µM, and that for FLIPglu-600µΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu-2µΔ13 in a stimulus-specific manner, but not in FLIPglu-600µΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2-20µM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-20890447

RESUMO

The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K(+), supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA