RESUMO
The innate immune system detects pathogens via germline-encoded receptors that bind to conserved pathogen ligands called pathogen-associated molecular patterns (PAMPs). Here we consider an additional strategy of pathogen sensing called effector-triggered immunity (ETI). ETI involves detection of pathogen-encoded virulence factors, also called effectors. Pathogens produce effectors to manipulate hosts to create a replicative niche and/or block host immunity. Unlike PAMPs, effectors are often diverse and rapidly evolving and can thus be unsuitable targets for direct detection by germline-encoded receptors. Effectors are instead often sensed indirectly via detection of their virulence activities. ETI is a viable strategy for pathogen sensing and is used across diverse phyla, including plants, but the molecular mechanisms of ETI are complex compared to simple receptor/ligand-based PAMP detection. Here we survey the mechanisms and functions of ETI, with a particular focus on emerging insights from animal studies. We suggest that many examples of ETI may remain to be discovered, hiding in plain sight throughout immunology.
Assuntos
Reconhecimento da Imunidade Inata , Moléculas com Motivos Associados a Patógenos , Humanos , Animais , Moléculas com Motivos Associados a Patógenos/metabolismo , VirulênciaRESUMO
Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry.
Assuntos
Cromatina , Redes Reguladoras de Genes , Animais , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/genéticaRESUMO
T lymphocytes, the major effector cells in cellular immunity, produce cytokines in immune responses to mediate inflammation and regulate other types of immune cells. Work in the last three decades has revealed significant heterogeneity in CD4+ T cells, in terms of their cytokine expression, leading to the discoveries of T helper 1 (Th1), Th2, Th17, and T follicular helper (Tfh) cell subsets. These cells possess unique developmental and regulatory pathways and play distinct roles in immunity and immune-mediated pathologies. Other types of T cells, including regulatory T cells and γδ T cells, as well as innate lymphocytes, display similar features of subpopulations, which may play differential roles in immunity. Mechanisms exist to prevent cytokine production by T cells to maintain immune tolerance to self-antigens, some of which may also underscore immune exhaustion in the context of tumors. Understanding cytokine regulation and function has offered innovative treatment of many human diseases.
Assuntos
Citocinas , Linfócitos T Reguladores , Animais , Humanos , Tolerância Imunológica , Imunidade Celular , Linfócitos T Auxiliares-Indutores , Células Th17RESUMO
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αß T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Assuntos
Diferenciação Celular/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos CD4/genética , Antígenos CD4/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Imunomodulação/genética , Imunomodulação/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Sequências Reguladoras de Ácido Nucleico , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/genética , Transcrição GênicaRESUMO
Phytochrome B (phyB) and phytochrome-interacting factors (PIFs) constitute a well-established signaling module critical for plants adapting to ambient light. However, mechanisms underlying phyB photoactivation and PIF binding for signal transduction remain elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of the photoactivated phyB or the constitutively active phyBY276H mutant in complex with PIF6, revealing a similar trimer. The light-induced configuration switch of the chromophore drives a conformational transition of the nearby tongue signature within the phytochrome-specific (PHY) domain of phyB. The resulting α-helical PHY tongue further disrupts the head-to-tail dimer of phyB in the dark-adapted state. These structural remodelings of phyB facilitate the induced-fit recognition of PIF6, consequently stabilizing the N-terminal extension domain and a head-to-head dimer of activated phyB. Interestingly, the phyB dimer exhibits slight asymmetry, resulting in the binding of only one PIF6 molecule. Overall, our findings solve a key question with respect to how light-induced remodeling of phyB enables PIF signaling in phytochrome research.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Microscopia Crioeletrônica , Luz , Fitocromo B , Transdução de Sinais , Fitocromo B/metabolismo , Fitocromo B/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Modelos MolecularesRESUMO
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.
Assuntos
Cisteína , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cisteína/metabolismo , Cisteína/química , Ligantes , Melanoma/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , NF-kappa B/química , NF-kappa B/metabolismo , Oxirredução , Transdução de Sinais , Fatores de Transcrição SOXE/química , Fatores de Transcrição SOXE/metabolismoRESUMO
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land â¼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas/imunologia , Plantas/genética , Resistência à Doença/genética , HumanosRESUMO
Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.
Assuntos
Proteínas de Ligação a DNA , Desenvolvimento Embrionário , Fatores de Transcrição , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Mesoderma/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Animais , Camundongos , Extremidades/crescimento & desenvolvimentoRESUMO
Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.
Assuntos
Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto , Humanos , Predisposição Genética para Doença , Glaucoma de Ângulo Aberto/genética , População Negra/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.
Assuntos
Células da Medula Óssea/fisiologia , Células Dendríticas/fisiologia , Regulação da Expressão Gênica , Imunidade Celular , Animais , Diferenciação Celular , Linhagem da Célula , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade Celular/genética , Camundongos , Ativação TranscricionalRESUMO
The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.
Assuntos
Diferenciação Celular , Hipersensibilidade/imunologia , Imunidade Inata , Linfócitos/imunologia , Células Progenitoras Linfoides/imunologia , Animais , Linhagem da Célula , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Células Th1/imunologia , Células Th2/imunologiaRESUMO
Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.
Assuntos
Doença de Alzheimer , Microglia , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Regulação da Expressão Gênica , Inflamação/patologia , Microglia/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , EpigenomaRESUMO
Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.
Assuntos
Chlamydomonas reinhardtii , Fotossíntese , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotossíntese/genética , Regulação da Expressão Gênica , Proteínas/genética , Proteínas/metabolismo , Mutação , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genéticaRESUMO
Intrinsically disordered regions (IDRs) represent a large percentage of overall nuclear protein content. The prevailing dogma is that IDRs engage in non-specific interactions because they are poorly constrained by evolutionary selection. Here, we demonstrate that condensate formation and heterotypic interactions are distinct and separable features of an IDR within the ARID1A/B subunits of the mSWI/SNF chromatin remodeler, cBAF, and establish distinct "sequence grammars" underlying each contribution. Condensation is driven by uniformly distributed tyrosine residues, and partner interactions are mediated by non-random blocks rich in alanine, glycine, and glutamine residues. These features concentrate a specific cBAF protein-protein interaction network and are essential for chromatin localization and activity. Importantly, human disease-associated perturbations in ARID1B IDR sequence grammars disrupt cBAF function in cells. Together, these data identify IDR contributions to chromatin remodeling and explain how phase separation provides a mechanism through which both genomic localization and functional partner recruitment are achieved.
Assuntos
Montagem e Desmontagem da Cromatina , Complexos Multiproteicos , Proteínas Nucleares , Humanos , Cromatina , Proteínas de Ligação a DNA/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismoRESUMO
Regulation of viral RNA biogenesis is fundamental to productive SARS-CoV-2 infection. To characterize host RNA-binding proteins (RBPs) involved in this process, we biochemically identified proteins bound to genomic and subgenomic SARS-CoV-2 RNAs. We find that the host protein SND1 binds the 5' end of negative-sense viral RNA and is required for SARS-CoV-2 RNA synthesis. SND1-depleted cells form smaller replication organelles and display diminished virus growth kinetics. We discover that NSP9, a viral RBP and direct SND1 interaction partner, is covalently linked to the 5' ends of positive- and negative-sense RNAs produced during infection. These linkages occur at replication-transcription initiation sites, consistent with NSP9 priming viral RNA synthesis. Mechanistically, SND1 remodels NSP9 occupancy and alters the covalent linkage of NSP9 to initiating nucleotides in viral RNA. Our findings implicate NSP9 in the initiation of SARS-CoV-2 RNA synthesis and unravel an unsuspected role of a cellular protein in orchestrating viral RNA production.
Assuntos
COVID-19 , RNA Viral , Humanos , COVID-19/metabolismo , Endonucleases/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/genética , Replicação ViralRESUMO
Gene regulation arises out of dynamic competition between nucleosomes, transcription factors, and other chromatin proteins for the opportunity to bind genomic DNA. The timescales of nucleosome assembly and binding of factors to DNA determine the outcomes of this competition at any given locus. Here, we review how these properties of chromatin proteins and the interplay between the dynamics of different factors are critical for gene regulation. We discuss how molecular structures of large chromatin-associated complexes, kinetic measurements, and high resolution mapping of protein-DNA complexes in vivo set the boundary conditions for chromatin dynamics, leading to models of how the steady state behaviors of regulatory elements arise.
Assuntos
Cromatina , Nucleossomos , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Nucleossomos/genética , Fatores de Transcrição/genéticaRESUMO
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Assuntos
Imunidade Adaptativa/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica , Imunidade Inata/genética , Linfócitos/imunologia , Linfócitos/metabolismo , Transcrição Gênica , Animais , Diferenciação Celular , Humanos , Linfócitos/citologia , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismoRESUMO
Transcription initiation requires assembly of the RNA polymerase II (Pol II) pre-initiation complex (PIC) and opening of promoter DNA. Here, we present the long-sought high-resolution structure of the yeast PIC and define the mechanism of initial DNA opening. We trap the PIC in an intermediate state that contains half a turn of open DNA located 30-35 base pairs downstream of the TATA box. The initially opened DNA region is flanked and stabilized by the polymerase "clamp head loop" and the TFIIF "charged region" that both contribute to promoter-initiated transcription. TFIIE facilitates initiation by buttressing the clamp head loop and by regulating the TFIIH translocase. The initial DNA bubble is then extended in the upstream direction, leading to the open promoter complex and enabling start-site scanning and RNA synthesis. This unique mechanism of DNA opening may permit more intricate regulation than in the Pol I and Pol III systems.
Assuntos
DNA/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Microscopia Crioeletrônica , DNA/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Polimerase II/ultraestrutura , Deleção de Sequência , Fator de Transcrição TFIIH , Fatores de Transcrição TFII/metabolismoRESUMO
The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.
Assuntos
COVID-19/genética , Infecções por Coronavirus/genética , Coronavirus/fisiologia , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Células A549 , Animais , Vias Biossintéticas/efeitos dos fármacos , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Colesterol/biossíntese , Colesterol/metabolismo , Análise por Conglomerados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resfriado Comum/genética , Resfriado Comum/virologia , Coronavirus/classificação , Infecções por Coronavirus/virologia , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Fosfatidilinositóis/biossíntese , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação ViralRESUMO
The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.