Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Resour Conserv Recycl ; 157: 104772, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32494109

RESUMO

Currently, in the European Union (EU), e-waste chain performance is assessed by technical indicators that aim to ensure system compliance with collection and recovery targets set by the WEEE Directive. This study proposes indicators to improve WEEE flow monitoring beyond the current overall weight-based approach, including complementary flows and treatment performance. A case study focused on the screen category in France is presented. In 2017, the collection rate of cathode-ray tube screens (CRT) was 68%, while for flat panel display (FPD) generated only 14% was collected. CRT screens have less precious and critical materials than FDP. Thus, elements like cobalt and gold highly concentrated in FPD, have a collection rate two to four times lower than elements such as copper (37%) which represents a high proportion in CRTs. Recycling is the main treatment in France. Nevertheless, the recycling rate per element varies significantly due to the low collection, and also the lack of technology and/or secondary raw materials market. The elements with higher recycling rates are base metals such as copper (28%), followed by precious metals like silver (23%), and gold (13%). Except for palladium, the recycling rate of the critical raw materials targeted in the study ranged from 6% (cobalt) to 0% (e.g. neodymium and indium). The results stress the need for indicators to support the development of WEEE chain from waste management to secondary (critical) raw materials suppliers.

2.
Am J Physiol Renal Physiol ; 317(2): F512-F517, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188032

RESUMO

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease associated with high mortality worldwide. Increases in iron levels have been reported in diabetic rat kidneys as well as in human urine of patients with diabetes. In addition, a low-iron diet or iron chelators delay the progression of DN in patients with diabetes and in animal models of diabetes. Possible maladaptive mechanisms of organ damage by tissue iron accumulation have not been well studied. We recently reported that iron induced the retinal renin-angiotensin system (RAS) and accelerated the progression of diabetic retinopathy. However, whether iron regulates the systemic RAS is unknown. To explore if iron alters the expression of intrarenal RAS and its role in the progression of DN, we used the high Fe iron (HFE) knockout mouse, a genetic model of systemic iron overload. We found that diabetes upregulated the expression of iron regulatory proteins and augmented tissue iron accumulation in the kidneys of both type 1 and type 2 diabetic mouse models. Iron accumulation in the kidneys of HFE knockout mice was associated with increase in serum and intrarenal renin expression. Induction of diabetes in HFE knockout mice using streptozotocin caused a much higher accumulation of renal iron and accelerated the progression of nephropathy compared with diabetic wild-type mice. Treatment of diabetic mice with the iron chelator deferiprone reversed the renin upregulation and reduced kidney injury. Thus, our results establish a new link between renal iron and RAS activity. Exploring the mechanisms of iron-induced RAS activation further may have a significant therapeutic impact on hypertension and DN.


Assuntos
Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Rim/metabolismo , Animais , Deferiprona/farmacologia , Deferiprona/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Progressão da Doença , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Masculino , Camundongos , Camundongos Knockout , Renina/biossíntese , Sistema Renina-Angiotensina/efeitos dos fármacos
3.
IBRO Neurosci Rep ; 12: 280-296, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35746978

RESUMO

Background: Postpartum depression is a mood disorder that affects about 9-20% of women after child birth. Reports suggest that gestational iron deficiency can cause a deficit in behavioral, cognitive and affective functions and can precipitate depressive symptoms in mothers during the postpartum period. The present study examined the effect of iron supplementation on depressive behavior during postpartum period in a rat model. Method: Female Sprague-Dawley rats were crossed. Pregnant rats received iron, fluoxetine, desferrioxamine or vehicle throughout the period of gestation. During the postpartum period, mothers from all groups were taken through the open field test (OFT), forced swim test (FST), novelty-induced hypophagia (NIH) and sacrificed for histological examination of the brains. Results: Results showed that rats treated with iron-chelating agent, desferrioxamine, and vehicle during gestation exhibited increased immobility scores in the FST, increased latency to feed and reduced feeding in the NIH with corresponding decreased number of neurons and dendritic branches in the cortex of the brain. These depression-related effects were attenuated by perinatal iron supplementation which showed decreased immobility scores in the FST comparable to rats treated with fluoxetine, a clinically effective antidepressant. Iron treatment also decreased latency to feeding while increasing feeding behavior in the NIH. Iron-treated dams had a higher number of neurons with dendritic connections in the frontal cortex compared to vehicle- and desferrioxamine-treated groups. Conclusion: The results suggest that, iron supplementation during gestation exerts an antidepressant-like effect in postpartum Sprague-Dawley rats, attenuates neuronal loss associated with depression and increases dendritic spine density.

4.
Curr Res Toxicol ; 3: 100083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935915

RESUMO

Injuries suffered in armed conflicts often result in wounds with embedded metal fragments. Standard surgical guidance has been to leave fragments in place except under certain circumstances; meaning that individuals may carry these retained fragments for their lifetime. Because of advancements in weapon design and the use of improvised explosive devices, the list of metals that could be found in a wound is extensive. In most cases the toxicological properties of these metals when embedded in the body are not known. To assess the potential damage embedded metals may cause to surrounding tissue, we utilized a rodent model to investigate the effect of a variety of military-relevant metals on markers of oxidative damage. The metals tested included tungsten, nickel, cobalt, iron, copper, aluminum, lead, and depleted uranium. Herein we report our findings on creatine kinase activity, lipid and protein oxidation, total antioxidant capacity, and glutathione levels in gastrocnemius homogenates from Sprague-Dawley rats surgically implanted with metal pellets for periods up to 12 months. Not all embedded metals affected the measured markers equally. However, metal-associated effects were seen at various times for muscle and serum creatinine levels, protein oxidation, total antioxidant capacity, and glutathione levels. No metal-induced effects on lipid peroxidation were observed. Taken together, these data suggest that subtle oxidative damage may be occurring in the muscle surrounding an embedded metal and indicates the need for medical surveillance of those individuals wounded by metal shrapnel.

5.
Mater Today Bio ; 16: 100368, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35937578

RESUMO

Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases.

6.
Saf Health Work ; 12(1): 114-118, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732536

RESUMO

BACKGROUND: Exposure to particulate matter (PM) emitted from vehicle exhaust might disrupt systemic function and elevate the risk of cardiovascular disease. In this study, we examined the changes of cardiometabolic biomarkers among vehicle inspectors exposed daily to PM0.25 and components. METHODS: This cross-sectional study was conducted at two vehicle inspection centers, Pulogadung and Ujung Menteng, located in East Jakarta, Indonesia. The exposed respondents were 43 workers from vehicle inspection centers, and the unexposed group consisted of 22 staff officers working in the same locations. Vehicle exhaust particulate matter was measured for eight hours using a Leland Legacy personal pump attached to a Sioutas Cascade Impactor. The used filters were 25 and 37-mm quartz filters. The particulate matter concentration was analyzed using a gravimetric method, whereas trace elements were analyzed using energy dispersive X-ray fluorescence. An EEL Smoke Stain Reflectometer analyzed black carbon. RESULTS: The personal exposure concentrations of PM0.25 were 10.4-fold higher than those in unexposed groups. Calcium and sulfur were the major components in the obtained dust, and their levels were 3.3- and 7.2-fold higher, respectively, in the exposed group. Based on an independent-samples t-test, high-density lipoprotein, triglyceride, HbA1c, total immunoglobulin E, high-sensitivity C-reactive protein, tumor necrosis factor-alpha, and nitric oxide levels were significantly different between the groups. CONCLUSIONS: In summary, it was suggested that PM0.25 exposure from vehicle exhaust might affect cardiometabolic biomarkers change.

7.
Saudi J Biol Sci ; 28(1): 748-753, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424363

RESUMO

BACKGROUND: Iron deficiency anemia (IDA) is the highest nutritional deficiency worldwide. It is a multifactorial disease, with a higher morbidity rate. TMPRSS6 polymorphisms importantly rs855791 is found to play an essential role in iron homeostasis in the human body. The rs855791 (T > C) polymorphism is highly associated with iron levels, and multiple blood parameters, leading to IDA. The role of TMPRSS6 rs855791 polymorphism and the significance of complete blood count (CBC) parameters in the pathogenesis of IDA is not yet studied in the Pakistani population. METHODS: We enrolled 113 cases and 136 controls to conduct a case control study. Complete blood count (CBC) and iron parameters were analyzed for association studies. PCR-RFLP based genotyping was performed. RESULTS: The TMPRSS6 rs855791 (T > C) polymorphism is significantly associated with IDA pathogenesis as observed in the codominant model and recessive models (P < 0.05, OR: 1.5 and 95% CI: 0.9, 2.6, P < 0.05, OR: 0.5 and 95% CI: 0.2, 0.9 respectively). Elderly women among cases (30-49 years) were found to be more susceptible to IDA (P < 0.05, AOR: 2.1 and 95% CI: 1.0, 4.2). The most significant parameters associated with IDA were red blood cell count (RBC) and hematocrit (Hct%) (P < 0.05, AOR: 16.5, 95% CI: 7.6, 35.9 and P < 0.05, AOR: 10.1, 95% CI: 2.5, 41.6, respectively). CONCLUSION: TMPRSS6 polymorphism at rs855791 (T > C) is significantly associated with IDA susceptibility in reproductive age women in Pakistan. Age, RBC count and Hct% are found to play an important role in IDA pathogenesis in our study population.

8.
Toxicol Rep ; 8: 463-480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717999

RESUMO

BACKGROUND: Wounds with embedded metal fragments are an unfortunate consequence of armed conflicts. In many cases the exact identity of the metal(s) and their long-term health effects, especially on the kidney, are not known. AIM OF STUDY: The aim of this study was to quantitate the urinary levels of metals solubilized from surgically implanted metal pellets and to assess the effect of these metals on the kidney using a battery of biomarker assays. MATERIALS AND METHODS: Using a rodent model system developed in our Institute to simulate embedded fragment injuries, eight metals considered likely components of an embedded fragment wound were individually implanted into the gastrocnemius muscle of male Sprague-Dawley rats. The rats were followed for 12 months post-implantation with urine collected prior to surgery then at 1-, 3-, 6-, 9-, and 12-months post-implantation to provide a within-subjects cohort for examination. Urinary metal levels were determined using inductively coupled plasma-mass spectrometry and urinary biomarkers assessed using commercially available kits to determine metal-induced kidney effects. RESULTS: With few exceptions, most of the implanted metals rapidly solubilized and were found in the urine at significantly higher levels than in control animals as early as 1-month post-implantation. Surprisingly, many of the biomarkers measured were decreased compared to control at 1-month post-implantation before returning to normal at the later time points. However, two metals, iron and depleted uranium, showed increased levels of several markers at later time points, yet these levels also returned to normal as time progressed. CONCLUSION: This study showed that metal pellets surgically implanted into the leg muscle of Sprague-Dawley rats rapidly solubilized with significant levels of the implanted metal found in the urine. Although kidney biomarker results were inconsistent, the changes observed along with the relatively low amounts of metal implanted, suggest that metal-induced renal effects need to be considered when caring for individuals with embedded metal fragment wounds.

9.
Curr Res Microb Sci ; 2: 100054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841345

RESUMO

Numerous harmful microorganisms and insect pests have the ability to cause plant infections or damage, which is mostly controlled by toxic chemical agents. These chemical compounds and their derivatives exhibit hazardous effects on habitats and human life too. Hence, there's a need to develop novel, more effective and safe bio-control agents. A variety of microbes such as viruses, bacteria, and fungi possess a great potential to fight against phytopathogens and thus can be used as bio-control agents instead of harmful chemical compounds. These naturally occurring microorganisms are applied to the plants in order to control phytopathogens. Moreover, practicing them appropriately for agriculture management can be a way towards a sustainable approach. The MBCAs follow various modes of action and act as elicitors where they induce a signal to activate plant defense mechanisms against a variety of pathogens. MBCAs control phytopathogens and help in disease suppression through the production of enzymes, antimicrobial compounds, antagonist activity involving hyper-parasitism, induced resistance, competitive inhibition, etc. Efficient recognition of pathogens and prompt defensive response are key factors of induced resistance in plants. This resistance phenomenon is pertaining to a complex cascade that involves an increased amount of defensive proteins, salicylic acid (SA), or induction of signaling pathways dependent on plant hormones. Although, there's a dearth of information about the exact mechanism of plant-induced resistance, the studies conducted at the physiological, biochemical and genetic levels. These studies tried to explain a series of plant defensive responses triggered by bio-control agents that may enhance the defensive capacity of plants. Several natural and recombinant microorganisms are commercially available as bio-control agents that mainly include strains of Bacillus, Pseudomonads and Trichoderma. However, the complete understanding of microbial bio-control agents and their interactions at cellular and molecular levels will facilitate the screening of effective and eco-friendly bio-agents, thereby increasing the scope of MBCAs. This article is a comprehensive review that highlights the importance of microbial agents as elicitors in the activation and regulation of plant defense mechanisms in response to a variety of pathogens.

10.
Comput Struct Biotechnol J ; 19: 1713-1737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897977

RESUMO

Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin-related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.

11.
Comput Struct Biotechnol J ; 18: 3712-3722, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304466

RESUMO

Iron is an essential micronutrient for most living beings since it participates as a redox active cofactor in many biological processes including cellular respiration, lipid biosynthesis, DNA replication and repair, and ribosome biogenesis and recycling. However, when present in excess, iron can participate in Fenton reactions and generate reactive oxygen species that damage cells at the level of proteins, lipids and nucleic acids. Organisms have developed different molecular strategies to protect themselves against the harmful effects of high concentrations of iron. In the case of fungi and plants, detoxification mainly occurs by importing cytosolic iron into the vacuole through the Ccc1/VIT1 iron transporter. New sequenced genomes and bioinformatic tools are facilitating the functional characterization, evolution and ecological relevance of metabolic pathways and homeostatic networks across the Tree of Life. Sequence analysis shows that Ccc1/VIT1 homologs are widely distributed among organisms with the exception of animals. The recent elucidation of the crystal structure of a Ccc1/VIT1 plant ortholog has enabled the identification of both conserved and species-specific motifs required for its metal transport mechanism. Moreover, recent studies in the yeast Saccharomyces cerevisiae have also revealed that multiple transcription factors including Yap5 and Msn2/Msn4 contribute to the expression of CCC1 in high-iron conditions. Interestingly, Malaysian S. cerevisiae strains express a partially functional Ccc1 protein that renders them sensitive to iron. Different regulatory mechanisms have been described for non-Saccharomycetaceae Ccc1 homologs. The characterization of Ccc1/VIT1 proteins is of high interest in the development of biofortified crops and the protection against microbial-derived diseases.

12.
J Food Compost Anal ; 78: 42-48, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31057213

RESUMO

Phytate is widely distributed in the plant kingdom, and its significance for human nutrition has been often described. Data on phytate is available in very few composition tables, for a limited number of foods and mainly for raw products. With the aim of publishing the first global repository of analytical data on phytate, data on moisture, phytate, zinc, iron and calcium were compiled. Other aspects, such as the analytical method used, biodiversity and processing, were considered, and phytate: mineral ratios were calculated when possible. From a comprehensive literature search, over 250 references were compiled, generating 3377 entries: 39% for raw and 61% for processed foods. Most of the entries were for cereals (35%), followed by legumes (27%) and vegetables (11%). The most common analytical methods used were indirect precipitation (26%) and anion exchange (25%), while separate determination of IPs is the most recommended. The database can be used as a tool for nutrition workers to include into food composition tables and to develop programmes related to mineral deficiencies. These data will be useful for designing diets with enhanced mineral bioavailability and for improving the estimates for nutrient requirements. The database is available at the INFOODS (www.fao.org/infoods/infoods/tables-and-databases/en) and IZiNCG webpages (www.izincg.org).

13.
Plant Signal Behav ; 10(6): e1031940, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023724

RESUMO

Poaceae plants release phytosiderophores into the rhizosphere in order to chelate iron (Fe), which often exists in insoluble forms especially under high pH conditions. The impact of phytosiderophore treatment at the physiological and molecular levels in vivo remains largely elusive, although the biosynthesis of phytosiderophores and the transport of phytosiderophore-metal complexes have been well studied. We recently showed that the application of 30 µM of the chemically synthesized phytosiderophore 2'-deoxymugineic acid (DMA) was sufficient for apparent full recovery of otherwise considerably reduced growth of hydroponic rice seedlings at high pH. Moreover, unexpected induction of high-affinity nitrate transporter gene expression as well as nitrate reductase activity indicates that the nitrate response is linked to Fe homeostasis. These data shed light on the biological relevance of DMA not simply as a Fe chelator, but also as a trigger that promotes plant growth by reinforcing nitrate assimilation.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Ferro/metabolismo , Nitrogênio/metabolismo , Oryza/metabolismo , Plântula/metabolismo , Sideróforos/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Ácido Azetidinocarboxílico/farmacologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
14.
Plant Signal Behav ; 10(5): e1017697, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039477

RESUMO

Expression levels between transcript and protein are not always correlated. In the present study, the abundance of protein PDR9/ABCG37 in 3 Arabidopsis pdr9/abcg37 mutant alleles was evaluated using selected reaction monitoring analysis. The results showed that protein and mRNA expression levels were similar in 2 mutant alleles. The mRNA expression levels in another mutant, determined by both semi-quantitative and quantitative RT-PCR, were similar to the wild-type, although the abundance of protein was about half the abundance of the wild-type. These results suggested that using only mRNA expression levels to infer protein abundance, compare mutants or responses to various stimuli may lead to incorrect interpretation and conclusions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/análise , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ferro/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Expressão Gênica
15.
Epigenetics ; 10(7): 633-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970091

RESUMO

Previous studies have reported epigenetic changes induced by environmental exposures. However, previous investigations did not distinguish 5-methylcytosine (5mC) from a similar oxidative form with opposite functions, 5-hydroxymethylcytosine (5hmC). Here, we measured blood DNA global 5mC and 5hmC by ELISA and used adjusted mixed-effects regression models to evaluate the effects of ambient PM10 and personal PM2.5 and its elemental components-black carbon (BC), aluminum (Al), calcium (Ca), potassium (K), iron (Fe), sulfur (S), silicon (Si), titanium (Ti), and zinc (Zn)-on blood global 5mC and 5hmC levels. The study was conducted in 60 truck drivers and 60 office workers in Beijing, China from The Beijing Truck Driver Air Pollution Study at 2 exams separated by one to 2 weeks. Blood 5hmC level (0.08%) was ∼83-fold lower than 5mC (6.61%). An inter-quartile range (IQR) increase in same-day PM10 was associated with increases in 5hmC of 26.1% in office workers (P = 0.004), 20.2% in truck drivers (P = 0.014), and 21.9% in all participants combined (P < 0.001). PM10 effects on 5hmC were increasingly stronger when averaged over 4, 7, and 14 d preceding assessment (up to 132.6% for the 14-d average in all participants, P < 0.001). PM10 effects were also significant after controlling for multiple testing (family-wise error rate; FWER < 0.05). 5hmC was not correlated with personal measures of PM2.5 and elemental components (FWER > 0.05). 5mC showed no correlations with PM10, PM2.5, and elemental components measures (FWER > 0.05). Our study suggests that exposure to ambient PM10 affects 5hmC over time, but not 5mC. This finding demonstrates the need to differentiate 5hmC and 5mC in environmental studies of DNA methylation.


Assuntos
Poluição do Ar/efeitos adversos , Citosina/análogos & derivados , Exposição Ambiental/efeitos adversos , Material Particulado/toxicidade , 5-Metilcitosina/sangue , Adolescente , Adulto , Pequim , Citosina/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Material Particulado/química , Material Particulado/metabolismo , Adulto Jovem
16.
Prion ; 9(1): 48-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695915

RESUMO

Prion proteins (PrP(C)) are cell membrane glycoproteins that can be found in many cell types, but specially in neurons. Many studies have suggested PrP(C)'s participation in metal transport and cellular protection against stress in the central nervous system (CNS). On the other hand PrP(Sc), the misfolded isoform of PrP(C) and the pathogenic agent in transmissible spongiform encephalopathies (TSE), has been associated with brain metal dyshomeostasis in prion diseases. Thus, changes in metal concentration associated with protein misfolding and aggregation have been reported for human and animal prion diseases, as well as for other neurodegenerative disorders, such as Parkinson's and Alzheimer's disease. The use of metal concentrations in tissues as surrogate markers for early detection of TSEs has been suggested. Studies on the accumulation of metals in free-ranging white-tailed deer have not been conducted. This study established concentrations of copper, iron, manganese, and magnesium in 2 diagnostic tissues used for CWD testing (obex and retropharyngeal lymph nodes (RLN)). We compared these concentrations between tissues and in relation to CWD status. We established reference intervals (RIs) for these metals and explored their ability to discriminate between CWD-positive and CWD-negative animals. Our results indicate that independent of CWD status, white-tailed deer accumulate higher concentrations of Fe, Mn and Mg in RLN than in obex. White-tailed deer infected with CWD accumulated significantly lower concentrations of Mn and Fe than CWD-negative deer. These patterns differed from other species infected with prion diseases. Overlapping values between CWD positive and negative groups indicate that evaluation of these metals in obex and RLN may not be appropriate as a diagnostic tool for CWD infection in white-tailed deer. Because the CWD-negative deer were included in constructing the RIs, high specificities were expected and should be interpreted with caution. Due to the low sensitivity derived from the RIs, we do not recommend using metal concentrations for disease discrimination.


Assuntos
Cervos , Linfonodos/metabolismo , Linfonodos/patologia , Metais/metabolismo , Doença de Emaciação Crônica/metabolismo , Doença de Emaciação Crônica/patologia , Animais , Illinois , Modelos Biológicos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA