Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11470-11481, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864425

RESUMO

Reactive oxygen species (ROS) produced from the oxygenation of reactive Fe(II) species significantly affect the transformation of metalloids such as Sb at anoxic-oxic redox interfaces. However, the main ROS involved in Sb(III) oxidation and Fe (oxyhydr)oxides formation during co-oxidation of Sb(III) and Fe(II) are still poorly understood. Herein, this study comprehensively investigated the Sb(III) oxidation and immobilization process and mechanism during Fe(II) oxygenation. The results indicated that Sb(III) was oxidized to Sb(V) by the ROS produced in the aqueous and solid phases and then immobilized by formed Fe (oxyhydr)oxides via adsorption and coprecipitation. In addition, chemical analysis and extended X-ray absorption fine structure (EXAFS) characterization demonstrated that Sb(V) could be incorporated into the lattice structure of Fe (oxyhydr)oxides via isomorphous substitution, which greatly inhibited the formation of lepidocrocite (γ-FeOOH) and decreased its crystallinity. Notably, goethite (α-FeOOH) formation was favored at pH 6 due to the greater amount of incorporated Sb(V). Moreover, singlet oxygen (1O2) was identified as the dominant ROS responsible for Sb(III) oxidation, followed by surface-adsorbed ·OHads, ·OH, and Fe(IV). Our findings highlight the overlooked roles of 1O2 and Fe (oxyhydr)oxide formation in Sb(III) oxidation and immobilization during Fe(II) oxygenation and shed light on understanding the geochemical cycling of Sb coupled with Fe in redox-fluctuating environments.


Assuntos
Oxirredução , Oxigênio Singlete , Oxigênio Singlete/química , Antimônio/química , Ferro/química , Compostos Férricos/química , Compostos Ferrosos/química , Óxidos/química , Oxigênio/química
2.
Environ Sci Technol ; 57(25): 9353-9361, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37295412

RESUMO

A lack of knowledge about antimony (Sb) isotope fractionation mechanisms in key geochemical processes has limited its environmental applications as a tracer. Naturally widespread iron (Fe) (oxyhydr)oxides play a key role in Sb migration due to strong adsorption, but the behavior and mechanisms of Sb isotopic fractionation on Fe (oxyhydr)oxides are still unclear. Here, we investigate the adsorption mechanisms of Sb on ferrihydrite (Fh), goethite (Goe), and hematite (Hem) using extended X-ray absorption fine structure (EXAFS) and show that inner-sphere complexation of Sb species with Fe (oxyhydr)oxides occurs independent of pH and surface coverage. Lighter Sb isotopes are preferentially enriched on Fe (oxyhydr)oxides due to isotopic equilibrium fractionation, with neither surface coverage nor pH influencing the degree of fractionation (Δ123Sbaqueous-adsorbed). Limited Fe atoms are present in the second shell of Hem and Goe, resulting in weaker surface complexes and leading to greater Sb isotopic fractionation than with Fh (Δ123Sbaqueous-adsorbed of 0.49 ± 0.004, 1.12 ± 0.006, and 1.14 ± 0.05‰ for Fh, Hem, and Goe, respectively). These results improve the understanding of the mechanism of Sb adsorption by Fe (oxyhydr)oxides and further clarify the Sb isotope fractionation mechanism, providing an essential basis for future application of Sb isotopes in source and process tracing.


Assuntos
Antimônio , Óxidos , Óxidos/química , Adsorção , Antimônio/química , Raios X , Compostos Férricos , Isótopos , Água
3.
Water Res ; 229: 119387, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459895

RESUMO

Amorphous ferrihydrite (Fh) is abundant in aquatic environments and sediments, and often coprecipitates with dissolved organic matter (DOM) to form mineral-organic aggregates. The Fe(II)-catalyzed transformation of Fh to crystalline Fe (oxyhydr)oxides (e.g., goethite) can result in the changes of uranium (U) species, but the effects of DOM molecules on the sequestration and stability of U during Fe (oxyhydr)oxides transformation are poorly understood. In this study, the associations of DOM molecules with U during the coprecipitation of DOM with Fh were evaluated, and the effects of DOM molecules on the kinetics of U release during Fe (oxyhydr)oxides transformation were investigated using a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), X-ray photoelectron spectroscopy (XPS), and kinetic experiments. FT-ICR-MS results indicated that, in addition to phenolic and polyphenolic compounds with higher O/C ratios, portions of phenolic compounds with lower O/C ratios and aliphatic compounds were also contributed to UO22+ binding when Fh coprecipitated with DOM. In comparison, phenolic and polyphenolic compounds with higher O/C ratios and condensed aromatics were preferentially retained on Fe (oxyhydr)oxides during the transformation. XPS results further suggested that the coprecipitated DOM molecules facilitated the reduction of U(VI) to U(IV) during the transformation, possibly through providing electrons or acting as electron shuttles. The kinetic experiment results indicated that the transformation processes accelerated U release from Fe (oxyhydr)oxides, but the coprecipitated DOM molecules slowed down U release. Our results contribute to understanding the behaviors of U and predicting the sequestration of U in the environment.


Assuntos
Óxidos , Urânio , Urânio/química , Matéria Orgânica Dissolvida , Oxirredução , Compostos Férricos/química , Fenóis
4.
Chemosphere ; 341: 140041, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660796

RESUMO

The dynamic reactions of uranium (U) with iron (Fe) minerals change its behaviors in soil environment, however, how the coexisted constituents in soil affect U sequestration and release on Fe minerals during the transformation remains unclear. Herein, coupled effects of lead (Pb) and dissolved organic matter (DOM) on U speciation and release kinetics during the catalytic transformations of ferrihydrite (Fh) by Fe(II) were investigated. Our results revealed that the coexistence of Pb and DOM significantly reduced U release and increased the immobilization of U during Fh transformation, which were attributed to the enhanced inhibition of Fh transformation, the declined release of DOM and the increased U(VI) reduction. Specifically, the presence of Pb increased the coprecipitation of condensed aromatics, polyphenols and phenols, and these molecules were preferentially maintained by Fe (oxyhydr)oxides. The sequestrated polyphenols and phenols could further facilitate U(VI) reduction to U(IV). Additionally, a higher Pb content in coprecipitates caused a slower U release, especially when DOM was present. Compared with Pb, the concentrations of the released U were significantly lower during the transformation. Our results contribute to predicting U sequestration and remediating U-contaminated soils.


Assuntos
Urânio , Chumbo , Oxirredução , Compostos Férricos , Minerais , Solo , Fenóis
5.
Chemosphere ; 303(Pt 2): 135077, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35623433

RESUMO

Fe (oxyhydr)oxides are the main components that accumulate heavy metals (HMs) in the acid mine drainage (AMD) sediments, but how the aging pH and time of AMD solution affects the Fe mineralogy and HMs speciation remains ambiguous. Herein, we determined the impacts of aging pH and time on the Fe mineralogy and chemical fractions of HMs in the sediments from Dabaoshan mining area using mineral characterizations, chemical extraction, and AMD solution incubation. For the natural AMD sediments, jarosite and goethite are the major Fe (oxyhydr)oxides in sample S1 with solution pH 2.68, while schwertmannite is dominant in sample S2 with solution pH 6.78, co-existing minor ferrihydrite. With increasing the AMD solution pH, the total contents of HMs (expect for As) and the reducible fraction of HMs (expect for Pb) in the sediments both increase. The HMs of Mn, Zn, Ni, and Cd are mainly associated with Fe (oxyhydr)oxides, while Pb possibly exists as Pb-bearing minerals (e.g., PbSO4) in the sediments. The oxidizable fraction of all HMs is negligible in both sediments. When the AMD solution of S1 was aged at different pHs, schwertmannite is dominant initially at all pHs, with a higher crystallinity being at a lower pH. With increasing aging time, the pre-formed schwertmannite transforms to goethite and jarosite at pH ≤ 3, while it keeps stable at pH 5 and 7 due to the accumulation of more HMs. These new insights are essential to assess the mobility and availability of HMs in the AMD-affected areas.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Ácidos , Monitoramento Ambiental , Sedimentos Geológicos/química , Chumbo , Metais Pesados/análise , Óxidos , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 436: 129298, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739799

RESUMO

The interactions between dissolved organic matter (DOM) molecules and minerals play significant roles in affecting the fate of carbon and contaminants in soil environment. However, the mechanisms controlling the variations of DOM molecules distribution during the transformation of Fe (oxyhydr)oxides, and the effects of these variations on contaminant behaviors are still largely unknown. In this study, the dynamic variations of DOM properties and distributions, and the kinetics of uranium adsorption on and desorption from Fe (oxyhydr)oxides during the transformation were investigated, employing a combination of Orbitrap mass spectrometry (MS), high-resolution transmission electron microscopy (HR-TEM), and kinetic experiments. Orbitrap MS results indicated that aliphatic molecules and phenolic and polyphenolic molecules with lower O/C values were preferentially released to solution. HR-TEM results indicated that the coprecipitated DOM molecules by ferrihydrite were mainly released to solution rather than sorbed on the newly formed lepidocrocite or goethite during the transformation. Furthermore, the stirred-flow experiment results suggested that soil DOM significantly reduced the adsorption of uranium on, and accelerated the release of uranium from Fe (oxyhydr)oxides, which was ascribed to the changed distribution of DOM molecules and the structure and composition of Fe (oxyhydr)oxides. Our results contribute to predicting contaminant behaviors in soils.


Assuntos
Ferro , Urânio , Adsorção , Matéria Orgânica Dissolvida , Compostos Férricos , Cinética , Minerais , Oxirredução , Óxidos/química , Solo
7.
Chemosphere ; 147: 337-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774297

RESUMO

Abiotic oxidation of Fe(II) is an important pathway in the formation of Fe (oxyhydr)oxides. However, how can As(III) affect the oxidation rate of Fe(II) and the speciation of Fe (oxyhydr)oxides, and what's the extent of the newly formed Fe (oxyhydr)oxides on the removal of aqueous arsenic are still poorly understood. Oxidation of Fe(II) under neutral pH conditions was therefore investigated under different molar ratios of As:Fe. Our results suggest that co-existence of aqueous As(III) significantly slows down the oxidation rate of Fe(II). Speciation of Fe (oxyhydr)oxides is dependent on pH and As:Fe ratios. At pH 6.0, formation of lepidocrocite and goethite is apparently inhibited at low As:Fe ratios, and ferric arsenate is favored at high As:Fe ratios. At pH 7.0, lepidocrocite gradually degenerates with the increasing As:Fe ratios. At pH 8.0, arsenite significantly inhibits the development of magnetite and favors a formation of lepidocrocite. XPS analysis further reveals that more than half of As(III) is oxidized to As(V) at pH 6.0 and 7.0, whereas at pH 8.0, the rapid oxidation of Fe(II) as well as the rapid formation of Fe (oxyhydr)oxides facilitate a rapid removal of dissolved As(III) before its further oxidation to As(V).


Assuntos
Arsênio/química , Compostos de Ferro/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Oxirredução , Óxidos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA