Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Ecol ; 30(19): 4695-4707, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347898

RESUMO

Dispersal that unites spatially subdivided populations into a metapopulation with source-sink dynamics is crucial for species persistence in fragmented landscapes. Understanding such dynamics for pollinators is particularly urgent owing to the ongoing global pollination crisis. Here, we investigated the population structure and source-sink dynamics of a pollinating wasp (Wiebesia sp. 3) of Ficus pumila in the Zhoushan Archipelago of China. We found significant asymmetry in the pairwise migrant numbers for 22 of 28 cases on the historical timescale, but only two on the contemporary timescale. Despite a small population size, the sole island not colonized by a superior competitor wasp (Wiebesia sp. 1) consistently behaved as a net exporter of migrants, supplying large sinks. Comparable levels of genetic diversity, with few private alleles and low genetic differentiation (total Fst : 0.03; pairwise Fst : 0.0005-0.0791), were revealed among all the islands. There was a significant isolation-by-distance pattern caused mainly by migration between the competition-free island and other islands, otherwise the pattern was negligible. The clustering analysis failed to detect multiple gene pools for the whole region. Thus, the sinks were most probably organized into a patchy population. Moreover, the estimates of effective population sizes were comparable between the two timescales. Thus the source-sink dynamics embedded within a well-connected population network may allow Wiebesia sp. 3 to persist at a competitive disadvantage. This study provides evidence that metapopulations in the real world may be complicated and changeable over time, highlighting the necessity to study such metapopulations in detail.


Assuntos
Ficus , Vespas , Alelos , Animais , China , Ficus/genética , Polinização , Dinâmica Populacional , Vespas/genética
2.
J Anim Ecol ; 90(7): 1764-1775, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33934356

RESUMO

Species pairs that form mutualistic associations are also components of broader organismal community networks. These interaction networks have shaped the evolution of individual mutualisms through interspecific interactions ranging from secondarily mutualistic to intensely antagonistic. Our understanding of this complex context remains limited because characterizing the impacts of species interacting with focal mutualists is often difficult. How is the fitness of mutualists impacted by the co-occurring interactive network of community associates? We investigated this context using a model interaction network comprised of a fig and fig wasp mutualist, eight non-pollinating fig wasp (NPFW) antagonists/commensals and a nematode previously believed to be associated only with the pollinator wasp mutualist. Through repeated sampling and field observations, we characterized the ecological roles of these mutualist-associated organisms to identify key antagonists. We then investigated how potential nematode infection of NPFWs could impact wasp survival across key life stages and, in turn, inferred how this influences the fitness of the fig-pollinator mutualists. Unexpectedly, we found all Ficus petiolaris-associated NPFWs to be the targets for nematode infection, with infection levels sometimes exceeding that of pollinators. Experimental data collected for the most abundant NPFW species suggest that nematode infection significantly reduces their longevity. Further, comparisons of nematode loads for emerging and successfully arriving NPFWs suggest that infection severely limits their dispersal ability. Through these observations, we conclude that this infection could impact NPFWs more severely than either mutualistic partner, suggesting a novel role of density-dependent facultative mutualism between figs, pollinator wasps and the nematode. This antagonist-mediated suppression of other network antagonists may present an ecologically common mechanism through which antagonists can present net benefits for mutualists' fitness.


Assuntos
Ficus , Infecções por Nematoides , Vespas , Animais , Polinização , Simbiose
3.
Mol Ecol ; 29(4): 762-782, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943487

RESUMO

The dynamics of populations and their divergence over time have shaped current levels of biodiversity and in the case of the "sky islands" of mountainous southwest (SW) China have resulted in an area of exceptional botanical diversity. Ficus tikoua is a prostrate fig tree subendemic to the area that displays unique intraspecific diversity, producing figs typical of different pollination modes in different parts of its range. By combining climate models, genetic variation in populations of the tree's obligate fig wasp pollinators and distributions of the different plant phenotypes, we examined how this unusual situation may have developed. We identified three genetically distinct groups of a single Ceratosolen pollinator species that have largely parapatric distributions. The complex topography of the region contributed to genetic divergence among the pollinators by facilitating geographical isolation and providing refugia. Migration along elevations in response to climate oscillations further enhanced genetic differentiation of the three pollinator groups. Their distributions loosely correspond to the distributions of the functionally significant morphological differences in the male figs of their host plants, but postglacial expansion of one group has not been matched by spread of its associated plant phenotype, possibly due to a major river barrier. The results highlight how interplay between the complex topography of the "sky island" complex and climate change has shaped intraspecies differentiation and relationships between the plant and its pollinator. Similar processes may explain the exceptional botanical diversity of SW China.


Assuntos
Biodiversidade , Ficus/crescimento & desenvolvimento , Dinâmica Populacional , China , Clima , Ficus/genética , Fenótipo , Polinização/genética
4.
Proc Biol Sci ; 286(1897): 20182501, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963835

RESUMO

The collapse of mutualisms owing to anthropogenic changes is contributing to losses of biodiversity. Top predators can regulate biotic interactions between species at lower trophic levels and may contribute to the stability of such mutualisms, but they are particularly likely to be lost after disturbance of communities. We focused on the mutualism between the fig tree Ficus microcarpa and its host-specific pollinator fig wasp and compared the benefits accrued by the mutualists in natural and translocated areas of distribution. Parasitoids of the pollinator were rare or absent outside the natural range of the mutualists, where the relative benefits the mutualists gained from their interaction were changed significantly away from the plant's natural range owing to reduced seed production rather than increased numbers of pollinator offspring. Furthermore, in the absence of the negative effects of its parasitoids, we detected an oviposition range expansion by the pollinator, with the use of a wider range of ovules that could otherwise have generated seeds. Loss of top-down control has therefore resulted in a change in the balance of reciprocal benefits that underpins this obligate mutualism, emphasizing the value of maintaining food web complexity in the Anthropocene.


Assuntos
Ficus/fisiologia , Cadeia Alimentar , Espécies Introduzidas , Polinização , Simbiose , Vespas/fisiologia , Distribuição Animal , Animais , Dispersão Vegetal
5.
New Phytol ; 224(3): 1304-1315, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494940

RESUMO

Interactions between mutualists, competitors, and antagonists have contrasting ecological effects that, sustained over generations, can influence micro- and macroevolution. Dissimilar benefits and costs for these interactions should cause contrasting co-diversification patterns between interacting clades, with prevalent co-speciation by mutualists, association loss by competitors, and host switching by antagonists. We assessed these expectations for a local assemblage of 26 fig species (Moraceae: Ficus), 26 species of mutualistic (pollinating), and 33 species of parasitic (galling) wasps (Chalcidoidea). Using newly acquired gene sequences, we inferred the phylogenies for all three clades. We then compared the three possible pairs of phylogenies to assess phylogenetic congruence and the relative frequencies of co-speciation, association duplication, switching, and loss. The paired phylogenies of pollinators with their mutualists and competitors were significantly congruent, unlike that of figs and their parasites. The distributions of macroevolutionary events largely agreed with expectations for mutualists and antagonists. By contrast, that for competitors involved relatively frequent association switching, as expected, but also unexpectedly frequent co-speciation. The latter result likely reflects the heterogeneous nature of competition among fig wasps. These results illustrate the influence of different interspecific interactions on co-diversification, while also revealing its dependence on specific characteristics of those interactions.


Assuntos
Biodiversidade , Ficus/fisiologia , Animais , Filogenia , Polinização/fisiologia , Especificidade da Espécie , Vespas
6.
Mol Ecol ; 28(17): 3958-3976, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31338917

RESUMO

Even though speciation involving multiple interacting partners, such as plants and their pollinators, has attracted much research, most studies focus on isolated phases of the process. This currently precludes an integrated understanding of the mechanisms leading to cospeciation. Here, we examine population genetic structure across six species-pairs of figs and their pollinating wasps along an elevational gradient in New Guinea. Specifically, we test three hypotheses on the genetic structure within the examined species-pairs and find that the hypothesized genetic structures represent different phases of a single continuum, from incipient cospeciation to the full formation of new species. Our results also illuminate the mechanisms governing cospeciation, namely that fig wasps tend to accumulate population genetic differences faster than their figs, which initially decouples the speciation dynamics between the two interacting partners and breaks down their one-to-one matching. This intermediate phase is followed by genetic divergence of both partners, which may eventually restore the one-to-one matching among the fully formed species. Together, these findings integrate current knowledge on the mechanisms operating during different phases of the cospeciation process. They also reveal that the increasingly reported breakdowns in one-to-one matching may be an inherent part of the cospeciation process. Mechanistic understanding of this process is needed to explain how the extraordinary diversity of species, especially in the tropics, has emerged. Knowing which breakdowns in species interactions are a natural phase of cospeciation and which may endanger further generation of diversity seems critical in a constantly changing world.


Assuntos
Ficus/genética , Ficus/parasitologia , Especiação Genética , Interações Hospedeiro-Patógeno/genética , Vespas/genética , Animais , Geografia , Filogenia , Especificidade da Espécie
7.
Int Arch Allergy Immunol ; 178(3): 291-294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30625461

RESUMO

BACKGROUND: Mastocytosis involves the abnormal proliferation of mast cells and clinical variability. In the case of anaphylaxis, the triggering antigen, often associated with Hymenoptera allergens, must be identified. The common fig (Ficus carica) requires the fig wasp (Blastophaga psenes) for pollination. OBJECTIVE: We evaluated the ingestion of B. psenes as a trigger of anaphylaxis in patients with mastocytosis. MATERIAL AND METHODS: Skin prick tests (SPTs) and specific immunoglobulin E to the possible involved allergens were carried out in the patient and in 4 controls allergic to Hymenoptera and fig. Given the possibility of hidden allergens, we studied the source (figs of various origins) and possible hypersensitivity to Hymenoptera allergens, including the fig wasp (B. psenes). RESULTS: In all subjects, the SPT resulted in a wheal (larger than with histamine) with the extract of the inferior part of the female fig but not with the male extract (lower pole and stem). Immune detection was made with the stem and inferior part of figs and venom of Polistes and Vespula. Recognition bands were observed at 25 kDa with female fig extracts that were also recognized by the patient with anaphylaxis to Hymenoptera venom. CONCLUSIONS: We cannot exclude the possibility that the ingestion of fig with Blastophaga antigens may have triggered anaphylaxis in our patient.


Assuntos
Anafilaxia/etiologia , Ficus , Mastocitose/imunologia , Venenos de Vespas/imunologia , Animais , Humanos , Masculino , Testes Cutâneos
8.
BMC Evol Biol ; 18(1): 134, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180795

RESUMO

BACKGROUND: While the communities constituted by phytophageous insects and their parasites may represent half of all terrestrial animal species, understanding their diversification remains a major challenge. A neglected idea is that geographic phenotypic variation in a host plant may lead to heterogeneous evolutionary responses of the different members of the associated communities. This could result in diversification on a host plant by ecological speciation in some species, leading to geographic variation in community composition. In this study we investigated geographic variation of inflorescence receptacle size in a plant, Ficus hirta, and how the hymenopteran community feeding in the inflorescences has responded. Our predictions were: 1) Inflorescence size variation affects wasp species differently depending on how they access oviposition sites. 2) In some affected lineages of wasps, we may observe vicariant, parapatric species adapted to different inflorescence sizes. RESULTS: We show that fig (the enclosed inflorescence of Ficus) wall thickness varies geographically. The fig-entering pollinating wasp was not affected, while the parasites ovipositing through the fig wall were. Two parapatric species of Philotrypesis, exhibiting strikingly different ovipositor lengths, were recorded. One species of Sycoscapter was also present, and it was restricted, like the shorter-ovipositor Philotrypesis, to the geographic zone where fig walls were thinner. CONCLUSIONS: Previous work on fig wasps suggested that parapatric geographic ranges among congenerics were due to adaptation to variation in abiotic factors, complemented by interspecific competition. Our results show that parapatric ranges may also result from adaptation to variation in biotic factors. Within an insect community, differences among species in their response to geographic phenotypic variation of their host plant may result in geographically heterogeneous community structure. Such heterogeneity leads to heterogeneous interaction networks among sites. Our results support the hypothesis that plant geographic phenotypic variation can be a driver of diversification in associated insect communities, and can complement other diversification processes.


Assuntos
Variação Biológica da População , Ficus/parasitologia , Geografia , Parasitos/fisiologia , Vespas/fisiologia , Vespas/parasitologia , Animais , Feminino , Ficus/anatomia & histologia , Ficus/genética , Inflorescência/anatomia & histologia , Inflorescência/fisiologia , Repetições de Microssatélites/genética , Oviposição/fisiologia , Polinização , Tamanho da Amostra
9.
BMC Ecol ; 18(1): 26, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30129423

RESUMO

BACKGROUND: Biotic interactions are ubiquitous and require information from ecology, evolutionary biology, and functional genetics in order to be understood. However, study systems that are amenable to investigations across such disparate fields are rare. Figs and fig wasps are a classic system for ecology and evolutionary biology with poor functional genetics; Caenorhabditis elegans is a classic system for functional genetics with poor ecology. In order to help bridge these disciplines, here we describe the natural history of a close relative of C. elegans, Caenorhabditis inopinata, that is associated with the fig Ficus septica and its pollinating Ceratosolen wasps. RESULTS: To understand the natural context of fig-associated Caenorhabditis, fresh F. septica figs from four Okinawan islands were sampled, dissected, and observed under microscopy. C. inopinata was found in all islands where F. septica figs were found. C.i nopinata was routinely found in the fig interior and almost never observed on the outside surface. C. inopinata was only found in pollinated figs, and C. inopinata was more likely to be observed in figs with more foundress pollinating wasps. Actively reproducing C. inopinata dominated early phase figs, whereas late phase figs with emerging wasp progeny harbored C. inopinata dauer larvae. Additionally, C. inopinata was observed dismounting from Ceratosolen pollinating wasps that were placed on agar plates. C. inopinata was not found on non-pollinating, parasitic Philotrypesis wasps. Finally, C. inopinata was only observed in F. septica figs among five Okinawan Ficus species sampled. CONCLUSION: These are the first detailed field observations of C. inopinata, and they suggest a natural history where this species proliferates in early phase F. septica figs and disperses from late phase figs on Ceratosolen pollinating fig wasps. While consistent with other examples of nematode diversification in the fig microcosm, the fig and wasp host specificity of C. inopinata is highly divergent from the life histories of its close relatives and frames hypotheses for future investigations. This natural co-occurrence of the fig/fig wasp and C. inopinata study systems sets the stage for an integrated research program that can help to explain the evolution of interspecific interactions.


Assuntos
Distribuição Animal , Caenorhabditis/fisiologia , Ficus/fisiologia , Polinização , Simbiose , Vespas/fisiologia , Animais , Frutas/fisiologia , Japão
10.
Mol Ecol ; 25(4): 882-94, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26876233

RESUMO

The structure of populations across landscapes influences the dynamics of their interactions with other species. Understanding the geographic structure of populations can thus shed light on the potential for interacting species to co-evolve. Host-parasitoid interactions are widespread in nature and also represent a significant force in the evolution of plant-insect interactions. However, there have been few comparisons of population structure between an insect host and its parasitoid. We used microsatellite markers to analyse the population genetic structure of Pleistodontes imperialis sp. 1, a fig-pollinating wasp of Port Jackson fig (Ficus rubiginosa), and its main parasitoid, Sycoscapter sp. A, in eastern Australia. Besides exploring this host-parasitoid system, our study also constitutes, to our knowledge, the first study of population structure in a nonpollinating fig wasp species. We collected matched samples of pollinators and parasitoids at several sites in two regions separated by up to 2000 km. We found that pollinators occupying the two regions represent distinct populations, but, in contrast, parasitoids formed a single population across the wide geographic range sampled. We observed genetic isolation by distance for each species, but found consistently lower FST and RST values between sites for parasitoids compared with pollinators. Previous studies have indicated that pollinators of monoecious figs can disperse over very long distances, and we provide the first genetic evidence that their parasitoids may disperse as far, if not farther. The contrasting geographic population structures of host and parasitoid highlight the potential for geographic mosaics in this important symbiotic system.


Assuntos
Distribuição Animal , Ficus , Genética Populacional , Vespas/genética , Vespas/parasitologia , Animais , Austrália , Teorema de Bayes , Variação Genética , Genótipo , Geografia , Repetições de Microssatélites , Polinização , Análise de Sequência de DNA
11.
Ecology ; 97(9): 2491-2500, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27859079

RESUMO

Mutually beneficial interactions between two species-mutualisms-are ancient, diverse, and of fundamental ecological importance. Nonetheless, factors that prevent one partner from reaping the benefits of the interaction without paying the cost are still poorly understood. Fig trees and their unique pollinators, fig wasps, present a powerful model system for studying mutualism stability. Both partners depend completely on each other for reproduction, cooperation levels can be manipulated, and the resulting field-based fitness quantified. Previous work has shown that fig trees can impose two types of host sanctions that reduce the fitness of wasps that do not pollinate: (1) fig abortion, which kills all developing larvae, and (2) reduced number of wasp offspring in figs that are not aborted. Here we demonstrate a third component of host sanctions. Through manipulative field experiments, we show that for four of five studied species, offspring of pollen-free foundresses are only 50-90% the size of offspring of pollinating foundresses. We further show that in all four studied species, smaller wasps are less likely to reach and enter a flowering fig to become foundresses themselves. Therefore, the experimentally determined size reduction of offspring is estimated to cause an additional reduction of up to 80% in fitness for a pollen-free foundress. We determine that the size reduction of pollen-free offspring acts on the level of the entire fig fruit rather than on individual flowers. These results show that estimates of the fitness effect of host sanctions on uncooperative symbionts should consider not only offspring quantity but also offspring quality. We discuss implications beyond the fig tree-fig wasp mutualism.


Assuntos
Polinização , Vespas/fisiologia , Animais , Tamanho Corporal , Ecologia , Ficus , Pólen , Simbiose , Vespas/anatomia & histologia
12.
Am J Bot ; 103(10): 1753-1762, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27562207

RESUMO

PREMISE OF THE STUDY: Fig trees and their pollinators, fig wasps, present a powerful model system for studying mutualism stability: both partners depend on each other for reproduction, cooperation levels can be manipulated, and the resulting field-based fitness quantified. Previous work has shown that fig trees can severely reduce the fitness of wasps that do not pollinate by aborting unpollinated figs or reducing the number and size of wasp offspring. Here we evaluated four hypotheses regarding the mechanism of sanctions in four Panamanian fig species. METHODS: We examined wasp and fig samples from field experiments with manipulated levels of pollination. KEY RESULTS: In unpollinated figs, the fig wall and the wasp offspring had a lower dry mass. Unpollinated figs had as many initiated wasp galls as pollinated figs but fewer galls that successfully produced live wasp offspring. Across three experimentally increasing levels of pollination, we found nonlinear increases in fig wall mass, the proportion of wasp galls that develop, and wasp mass. CONCLUSIONS: Our data did not support the hypotheses that lack of pollination prevents gall formation or that fertilized endosperm is required for wasp development. While our data are potentially consistent with the hypothesis that trees produce a wasp-specific toxin in response to lack of pollination, we found the hypothesis that sanctions are a consequence of trees allocating more resources to better-pollinated figs more parsimonious with the aggregate data. Our findings are completely analogous to the selective resource allocation to more beneficial tissues documented in other mutualistic systems.


Assuntos
Ficus/fisiologia , Polinização , Simbiose , Vespas/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Panamá , Reprodução , Vespas/crescimento & desenvolvimento
13.
Ecol Lett ; 18(11): 1270-1284, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26388306

RESUMO

Cheating is a focal concept in the study of mutualism, with the majority of researchers considering cheating to be both prevalent and highly damaging. However, current definitions of cheating do not reliably capture the evolutionary threat that has been a central motivation for the study of cheating. We describe the development of the cheating concept and distill a relative-fitness-based definition of cheating that encapsulates the evolutionary threat posed by cheating, i.e. that cheaters will spread and erode the benefits of mutualism. We then describe experiments required to conclude that cheating is occurring and to quantify fitness conflict more generally. Next, we discuss how our definition and methods can generate comparability and integration of theory and experiments, which are currently divided by their respective prioritisations of fitness consequences and traits. To evaluate the current empirical evidence for cheating, we review the literature on several of the best-studied mutualisms. We find that although there are numerous observations of low-quality partners, there is currently very little support from fitness data that any of these meet our criteria to be considered cheaters. Finally, we highlight future directions for research on conflict in mutualisms, including novel research avenues opened by a relative-fitness-based definition of cheating.

14.
J Anim Ecol ; 83(5): 1149-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24666375

RESUMO

A trophic cascade occurs when predators directly decrease the densities, or change the behaviour, of herbivores and thus indirectly increase plant productivity. The predator-herbivore-plant context is well known, but some predators attack species beneficial to plants (e.g. pollinators) and/or enemies of herbivores (e.g. parasites), and their role in the dynamics of mutualisms remains largely unexplored. We surveyed the predatory ant species and studied predation by the dominant ant species, the weaver ant Oecophylla smaragdina, associated with the fig tree Ficus racemosa in southwest China. We then tested the effects of weaver ants on the oviposition behaviour of pollinating and non-pollinating fig wasps in an ant-exclusion experiment. The effects of weaver ants on fig wasp community structure and fig seed production were then compared between trees with and without O. smaragdina. Oecophylla smaragdina captured more non-pollinating wasps (Platyneura mayri) than pollinators as the insects arrived to lay eggs. When ants were excluded, more non-pollinators laid eggs into figs and fewer pollinators entered figs. Furthermore, trees with O. smaragdina produced more pollinator offspring and fewer non-pollinator offspring, shifting the community structure significantly. In addition, F. racemosa produced significantly more seeds on trees inhabited by weaver ants. Oecophylla smaragdina predation reverses the dominance of the two commonest wasp species at the egg-laying stage and favours the pollinators. This behavioural pattern is mirrored by wasp offspring production, with pollinators' offspring dominating figs produced by trees inhabited by weaver ants, and offspring of the non-pollinator P. mayri most abundant in figs on trees inhabited by other ants. Overall, our results suggest that predation by weaver ants limits the success of the non-pollinating P. mayri and therefore indirectly benefits the mutualism by increasing the reproductive success of both the pollinators and the plant. Predation is thus a key functional factor that can shape the community structure of a pollinator-plant mutualistic system.


Assuntos
Formigas/fisiologia , Ficus/parasitologia , Cadeia Alimentar , Polinização , Vespas/fisiologia , Animais , China , Feminino , Ficus/fisiologia , Interações Hospedeiro-Parasita , Oviposição/fisiologia , Comportamento Predatório , Sementes/parasitologia , Simbiose
15.
Genome Biol Evol ; 16(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302111

RESUMO

The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.


Assuntos
Caenorhabditis , Ficus , Animais , Caenorhabditis elegans/genética , Ficus/genética , Caenorhabditis/genética , Genética Populacional , Genômica
16.
Virology ; 591: 109992, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38246037

RESUMO

We investigated the virome of agaonid fig wasps (Ceratosolen spp.) inside syconia ("fruits") of various Ficus trees fed upon by frugivores such as pteropodid bats in Sub-Saharan Africa. This virome includes representatives of viral families spanning four realms and includes near-complete genome sequences of three novel viruses and fragments of five additional potentially novel viruses evolutionarily associated with insects, fungi, plants, and vertebrates. Our study provides evidence that frugivorous animals are exposed to a plethora of viruses by coincidental consumption of fig wasps, which are obligate pollinators of figs worldwide.


Assuntos
Ficus , Vespas , Humanos , Animais , Viroma , Polinização , Frutas , Simbiose
17.
Biosystems ; 237: 105162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395103

RESUMO

Plants and animals have long been considered distinct kingdoms, yet here a 'plant-animal' is described. An extraordinary symbiosis in which neither organism can reproduce without the other, the fig tree (Ficus) provides the habitat for its exclusive pollinator: the fig wasp (Agaonidae). Characterising the 'fig-fig wasp holobiont' acknowledges, for the first time, 'plant-animal symbiogenesis'.


Assuntos
Ficus , Vespas , Animais , Polinização , Ecossistema , Simbiose
18.
Insects ; 14(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37233065

RESUMO

Non-pollinating fig wasps (NPFWs), particularly long-ovipositored Sycoryctina wasps, exhibit a high species specificity and exert complex ecological effects on the obligate mutualism between the plant genus Ficus and pollinating fig wasps. Apocrypta is a genus of NPFWs that mostly interacts with the Ficus species under the subgenus Sycomorus, and the symbiosis case between Apocrypta and F. pedunculosa var. mearnsii, a Ficus species under subgenus Ficus, is unique. As fig's internal environments and the wasp communities are distinct between the two subgenera, we addressed the following two questions: (1) Are the parasitism features of the Apocrypta wasp associated with F. pedunculosa var. mearnsii different from those of other congeneric species? (2) Is this Apocrypta species an efficient wasp that lives in its unique host? Our observation revealed that this wasp is an endoparasitic idiobiont parasitoid, as most congeneric species are, but developed a relatively long ovipositor. Furthermore, the relationships of the parasitism rate versus the pollinator number, the fig wall, and the sex ratio of the pollinator, respectively, showed that it possessed a higher parasitism ability than that of other congeners. However, its parasitism rate was low, and thus it was not an efficient wasp in its habitat. This difference between parasitism ability and parasitism rate might be a consequence of its oviposition strategy and the severe habitat conditions. These findings may also provide insights into the mechanism to maintain the interaction between the fig tree and the fig wasp community.

19.
Ecol Evol ; 12(9): e9311, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177123

RESUMO

Pollinating insects are decreasing worldwide in abundance, biomass, and species richness, affecting the plants that rely on pollinators for fruit production and seed set. Insects are often sensitive to high temperatures. The projected temperature increases may therefore severely affect plants that rely on insect pollinators. Highly specialized mutualisms are expected to be particularly vulnerable to change because they have fewer partner options should one partner become unavailable. In the highly specialized mutualism between fig trees and their pollinating fig wasp, each fig species is pollinated by only one or a few wasp species. Because of their year-round fruit production, fig trees are considered a keystone resource for tropical forests. However, to produce fruits, wild fig trees need to be pollinated by fig wasps that typically travel a long one-way trip from the tree donating pollen to the tree receiving pollen. In a few previous studies from China and Australia, increasing temperatures dramatically decreased fig wasp lifespan. Are these grim results generalizable to fig mutualisms globally? Here, we use survival experiments to determine the effect of increasing temperature on the lifespan of Neotropical fig wasps associated with five common Panamanian Ficus species. Experimental temperatures were based on the current daytime mean temperature of 26.8°C (2SD: 21.6-31.7°C) and the predicted local temperature increase of 1-4°C by the end of the 21st century. We found that all tested pollinator wasp species had a significantly shorter lifespan in 30, 32, 34, and 36°C compared to the current diurnal mean temperature of 26°C. At 36°C pollinator median lifespan decreased to merely 2-10 h (6%-19% of their median lifespan at 26°C). Unless wasps can adapt, such a dramatic reduction in lifespan is expected to reduce the number of pollinators that successfully disperse to flowering fig trees, and may therefore jeopardize both fruit set and eventually survival of the mutualism.

20.
Ecol Evol ; 12(4): e8826, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432921

RESUMO

Reproductive isolation in response to divergent selection is often mediated via third-party interactions. Under these conditions, speciation is inextricably linked to ecological context. We present a novel framework for understanding arthropod speciation as mediated by Wolbachia, a microbial endosymbiont capable of causing host cytoplasmic incompatibility (CI). We predict that sympatric host sister-species harbor paraphyletic Wolbachia strains that provide CI, while well-defined congeners in ecological contact and recently diverged noninteracting congeners are uninfected due to Wolbachia redundancy. We argue that Wolbachia provides an adaptive advantage when coupled with reduced hybrid fitness, facilitating assortative mating between co-occurring divergent phenotypes-the contact contingency hypothesis. To test this, we applied a predictive algorithm to empirical pollinating fig wasp data, achieving up to 91.60% accuracy. We further postulate that observed temporal decay of Wolbachia incidence results from adaptive host purging-adaptive decay hypothesis-but implementation failed to predict systematic patterns. We then account for post-zygotic offspring mortality during CI mating, modeling fitness clines across developmental resources-the fecundity trade-off hypothesis. This model regularly favored CI despite fecundity losses. We demonstrate that a rules-based algorithm accurately predicts Wolbachia infection status. This has implications among other systems where closely related sympatric species encounter adaptive disadvantage through hybridization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA