Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.830
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 54(10): 2231-2244.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555337

RESUMO

RNA interference (RNAi) is the major antiviral mechanism in plants and invertebrates, but the absence of detectable viral (v)siRNAs in mammalian cells upon viral infection has questioned the functional relevance of this pathway in mammalian immunity. We designed a series of peptides specifically targeting enterovirus A71 (EV-A71)-encoded protein 3A, a viral suppressor of RNAi (VSR). These peptides abrogated the VSR function of EV-A71 in infected cells and resulted in the accumulation of vsiRNAs and reduced viral replication. These vsiRNAs were functional, as evidenced by RISC-loading and silencing of target RNAs. The effects of VSR-targeting peptides (VTPs) on infection with EV-A71 as well as another enterovirus, Coxsackievirus-A16, were ablated upon deletion of Dicer1 or AGO2, core components of the RNAi pathway. In vivo, VTP treatment protected mice against lethal EV-A71 challenge, with detectable vsiRNAs. Our findings provide evidence for the functional relevance of RNAi in mammalian immunity and present a therapeutic strategy for infectious disease.


Assuntos
Antivirais/farmacologia , Infecções por Enterovirus/virologia , RNA Viral/antagonistas & inibidores , Animais , Chlorocebus aethiops , Enterovirus Humano A , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/antagonistas & inibidores , Células Vero , Replicação Viral/efeitos dos fármacos
2.
J Virol ; 98(2): e0200223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289108

RESUMO

Foot-and-mouth disease virus (FMDV) remains a challenge for cloven-hooved animals. The currently licensed FMDV vaccines induce neutralizing antibody (NAb)-mediated protection but show defects in the early protection. Dendritic cell (DC) vaccines have shown great potency in inducing rapid T-cell immunity in humans and mice. Whether DC vaccination could enhance early protection against FMDV has not been elaborately explored in domestic pigs. In this study, we employed DC vaccination as an experimental approach to study the roles of cellular immunity in the early protection against FMDV in pigs. Autologous DCs were differentiated from the periphery blood mononuclear cells of each pig, pulsed with inactivated FMDV (iFMDV-DC) and treated with LPS, and then injected into the original pigs. The cellular immune responses and protective efficacy elicited by the iFMDV-DC were examined by multicolor flow cytometry and tested by FMDV challenge. The results showed that autologous iFMDV-DC immunization induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells (CTLs), high NAb titers, compared to the inactivated FMDV vaccine, and accelerated the development of memory CD4 and CD8 T cells, which was concomitantly associated with early protection against FMDV virulent strain in pigs. Such early protection was associated with the rapid proliferation of secondary T-cell response after challenge and significantly contributed by secondary CD8 effector memory T cells. These results demonstrated that rapid induction of cellular immunity through DC immunization is important for improving early protection against FMDV. Enhancing cytotoxic CD8+ T cells may facilitate the development of more effective FMDV vaccines.IMPORTANCEAlthough the currently licensed FMDV vaccines provide NAb-mediated protection, they have defects in early immune protection, especially in pigs. In this study, we demonstrated that autologous swine DC immunization augmented the cellular immune response and induced an early protective response against FMDV in pigs. This approach induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells, high NAb titers, and rapid development of memory CD4 and CD8 T cells. Importantly, the early protection conferred by this DC immunization is more associated with secondary CD8+ T response rather than NAbs. Our findings highlighted the importance of enhancing cytotoxic CD8+ T cells in early protection to FMDV in addition to Th1 response and identifying a strategy or adjuvant comparable to the DC vaccine might be a future direction for improving the current FMDV vaccines.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/fisiologia , Suínos , Vacinação
3.
J Virol ; 98(2): e0135823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38226810

RESUMO

Hand, foot, and mouth disease (HFMD) is caused by more than 20 pathogenic enteroviruses belonging to the Picornaviridae family and Enterovirus genus. Since the introduction of the enterovirus-71 (EV71) vaccine in 2016, the number of HFMD cases caused by EV71 has decreased. However, cases of infections caused by other enteroviruses, such as coxsackievirus A6 (CA6) and coxsackievirus A10, have been increasing accordingly. In this study, we used a clinical isolate of CA6 to establish an intragastric infection mouse model using 7-day-old mice to mimic the natural transmission route, by which we investigated the differential gene expression profiles associated with virus infection and pathogenicity. After intragastric infection, mice exhibited hind limb paralysis symptoms and weight loss, similar to those reported for EV71 infection in mice. The skeletal muscle was identified as the main site of virus replication, with a peak viral load reaching 2.31 × 107 copies/mg at 5 dpi and increased infiltration of inflammatory cells. RNA sequencing analysis identified differentially expressed genes (DEGs) after CA6 infection. DEGs in the blood, muscle, brain, spleen, and thymus were predominantly enriched in immune system responses, including pathways such as Toll-like receptor signaling and PI3K-Akt signaling. Our study has unveiled the genes involved in the host immune response during CA6 infection, thereby enhancing our comprehension of the pathological mechanism of HFMD.IMPORTANCEThis study holds great significance for the field of hand, foot, and mouth disease (HFMD). It not only delves into the disease's etiology, transmission pathways, and severe complications but also establishes a novel mouse model that mimics the natural coxsackievirus A6 infection process, providing a pivotal platform to delve deeper into virus replication and pathogenic mechanisms. Additionally, utilizing RNA-seq technology, it unveils the dynamic gene expression changes during infection, offering valuable leads for identifying novel therapeutic drug targets. This research has the potential to enhance our understanding of HFMD, offering fresh perspectives for disease prevention and treatment and positively impacting children's health worldwide.


Assuntos
Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Criança , Humanos , Camundongos , Anticorpos Antivirais , Modelos Animais de Doenças , Enterovirus/patogenicidade , Enterovirus/fisiologia , Enterovirus Humano A , Infecções por Enterovirus/patologia , Infecções por Enterovirus/virologia , Expressão Gênica , Doença de Mão, Pé e Boca/genética , Fosfatidilinositol 3-Quinases , Virulência
4.
Cell Mol Life Sci ; 81(1): 148, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509419

RESUMO

Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.


Assuntos
Vírus da Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Imunidade Inata , Endopeptidases/genética , Endopeptidases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antivirais/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(10): e2118425119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238628

RESUMO

SignificanceMathematical models of infectious disease transmission continue to play a vital role in understanding, mitigating, and preventing outbreaks. The vast majority of epidemic models in the literature are parametric, meaning that they contain inherent assumptions about how transmission occurs in a population. However, such assumptions can be lacking in appropriate biological or epidemiological justification and in consequence lead to erroneous scientific conclusions and misleading predictions. We propose a flexible Bayesian nonparametric framework that avoids the need to make strict model assumptions about the infection process and enables a far more data-driven modeling approach for inferring the mechanisms governing transmission. We use our methods to enhance our understanding of the transmission mechanisms of the 2001 UK foot and mouth disease outbreak.


Assuntos
Teorema de Bayes , Doenças Transmissíveis/epidemiologia , Modelos Teóricos , Animais , Doenças Transmissíveis/transmissão , Surtos de Doenças , Febre Aftosa/epidemiologia , Humanos , Estatísticas não Paramétricas , Reino Unido/epidemiologia
7.
J Virol ; 97(7): e0068623, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367489

RESUMO

Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Caspase 3/metabolismo , Cisteína Endopeptidases/metabolismo , Gasderminas , Piroptose , Proteínas Virais/metabolismo
8.
J Virol ; 97(5): e0017123, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37154761

RESUMO

Foot-and-mouth disease virus (FMDV) is a picornavirus, which infects cloven-hoofed animals to cause foot-and-mouth disease (FMD). The positive-sense RNA genome contains a single open reading frame, which is translated as a polyprotein that is cleaved by viral proteases to produce the viral structural and nonstructural proteins. Initial processing occurs at three main junctions to generate four primary precursors; Lpro and P1, P2, and P3 (also termed 1ABCD, 2BC, and 3AB1,2,3CD). The 2BC and 3AB1,2,3CD precursors undergo subsequent proteolysis to generate the proteins required for viral replication, including the enzymes 2C, 3Cpro, and 3Dpol. These precursors can be processed through both cis and trans (i.e., intra- and intermolecular proteolysis) pathways, which are thought to be important for controlling virus replication. Our previous studies suggested that a single residue in the 3B3-3C junction has an important role in controlling 3AB1,2,3CD processing. Here, we use in vitro based assays to show that a single amino acid substitution at the 3B3-3C boundary increases the rate of proteolysis to generate a novel 2C-containing precursor. Complementation assays showed that while this amino acid substitution enhanced production of some nonenzymatic nonstructural proteins, those with enzymatic functions were inhibited. Interestingly, replication could only be supported by complementation with mutations in cis acting RNA elements, providing genetic evidence for a functional interaction between replication enzymes and RNA elements. IMPORTANCE Foot-and-mouth disease virus (FMDV) is responsible for foot-and-mouth disease (FMD), an important disease of farmed animals, which is endemic in many parts of the world and can results in major economic losses. Replication of the virus occurs within membrane-associated compartments in infected cells and requires highly coordinated processing events to produce an array of nonstructural proteins. These are initially produced as a polyprotein that undergoes proteolysis likely through both cis and trans alternative pathways (i.e., intra- and intermolecular proteolysis). The role of alternative processing pathways may help coordination of viral replication by providing temporal control of protein production and here we analyze the consequences of amino acid substitutions that change these pathways in FMDV. Our data suggest that correct processing is required to produce key enzymes for replication in an environment in which they can interact with essential viral RNA elements. These data further the understanding of RNA genome replication.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , Replicação Viral/genética , Proteínas não Estruturais Virais/metabolismo , RNA/metabolismo
9.
J Med Virol ; 96(1): e29412, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258311

RESUMO

Nonpharmaceutical interventions (NPIs) for coronavirus disease 2019 (COVID-19) not only reduce the prevalence of this disease among children but also influence the transmission of other viruses. This retrospective study investigated the impact of NPIs on human enterovirus (HEV) infection in children diagnosed with hand, foot, and mouth disease (HFMD) or herpangina (HA) in Hangzhou, China. We collected and analyzed the laboratory results and clinical data of children diagnosed with HFMD or HA during the following periods: pre-COVID-19 (January 2019 to December 2019), the COVID-19 pandemic (January 2020 to December 2022), and post-COVID-19 (January to December 2023). A total of 41 742 specimens that met the inclusion criteria were obtained, of which 1998 (4.79%) tested positive for enterovirus. In comparison to those in the pre-COVID-19 period, which had 695 (5.63%) HEV-positive specimens, the numbers dramatically decreased to 69 (1.19%), 398 (5.12%), and 112 (1.58%) in 2020, 2021, and 2022, respectively, but significantly increased to 724 (8.27%) in 2023. Seasonal peaks of infections occurred in May, June, July, and August each year, with the total detection rate ranging from 2019 to 2023 being 9.41% in May, 22.47% in June, 28.23% in July, and 12.16% in August, respectively. The difference in the detection rates of HEV infection between males and females was statistically significant (p < 0.005), with 5.11% (1221/23 898) of males and 4.35% (777/17 844) of females testing positive, resulting in a male-to-female positive ratio of 1.57:1. Among the age groups, 11.25% (378/3360) of the children aged 3-5 years had the highest detection rate, which steadily decreased with increasing or decreasing age. The detection of HEV indicated that >95% of the viruses were other types than the previously commonly reported enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16). In conclusion, NPIs for COVID-19 may be effective at reducing the transmission of HEV. However, with the relaxation of NPIs, the detection rate of HEVs increased slowly to a certain extent. Active awareness and surveillance of the epidemiological characteristics of HEV are essential for preventing, controlling, and managing the development of HFMD and HA, as well as contributing to the development of a multivalent HFMD vaccine.


Assuntos
COVID-19 , Infecções por Enterovirus , Enterovirus , Humanos , Feminino , Masculino , Criança , Pandemias , Estudos Retrospectivos , COVID-19/epidemiologia , Infecções por Enterovirus/epidemiologia , Antígenos Virais , China/epidemiologia
10.
J Med Virol ; 96(6): e29707, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932451

RESUMO

Coxsackievirus B1 (CVB1), an enterovirus with multiple clinical presentations, has been associated with potential long-term consequences, including hand, foot, and mouth disease (HFMD), in some patients. However, the related animal models, transmission dynamics, and long-term tissue tropism of CVB1 have not been systematically characterized. In this study, we established a model of CVB1 respiratory infection in rhesus macaques and evaluated the clinical symptoms, viral load, and immune levels during the acute phase (0-14 days) and long-term recovery phase (15-30 days). We also investigated the distribution, viral clearance, and pathology during the long-term recovery period using 35 postmortem rhesus macaque tissue samples collected at 30 days postinfection (d.p.i.). The results showed that the infected rhesus macaques were susceptible to CVB1 and exhibited HFMD symptoms, viral clearance, altered cytokine levels, and the presence of neutralizing antibodies. Autopsy revealed positive viral loads in the heart, spleen, pancreas, soft palate, and olfactory bulb tissues. HE staining demonstrated pathological damage to the liver, spleen, lung, soft palate, and tracheal epithelium. At 30 d.p.i., viral antigens were detected in visceral, immune, respiratory, and muscle tissues but not in intestinal or neural tissues. Brain tissue examination revealed viral meningitis-like changes, and CVB1 antigen expression was detected in occipital, pontine, cerebellar, and spinal cord tissues at 30 d.p.i. This study provides the first insights into CVB1 pathogenesis in a nonhuman primate model of HFMD and confirms that CVB1 exhibits tissue tropism following long-term infection.


Assuntos
Modelos Animais de Doenças , Enterovirus Humano B , Doença de Mão, Pé e Boca , Macaca mulatta , Carga Viral , Tropismo Viral , Animais , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/patologia , Enterovirus Humano B/fisiologia , Enterovirus Humano B/patogenicidade , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Animais Recém-Nascidos , Citocinas/metabolismo
11.
J Med Virol ; 96(7): e29796, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982764

RESUMO

Coxsackievirus A16 (CV-A16) is a significant etiologic agent of hand, foot, and mouth disease (HFMD) and herpangina (HA), with the capacity to progress to severe complications, including encephalitis, aseptic meningitis, acute flaccid paralysis, myocarditis, and other critical conditions. Beijing's epidemiological surveillance system, established in 2008, encompasses 29 hospitals and 16 district disease control centers. From 2019 to 2021, the circulation of CV-A16 was characterized by the co-circulation of B1a and B1b clades. Multiple cases of HFMD linked to clade B1c has not been reported in Beijing until 2022. This study enrolled 400 HFMD and 493 HA cases. Employing real-time RT-PCR, 368 enterovirus-positive cases were identified, with 180 selected for sequencing. CV-A16 was detected in 18.89% (34/180) of the cases, second only to CV-A6, identified in 63.33% (114/180). Full-length VP1 gene sequences were successfully amplified and sequenced in 22 cases, revealing the presence of clades B1a, B1b, and B1c in 14, 3, and 5 cases, respectively. A cluster of five B1c clade cases occurred between June 29 and July 17, 2022, within a 7-km diameter region in Shunyi District. Phylogenetic analysis of five complete VP1 gene sequences and two full-genome sequences revealed close clustering with the 2018 Indian strain (GenBank accession: MH780757.1) within the B1c India branch, with NCBI BLAST results showing over 98% similarity. Comparative sequence analysis identified three unique amino acid variations (P3S, V25A, and I235V). The 2022 Shunyi District HFMD cases represent the first instances of spatiotemporally correlated CV-A16 B1c clade infections in Beijing, underscoring the necessity for heightened surveillance of B1c clade CV-A16 in HFMD and HA in this region.


Assuntos
Doença de Mão, Pé e Boca , Filogenia , Humanos , Pequim/epidemiologia , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/epidemiologia , Masculino , Feminino , Pré-Escolar , Lactente , Criança , Genótipo , Enterovirus/genética , Enterovirus/classificação , Enterovirus/isolamento & purificação , Proteínas do Capsídeo/genética , Adolescente , Monitoramento Epidemiológico
12.
J Biomed Sci ; 31(1): 65, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943128

RESUMO

BACKGROUND: Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive. METHODS: A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection. RESULTS: Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection. CONCLUSIONS: This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.


Assuntos
Enterovirus Humano A , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Enterovirus Humano A/genética , Enterovirus Humano A/fisiologia , Enterovirus Humano A/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Replicação Viral
13.
Virol J ; 21(1): 122, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816865

RESUMO

Hand, Foot and Mouth Disease (HFMD) is a highly contagious viral illness primarily affecting children globally. A significant epidemiological transition has been noted in mainland China, characterized by a substantial increase in HFMD cases caused by non-Enterovirus A71 (EV-A71) and non-Coxsackievirus A16 (CVA16) enteroviruses (EVs). Our study conducts a retrospective examination of 36,461 EV-positive specimens collected from Guangdong, China, from 2013 to 2021. Epidemiological trends suggest that, following 2013, Coxsackievirus A6 (CVA6) and Coxsackievirus A10 (CVA10) have emerged as the primary etiological agents for HFMD. In stark contrast, the incidence of EV-A71 has sharply declined, nearing extinction after 2018. Notably, cases of CVA10 infection were considerably younger, with a median age of 1.8 years, compared to 2.3 years for those with EV-A71 infections, possibly indicating accumulated EV-A71-specific herd immunity among young children. Through extensive genomic sequencing and analysis, we identified the N136D mutation in the 2 A protein, contributing to a predominant subcluster within genogroup C of CVA10 circulating in Guangdong since 2017. Additionally, a high frequency of recombination events was observed in genogroup F of CVA10, suggesting that the prevalence of this lineage might be underrecognized. The dynamic landscape of EV genotypes, along with their potential to cause outbreaks, underscores the need to broaden surveillance efforts to include a more diverse spectrum of EV genotypes. Moreover, given the shifting dominance of EV genotypes, it may be prudent to re-evaluate and optimize existing vaccination strategies, which are currently focused primarily target EV-A71.


Assuntos
Genoma Viral , Genótipo , Doença de Mão, Pé e Boca , Filogenia , China/epidemiologia , Humanos , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/virologia , Pré-Escolar , Lactente , Estudos Retrospectivos , Feminino , Masculino , Criança , Epidemiologia Molecular , Enterovirus/genética , Enterovirus/classificação , Enterovirus/isolamento & purificação , Enterovirus Humano A/genética , Enterovirus Humano A/isolamento & purificação , Genômica , Incidência , Adolescente , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia
14.
Virol J ; 21(1): 89, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641810

RESUMO

Coxsackievirus-A10 (CV-A10), responsible for the hand, foot and mouth disease (HFMD) pandemic, could cause serious central nervous system (CNS) complications. The underlying molecular basis of CV-A10 and host interactions inducing neuropathogenesis is still unclear. The Hippo signaling pathway, historically known for a dominator of organ development and homeostasis, has recently been implicated as an immune regulator. However, its role in host defense against CV-A10 has not been investigated. Herein, it was found that CV-A10 proliferated in HMC3 cells and promoted the release of inflammatory cytokines. Moreover, pattern recognition receptors (PRRs)-mediated pathways, including TLR3-TRIF-TRAF3-TBK1-NF-κB axis, RIG-I/MDA5-MAVS-TRAF3-TBK1-NF-κB axis and TLR7-MyD88-IRAK1/IRAK4-TRAF6-TAK1-NF-κB axis, were examined to be elevated under CV-A10 infection. Meanwhile, it was further uncovered that Hippo signaling pathway was inhibited in HMC3 cells with CV-A10 infection. Previous studies have been reported that there exist complex relations between innate immune and Hippo signaling pathway. Then, plasmids of knockdown and overexpression of MST1/2 were transfected into HMC3 cells. Our results showed that MST1/2 suppressed the levels of inflammatory cytokines via interacting with TBK1 and IRAK1, and also enhanced virus production via restricting IRF3 and IFN-ß expressions. Overall, these data obviously pointed out that CV-A10 accelerated the formation of neuroinflammation by the effect of the Hippo pathway on the PRRs-mediated pathway, which delineates a negative immunoregulatory role for MST1/2 in CV-A10 infection and the potential for this pathway to be pharmacologically targeted to treat CV-A10.


Assuntos
Benzenoacetamidas , Infecções por Coxsackievirus , NF-kappa B , Piperidonas , Humanos , NF-kappa B/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Doenças Neuroinflamatórias , Imunidade Inata , Citocinas/metabolismo
15.
Mol Pharm ; 21(1): 183-193, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015447

RESUMO

The adjuvant is essential for vaccines because it can enhance or directly induce a strong immune response associated with vaccine antigens. Ginsenoside Rh2 (Rh2) had immunomodulatory effects but was limited by poor solubility and hemolysis. In this study, Rh2 liposomes (Rh2-L) were prepared by ethanol injection methods. The Rh2-L effectively dispersed in a double emulsion adjuvant system to form a Water-in-Oil-in-Water (W/O/W) emulsion and had no hemolysis. The physicochemical properties of the adjuvants were tested, and the immune activity and auxiliary effects indicated by the Foot-and-Mouth disease (FMDV) antigen were evaluated. Compared with the mice vaccinated with the FMD vaccine prepared with the double emulsion adjuvant alone, those with the FMD vaccine prepared with the double emulsion adjuvant containing Rh2-L had significantly higher neutralizing antibody titer and splenocyte proliferation rates and showed higher cellular and humoral immune responses. The results demonstrated that Rh2-L could further enhance the immune effect of the double emulsion adjuvant against Foot-and-Mouth Disease.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Camundongos , Animais , Febre Aftosa/prevenção & controle , Lipossomos , Emulsões , Anticorpos Antivirais , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Água
16.
Arch Virol ; 169(5): 101, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630189

RESUMO

Foot-and-mouth disease is a highly contagious disease affecting cloven-hoofed animals, resulting in considerable economic losses. Its causal agent is foot-and-mouth disease virus (FMDV), a picornavirus. Due to its error-prone replication and rapid evolution, the transmission and evolutionary dynamics of FMDV can be studied using genomic epidemiological approaches. To analyze FMDV evolution and identify possible transmission routes in an Argentinean region, field samples that tested positive for FMDV by PCR were obtained from 21 farms located in the Mar Chiquita district. Whole FMDV genome sequences were obtained by PCR amplification in seven fragments and sequencing using the Sanger technique. The genome sequences obtained from these samples were then analyzed using phylogenetic, phylogeographic, and evolutionary approaches. Three local transmission clusters were detected among the sampled viruses. The dataset was analyzed using Bayesian phylodynamic methods with appropriate coalescent and relaxed molecular clock models. The estimated mean viral evolutionary rate was 1.17 × 10- 2 substitutions/site/year. No significant differences in the rate of viral evolution were observed between farms with vaccinated animals and those with unvaccinated animals. The most recent common ancestor of the sampled sequences was dated to approximately one month before the first reported case in the outbreak. Virus transmission started in the south of the district and later dispersed to the west, and finally arrived in the east. Different transmission routes among the studied herds, such as non-replicating vectors and close contact contagion (i.e., aerosols), may be responsible for viral spread.


Assuntos
Vírus da Febre Aftosa , Picornaviridae , Animais , Vírus da Febre Aftosa/genética , Argentina/epidemiologia , Teorema de Bayes , Filogenia
17.
BMC Infect Dis ; 24(1): 205, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360603

RESUMO

Hand foot and mouth disease (HFMD) is caused by a variety of enteroviruses, and occurs in large outbreaks in which a small proportion of children deteriorate rapidly with cardiopulmonary failure. Determining which children are likely to deteriorate is difficult and health systems may become overloaded during outbreaks as many children require hospitalization for monitoring. Heart rate variability (HRV) may help distinguish those with more severe diseases but requires simple scalable methods to collect ECG data.We carried out a prospective observational study to examine the feasibility of using wearable devices to measure HRV in 142 children admitted with HFMD at a children's hospital in Vietnam. ECG data were collected in all children. HRV indices calculated were lower in those with enterovirus A71 associated HFMD compared to those with other viral pathogens.HRV analysis collected from wearable devices is feasible in a low and middle income country (LMIC) and may help classify disease severity in HFMD.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Criança , Humanos , Lactente , Doença de Mão, Pé e Boca/diagnóstico , Frequência Cardíaca , Estudos de Viabilidade , China/epidemiologia
18.
BMC Infect Dis ; 24(1): 386, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594638

RESUMO

BACKGROUND: Since December 2019, COVID-19 has spread rapidly around the world, and studies have shown that measures to prevent COVID-19 can largely reduce the spread of other infectious diseases. This study explored the impact of the COVID-19 outbreak and interventions on the incidence of HFMD. METHODS: We gathered data on the prevalence of HFMD from the Children's Hospital Affiliated to Zhengzhou University. An autoregressive integrated moving average model was constructed using HFMD incidence data from 2014 to 2019, the number of cases predicted from 2020 to 2022 was predicted, and the predicted values were compared with the actual measurements. RESULTS: From January 2014 to October 2022, the Children's Hospital of Zhengzhou University admitted 103,995 children with HFMD. The average number of cases of HFMD from 2020 to 2022 was 4,946, a significant decrease from 14,859 cases from 2014 to 2019. We confirmed the best ARIMA (2,0,0) (1,1,0)12 model. From 2020 to 2022, the yearly number of cases decreased by 46.58%, 75.54%, and 66.16%, respectively, compared with the forecasted incidence. Trends in incidence across sexes and ages displayed patterns similar to those overall. CONCLUSIONS: The COVID-19 outbreak and interventions reduced the incidence of HFMD compared to that before the outbreak. Strengthening public health interventions remains a priority in the prevention of HFMD.


Assuntos
COVID-19 , Doença de Mão, Pé e Boca , Criança , Humanos , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/prevenção & controle , Estudos Retrospectivos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Incidência , China/epidemiologia
19.
BMC Vet Res ; 20(1): 301, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971791

RESUMO

BACKGROUND: Foot-and-mouth disease (FMD) is a devastating disease affecting cloven-hoofed animals, that leads to significant economic losses in affected countries and regions. Currently, there is an evident inclination towards the utilization of nanoparticles as powerful platforms for innovative vaccine development. Therefore, this study developed a ferritin-based nanoparticle (FNP) vaccine that displays a neutralizing epitope of foot-and-mouth disease virus (FMDV) VP1 (aa 140-158) on the surface of FNP, and evaluated the immunogenicity and protective efficacy of these FNPs in mouse and guinea pig models to provide a strategy for developing potential FMD vaccines. RESULTS: This study expressed the recombinant proteins Hpf, HPF-NE and HPF-T34E via an E. coli expression system. The results showed that the recombinant proteins Hpf, Hpf-NE and Hpf-T34E could be effectively assembled into nanoparticles. Subsequently, we evaluated the immunogenicity of the Hpf, Hpf-NE and Hpf-T34E proteins in mice, as well as the immunogenicity and protectiveness of the Hpf-T34E protein in guinea pigs. The results of the mouse experiment showed that the immune efficacy in the Hpf-T34E group was greater than the Hpf-NE group. The results from guinea pigs immunized with Hpf-T34E showed that the immune efficacy was largely consistent with the immunogenicity of the FMD inactivated vaccine (IV) and could confer partial protection against FMDV challenge in guinea pigs. CONCLUSIONS: The Hpf-T34E nanoparticles stand out as a superior choice for a subunit vaccine candidate against FMD, offering effective protection in FMDV-infected model animals. FNP-based vaccines exhibit excellent safety and immunogenicity, thus representing a promising strategy for the continued development of highly efficient and safe FMD vaccines.


Assuntos
Epitopos , Ferritinas , Vírus da Febre Aftosa , Febre Aftosa , Nanopartículas , Vacinas Virais , Animais , Cobaias , Febre Aftosa/prevenção & controle , Febre Aftosa/imunologia , Vírus da Febre Aftosa/imunologia , Ferritinas/imunologia , Vacinas Virais/imunologia , Epitopos/imunologia , Camundongos , Feminino , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Proteínas do Capsídeo
20.
BMC Vet Res ; 20(1): 313, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010130

RESUMO

BACKGROUND: Foot and mouth disease is a contagious, transboundary, and economically devastating viral disease of cloven-hoofed animals. The disease can cause many consequences, including decreased productivity, limited market access, and elimination of flocks or herds. This study aimed to assess farmers' willingness to pay (WTP) for foot and mouth disease (FMD) vaccines and identify factors influencing their WTP. A cross-sectional questionnaire survey was conducted on 396 randomly selected livestock-owning farmers from three districts in the central Oromia region (Ambo, Dendi, and Holeta districts. The study utilized the contingent valuation method, specifically employing dichotomous choice bids with double bounds, to evaluate the willingness to pay (WTP) for the FMD vaccine. Mean WTP was assessed using interval regression, and influential factors were identified. RESULTS: The study revealed that the farmer's mean willingness to pay for a hypothetical foot and mouth disease vaccine was 37.5 Ethiopian Birr (ETB) [95% confidence interval [CI]: 34.5 40.58] in all data, while it was 23.84 (95% CI: 21.47-26.28) in the mixed farming system and 64.87 Ethiopian Birr (95% CI: 58.68 71.15) in the market-oriented farming system. We identified main livelihood, management system, sales income, breed, keeping animals for profit, and foot and mouth disease impact perception score as significant variables (p ≤ 0.05) determining the farmers' WTP for the FMD vaccine. CONCLUSION: Farmers demonstrated a high computed willingness to pay, which can be considered an advantage in the foot and mouth disease vaccination program in central Oromia. Therefore, it is necessary to ensure sufficient vaccine supply services to meet the high demand revealed.


Assuntos
Fazendeiros , Febre Aftosa , Vacinas Virais , Etiópia , Fazendeiros/psicologia , Febre Aftosa/prevenção & controle , Febre Aftosa/economia , Animais , Estudos Transversais , Vacinas Virais/economia , Humanos , Inquéritos e Questionários , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Bovinos , Vacinação/veterinária , Vacinação/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA