Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 29(7): 1077-1083, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37059467

RESUMO

Preadenylated single-stranded DNA ligation adaptors are essential reagents in many next generation RNA sequencing library preparation protocols. These oligonucleotides can be adenylated enzymatically or chemically. Enzymatic adenylation reactions have high yield but are not amendable to scale up. In chemical adenylation, adenosine 5'-phosphorimidazolide (ImpA) reacts with 5' phosphorylated DNA. It is easily scalable but gives poor yields, requiring labor-intensive cleanup steps. Here, we describe an improved chemical adenylation method using 95% formamide as the solvent, which results in the adenylation of oligonucleotides with >90% yield. In standard conditions, with water as the solvent, hydrolysis of the starting material to adenosine monophosphate limits the yields. To our surprise, we find that rather than increasing adenylation yields by decreasing the rate of ImpA hydrolysis, formamide does so by increasing the reaction rate between ImpA and 5'-phosphorylated DNA by ∼10-fold. The method described here enables straightforward preparation of chemically adenylated adapters with higher than 90% yield, simplifying reagent preparation for NGS.


Assuntos
DNA , Compostos Organofosforados , RNA , Oligonucleotídeos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Small ; : e2405098, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165070

RESUMO

A building block containing eight zincs and eight iodo groups (8 Zn) is obtained by the Zn complexation of a salen ligand bearing two additional hydroxy groups. Through the Sonogashira-Hagihara coupling of 8 Zn with 1,3,5,7-tetra(4-ethynylphenyl) adamantane, microporous organic polymers bearing octanuclear zinc clusters (MOP-8 Zn) are prepared, exhibiting a high surface area of 562 m2 g-1, microporosity, and a particulate morphology with an average diameter of 249 nm. The MOP-8 Zn exhibits significantly enhanced catalytic performance, compared to molecular counterparts, in the reductive carbon dioxide fixation to formamides, possibly due to the cooperative adsorption and confinement effect of networks on substrates.

3.
Small ; : e2400673, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700057

RESUMO

Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.

4.
Appl Microbiol Biotechnol ; 108(1): 105, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204134

RESUMO

This review presents an analysis of formamide, focussing on its occurrence in nature, its functional roles, and its promising applications in the context of the bioeconomy. We discuss the utilization of formamide as an innovative nitrogen source achieved through metabolic engineering. These approaches underscore formamide's potential in supporting growth and production in biotechnological processes. Furthermore, our review illuminates formamide's role as a nitrogen source capable of safeguarding cultivation systems against contamination in non-sterile conditions. This attribute adds an extra layer of practicality to its application, rendering it an attractive candidate for sustainable and resilient industrial practices. Additionally, the article unveils the versatility of formamide as a potential carbon source that could be combined with formate or CO2 assimilation pathways. However, its attributes, i.e., enriched nitrogen content and comparatively limited energy content, led to conclude that formamide is more suitable as a co-substrate and that its use as a sole source of carbon for biomass and bio-production is limited. Through our exploration of formamide's properties and its applications, this review underscores the significance of formamide as valuable resource for a large spectrum of industrial applications. KEY POINTS: • Formidases enable access to formamide as source of nitrogen, carbon, and energy • The formamide/formamidase system supports non-sterile fermentation • The nitrogen source formamide supports production of nitrogenous compounds.


Assuntos
Formamidas , Nitrogênio , Compostos de Nitrogênio , Carbono
5.
Molecules ; 29(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202829

RESUMO

Following previous studies, the ternary mixture of methanol/formamide/acetonitrile (MeOH/Formamide/MeCN) was studied using the UV-Vis absorption spectra at 298.15 K with a set of five probes, 4-nitroaniline, 4-nitroanisole, 4-nitrophenol, N,N-dimethyl-4-nitroaniline and 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolate (Reichardt betaine dye), for a total of 22 mole ternary fractions. In addition, nine mole fractions of the underling binary mixtures, MeOH/Formamide and Formamide/MeCN were also tested. Spectroscopic results were used to model the preferential solvation order for each probe in the mixtures. The Kamlet-Taft solvatochromic solvent parameters, α, ß, and π*, were also computed through the use of the solvatochromic shifts of the five probe indicators. Moreover, discrepancies in the spectroscopic behavior of 4-nitrophenol in formamide-rich mixtures were observed and analyzed.

6.
Angew Chem Int Ed Engl ; 63(33): e202407580, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38821865

RESUMO

Electrocatalytic upgrading of wasted plastic and renewable biomass represents a sustainable method to produce chemicals but is limited to carbohydrates, leaving other value-added chemicals, such as organonitrogen compounds, being scarcely explored. Herein, we reported an electrocatalytic oxidation strategy to transform polyethylene terephthalate (PET) plastic-derived ethylene glycol (EG) and biomass-derived polyols into formamide, in the presence of ammonia (NH3) over a tungsten oxide (WO3) catalyst. Taking EG-to-formamide as an example, we achieved a high formamide productivity of 537.7 µmol cm-2 h-1 with FE of 43.2 % at a constant current of 100 mA cm-2 in a flow electrolyzer with 12-h test, representing a more advantageous performance compared with previous reports for formamide electrosynthesis. Mechanistic understanding revealed that the cleavage of the C-C bond in the EG was facilitated by nucleophilic attack of in situ formed nitrogen radicals from NH3, with resultant C-N bond construction and eventually formamide production. Furthermore, this strategy can be extended to transformation of PET bottle and a series of biomass-derived polyols with carbon number from three (glycerol) to six (glucose), producing formamide with high efficiencies. This work demonstrates a sustainable upgrading strategy of plastic and biomass that may have implications to more value-added chemicals production beyond carbohydrates.

7.
Angew Chem Int Ed Engl ; : e202408379, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970405

RESUMO

Formamide (HCONH2) plays a pivotal role in the manufacture of a diverse array of chemicals, fertilizers, and pharmaceuticals. Photocatalysis holds great promise for green fabrication of carbon-nitrogen (C-N) compounds owing to its environmental friendliness and mild redox capability. However, the selective formation of the C-N bond presents a significant challenge in the photocatalytic synthesis of C-N compounds. This work developed a photocatalytic radical coupling method for the formamide synthesis from co-oxidation of ammonia (NH3) and methanol (CH3OH). An exceptional formamide yield rate of 5.47±0.03 mmol ⋅ gcat -1 ⋅ h-1 (911.87±5 mmol ⋅ gBi -1 ⋅ h-1) was achieved over atomically dispersed Bi sites (BiSAs) on TiO2. An accumulation of 45.68 mmol ⋅ gcat -1 (2.0 g ⋅ gcat -1) of formamide was achieved after long-term illumination, representing the highest level of photocatalytic C-N compounds synthesis. The critical C-N coupling for formamide formation originated from the "σ-σ" interaction between electrophilic ⋅CH2OH with nucleophilic ⋅NH2 radical. The BiSAs sites facilitated the electron transfer between reactants and photocatalysts and enhanced the nucleophilic attack of ⋅NH2 radical on the ⋅CH2OH radical, thereby advancing the selective C-N bond formation. This work deepens the understanding of the C-N coupling mechanism and offers an intriguing photocatalytic approach for the efficient and sustainable production of C-N compounds.

8.
Angew Chem Int Ed Engl ; 63(13): e202318763, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38300154

RESUMO

The synthesis of mono-N-methylated aliphatic primary amines has traditionally been challenging, requiring noble metal catalysts and high-pressure H2 for achieving satisfactory yields and selectivity. Herein, we developed an approach for the selective coupling of methanol and aliphatic primary amines, without high-pressure hydrogen, using a manganese-based catalyst. Remarkably, up to 98 % yields with broad substrate scope were achieved at low catalyst loadings. Notably, due to the weak base-catalyzed alcoholysis of formamide intermediates, our novel protocol not only obviates the addition of high-pressure H2 but also prevents side secondary N-methylation, supported by control experiments and density functional theory calculations.

9.
Chembiochem ; 24(24): e202300510, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37747702

RESUMO

3',5'-Cyclic nucleotides play a fundamental role in modern biochemical processes and have been suggested to have played a central role at the origin of terrestrial life. In this work, we suggest that a formamide-based systems chemistry might account for their availability on the early Earth. In particular, we demonstrate that in a liquid formamide environment at elevated temperatures 3',5'-cyclic nucleotides are obtained in good yield and selectivity upon intramolecular cyclization of 5'-phosphorylated nucleosides in the presence of carbodiimides.


Assuntos
Adenosina , Guanosina Monofosfato , Ciclização , Nucleosídeos/química , Nucleotídeos Cíclicos , Formamidas/química , Guanosina
10.
Environ Sci Technol ; 57(14): 5646-5654, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988557

RESUMO

Formamide has been classified as a Class 1B reproductive toxicant to children by the European Union (EU) Chemicals Agency. Foam mats are a potential source of formamide and ammonia. Online dopant-assisted atmospheric pressure photoionization time-of-flight mass spectrometry (DA-APPI-TOFMS) coupled with a Teflon environmental chamber was developed to assess the exposure risk of formamide and ammonia from foam mats to children. High levels of formamide (average 3363.72 mg/m3) and ammonia (average 1586.78 mg/m3) emissions were measured from 21 foam mats with three different raw material types: ethylene-vinyl acetate (EVA: n = 7), polyethylene (PE: n = 7), and cross-linked polyethylene (XPE: n = 7). The 28 day emission testing for the selected PE mat showed that the emissions of formamide were 2 orders of magnitude higher than the EU emission limit of 20 µg/m3, and formamide may be a permanent indoor contaminant for foam mat products during their life cycle. The exposure assessment of children aged 0.5-6 years showed that the exposure dose was approximately hundreds of mg/kg-day, and the age group of 0.5-2 years was subject to much higher dermal exposures than others. Thus, this study provided key relevant information for further studies on assessing children's exposure to indoor air pollution from foam mats.


Assuntos
Poluição do Ar em Ambientes Fechados , Amônia , Humanos , Criança , Lactente , Pré-Escolar , Amônia/análise , Poluição do Ar em Ambientes Fechados/análise , Formamidas/análise , Polietilenos/análise
11.
Appl Microbiol Biotechnol ; 107(13): 4245-4260, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37246985

RESUMO

Formamide is rarely used as nitrogen source by microorganisms. Therefore, formamide and formamidase have been used as protection system to allow for growth under non-sterile conditions and for non-sterile production of acetoin, a product lacking nitrogen. Here, we equipped Corynebacterium glutamicum, a renowned workhorse for industrial amino acid production for 60 years, with formamidase from Helicobacter pylori 26695, enabling growth with formamide as sole nitrogen source. Thereupon, the formamide/formamidase system was exploited for efficient formamide-based production of the nitrogenous compounds L-glutamate, L-lysine, N-methylphenylalanine, and dipicolinic acid by transfer of the formamide/formamidase system to established producer strains. Stable isotope labeling verified the incorporation of nitrogen from formamide into biomass and the representative product L-lysine. Moreover, we showed ammonium leakage during formamidase-based access of formamide to be exploitable to support growth of formamidase-deficient C. glutamicum in co-cultivation and demonstrated that efficient utilization of formamide as sole nitrogen source benefitted from overexpression of formate dehydrogenase. KEY POINTS: • C. glutamicum was engineered to access formamide. • Formamide-based production of nitrogenous compounds was established. • Nitrogen cross-feeding supported growth of a formamidase-negative strain.


Assuntos
Corynebacterium glutamicum , Lisina , Lisina/metabolismo , Corynebacterium glutamicum/metabolismo , Aminas/metabolismo , Aminoácidos/metabolismo , Nitrogênio/metabolismo , Engenharia Metabólica
12.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175485

RESUMO

Aromatic isocyanides have gained a lot of attention lately as promising antifungal and anticancer drugs, as well as high-performance fluorescent analytical probes for the detection of toxic metals, such as mercury, even in vivo. Since this topic is relatively new and aromatic isocyanides possess unique photophysical properties, the understanding of structure-behavior relationships and the preparation of novel potentially biologically active derivatives are of paramount importance. Here, we report the photophysical characterization of 1,5-diisocyanonaphthalene (DIN) backed by quantum chemical calculations. It was discovered that DIN undergoes hydrolysis in certain solvents in the presence of oxonium ions. By the careful control of the reaction conditions for the first time, the nonsymmetric product 1-formamido-5-isocyanonaphthalene (ICNF) could be prepared. Contrary to expectations, the monoformamido derivative showed a significant solvatochromic behavior with a ~50 nm range from hexane to water. This behavior was explained by the enhanced H-bond-forming ability of the formamide group. The significance of the hydrolysis reaction is that the isocyano group is converted to formamide in living organisms. Therefore, ICNF could be a potential drug (for example, antifungal) and the reaction can be used as a model for the preparation of other nonsymmetric formamido-isocyanoarenes. In contrast to its relative 1-amino-5-iscyanonaphthalene (ICAN), ICNF is highly fluorescent in water, enabling the development of a fluorescent turnoff probe.


Assuntos
Antifúngicos , Corantes Fluorescentes , Antifúngicos/farmacologia , Hidrólise , Corantes Fluorescentes/química , Água , Cianetos
13.
Molecules ; 28(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903417

RESUMO

The solution enthalpy of 15-crown-5 and 18-crown-6 ethers in the mixture of formamide (F) and water (W) was measured at four temperatures: 293.15 K, 298.15 K, 303.15 K, 308.15 K. The standard molar enthalpy of solution, ΔsolHo, depends on the size of cyclic ethers molecules and the temperature. With increasing temperature, the values of ΔsolHo become less negative. The values of the standard partial molar heat capacity Cp,2o of cyclic ethers at 298.15 K have been calculated. The Cp,2o=f(xW) curve shape indicates the hydrophobic hydration process of cyclic ethers in the range of a high-water content in the mixture with formamide. The enthalpic effect of preferential solvation of cyclic ethers was calculated and the effect of temperature on the preferential solvation process was discussed. The process of complex formation between 18C6 molecules and formamide molecules is observed. The cyclic ethers molecules are preferentially solvated by formamide molecules. The mole fraction of formamide in the solvation sphere of cyclic ethers has been calculated.

14.
Saudi Pharm J ; 31(2): 295-311, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36942272

RESUMO

Over the last two years, global regulatory authorities have raised safety concerns on nitrosamine contamination in several drug classes, including angiotensin II receptor antagonists, histamine-2 receptor antagonists, antimicrobial agents, and antidiabetic drugs. To avoid carcinogenic and mutagenic effects in patients relying on these medications, authorities have established specific guidelines in risk assessment scenarios and proposed control limits for nitrosamine impurities in pharmaceuticals. In this review, nitrosation pathways and possible root causes of nitrosamine formation in pharmaceuticals are discussed. The control limits of nitrosamine impurities in pharmaceuticals proposed by national regulatory authorities are presented. Additionally, a practical and science-based strategy for implementing the well-established control limits is notably reviewed in terms of an alternative approach for drug product N-nitrosamines without published AI information from animal carcinogenicity testing. Finally, a novel risk evaluation strategy for predicting and investigating the possible nitrosation of amine precursors and amine pharmaceuticals as powerful prevention of nitrosamine contamination is addressed.

15.
Angew Chem Int Ed Engl ; 62(22): e202302342, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37000423

RESUMO

Perovskite film with high crystal quality is fundamental to achieving high-performance solar cells. A fast nucleation process is crucial to improving the crystallization quality. Here, we propose a self-driven prenucleation strategy to achieve fast nucleation. This is realized through rational solvent design. The key characteristics of different solvents are systematically evaluated. Among them, formamide, with ultra-high dielectric constant, low Gutman donor number, and a high boiling point, is selected as the co-solvent. These unique characteristics render formamide a double-face solvent that is a good solvent for formamidinium iodide (FAI) and CsI while a poor solvent for PbI2 . As a result, formamide induces the self-driven prenucleation of PbI2 -DMSO seeding crystals and accelerates the nucleation, improving the crystalline quality of perovskite film. The efficiency of the hole transport layer-free carbon-based perovskite solar cells is boosted beyond 19 % for the first time.

16.
Angew Chem Int Ed Engl ; 62(21): e202217380, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36951593

RESUMO

Heterogeneously catalyzed N-formylation of amines to formamide with CO2 /H2 is highly attractive for the valorization of CO2 . However, the relationship of the catalytic performance with the catalyst structure is still elusive. Herein, mixed valence catalysts containing Cu2 O/Cu interface sites were constructed for this transformation. Both aliphatic primary and secondary amines with diverse structures were efficiently converted into the desired formamides with good to excellent yields. Combined ex and in situ catalyst characterization revealed that the presence of Cu2 O/Cu interface sites was vital for the excellent catalytic activity. Density functional theory (DFT) calculations demonstrated that better catalytic activity of Cu2 O/Cu(111) than Cu(111) is attributed to the assistance of oxygen at the Cu2 O/Cu interface (Ointer ) in formation of Ointer -H moieties, which not only reduce the apparent barrier of HCOOH formation but also benefit the desorption of the desired N-formylated amine, leading to high activity and selectivity.

17.
Cryobiology ; 107: 57-63, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636502

RESUMO

Cryopreservation of articular cartilage will increase tissue availability for osteochondral allografting and improve clinical outcomes. However, successful cryopreservation of articular cartilage requires the precise determination of cryoprotectant permeation kinetics to develop effective vitrification protocols. To date, permeation kinetics of the cryoprotectant formamide in articular cartilage have not been sufficiently explored. The objective of this study was to determine the permeation kinetics of formamide into porcine articular cartilage for application in vitrification. The permeation of dimethyl sulfoxide was first measured to validate existing methods from our previously published literature. Osteochondral dowels from dissected porcine femoral condyles were incubated in 6.5 M dimethyl sulfoxide for a designated treatment time (1 s, 1 min, 2 min, 5 min, 10 min, 15 min, 30 min, 60 min, 120 min, 180 min, 24 h) at 22 °C (N = 3). Methods were then repeated with 6.5 M formamide at one of three temperatures: 4 °C, 22 °C, 37 °C (N = 3). Following incubation, cryoprotectant efflux into a wash solution occurred, and osmolality was measured from each equilibrated wash solution. Concentrations of effluxed cryoprotectant were calculated and diffusion coefficients were determined using an analytical solution to Fick's law for axial and radial diffusion in combination with a least squares approach. The activation energy of formamide was determined from the Arrhenius equation. The diffusion coefficient (2.7-3.3 × 10-10 m2/s depending on temperature) and activation energy (0.9±0.6 kcal/mol) for formamide permeation in porcine articular cartilage were established. The determined permeation kinetics of formamide will facilitate its precise use in future articular cartilage vitrification protocols.


Assuntos
Cartilagem Articular , Dimetil Sulfóxido , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Formamidas , Suínos
18.
Proc Natl Acad Sci U S A ; 116(40): 19815-19820, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527234

RESUMO

Secondary formamides are widely encountered in biology and exist as mixtures of both cis and trans isomers. Here, we assess hydrophilicity differences between isomeric formamides through direct competition experiments. Formamides bearing long aliphatic chains were sequestered in a water-soluble molecular container having a hydrophobic cavity with an end open to the aqueous medium. NMR spectroscopic experiments reveal a modest preference (<1 kcal/mol) for aqueous solvation of the trans formamide terminals over the cis isomers. With diformamides, the supramolecular approach allows staging of intramolecular competition between short-lived species with subtle differences in hydrophobic properties.

19.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293039

RESUMO

Sensing trace amounts of 4-nitrophenol (4-NP) as a harmful substance to organisms even in small quantities is of great importance. The present study includes a sensitive and selective electrochemical sensor for detecting 4-NP in natural water samples using formamide-converted nitrogen-carbon materials (shortened to f-NC) as a new material for electrode modification. The structure and morphology of the f-NC were set apart by SEM, TEM, XRD, XPS, FTIR, Raman, and the electrochemical performance of the f-NC were set apart by CV, EIS and CC. We studied the electrochemical behaviour of 4-NP on the glassy carbon electrode modified with f-NC before and after pyrolysis treatment (denoted as f-NC1/GCE and f-NC2/GCE). In 0.2 M of H2SO4 solution, the f-NC2/GCE has an apparent electrocatalytic activity to reduce 4-NP. Under the optimal conditions, the reduction peak current of 4-NP varies linearly, with its concentration in the range of 0.2 to 100 mM, and the detection limit obtained as 0.02 mM (S/N = 3). In addition, the electrochemical sensor has high selectivity, and the stability is quite good. The preparation and application of the sensor to detect 4-NP in water samples produced satisfactory results, which provides a new method for the simple, sensitive and quantitative detection of 4-NP.


Assuntos
Carbono , Nitrogênio , Carbono/química , Eletrodos , Formamidas , Água , Técnicas Eletroquímicas/métodos
20.
Molecules ; 27(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335206

RESUMO

A short and economical synthesis of various 2-methylaminopyidine amides (MAPA) from 2-bromopyridine has been developed using the catalytic Goldberg reaction. The effective catalyst was formed in situ by the reaction of CuI and 1,10-phenanthroline in a 1/1 ratio with a final loading of 0.5-3 mol%. The process affords high yields and can accommodate multigram-scale reactions. A modification of this method provides a new preparation of 2-N-substituted aminopyridines from various secondary N-alkyl(aryl)formamides and 2-bromopyridine. The intermediate aminopyridine formamide is cleaved in situ through methanolysis or hydrolysis to give 2-alkyl(aryl)aminopyridines in high yields.


Assuntos
Amidas , Aminopiridinas , Catálise , Hidrólise , Indicadores e Reagentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA