Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 168(9): 2214-2226, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38898700

RESUMO

Studies of the pathophysiology of fragile X syndrome (FXS) have predominantly focused on synaptic and neuronal disruptions in the disease. However, emerging studies highlight the consistency of white matter abnormalities in the disorder. Recent investigations using animal models of FXS have suggested a role for the fragile X translational regulator 1 protein (FMRP) in the development and function of oligodendrocytes, the myelinating cells of the central nervous system. These studies are starting to uncover FMRP's involvement in the regulation of myelin-related genes, such as myelin basic protein, and its influence on the maturation and functionality of oligodendrocyte precursor cells and oligodendrocytes. Here, we consider evidence of white matter abnormalities in FXS, review our current understanding of FMRP's role in oligodendrocyte development and function, and highlight gaps in our knowledge of the pathogenic mechanisms that may contribute to white matter abnormalities in FXS. Addressing these gaps may help identify new therapeutic strategies aimed at enhancing outcomes for individuals affected by FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Bainha de Mielina , Oligodendroglia , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/genética , Animais , Humanos , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Substância Branca/patologia , Substância Branca/metabolismo
2.
Neurobiol Dis ; 194: 106486, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548140

RESUMO

Fragile X Syndrome (FXS) is a neurodevelopment disorder characterized by cognitive impairment, behavioral challenges, and synaptic abnormalities, with a genetic basis linked to a mutation in the FMR1 (Fragile X Messenger Ribonucleoprotein 1) gene that results in a deficiency or absence of its protein product, Fragile X Messenger Ribonucleoprotein (FMRP). In recent years, mass spectrometry (MS) - based proteomics has emerged as a powerful tool to uncover the complex molecular landscape underlying FXS. This review provides a comprehensive overview of the proteomics studies focused on FXS, summarizing key findings with an emphasis on dysregulated proteins associated with FXS. These proteins span a wide range of cellular functions including, but not limited to, synaptic plasticity, RNA translation, and mitochondrial function. The work conducted in these proteomic studies provides a more holistic understanding to the molecular pathways involved in FXS and considerably enhances our knowledge into the synaptic dysfunction seen in FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia , Síndrome do Cromossomo X Frágil/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteômica , Regulação da Expressão Gênica
3.
Hum Genomics ; 17(1): 60, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420260

RESUMO

This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Masculino , Humanos , Feminino , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/epidemiologia , Síndrome do Cromossomo X Frágil/genética , Transtorno do Espectro Autista/genética , Metilação de DNA/genética , Mosaicismo , Variação Biológica da População , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
4.
Mol Biol Rep ; 51(1): 480, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578387

RESUMO

Fragile X syndrome (FXS) is a genetic disorder characterized by mutation in the FMR1 gene, leading to the absence or reduced levels of fragile X Messenger Ribonucleoprotein 1 (FMRP). This results in neurodevelopmental deficits, including autistic spectrum conditions. On the other hand, Fragile X-associated tremor/ataxia syndrome (FXTAS) is a distinct disorder caused by the premutation in the FMR1 gene. FXTAS is associated with elevated levels of FMR1 mRNA, leading to neurodegenerative manifestations such as tremors and ataxia.Mounting evidence suggests a link between both syndromes and mitochondrial dysfunction (MDF). In this minireview, we critically examine the intricate relationship between FXS, FXTAS, and MDF, focusing on potential therapeutic avenues to counteract or mitigate their adverse effects. Specifically, we explore the role of mitochondrial cofactors and antioxidants, with a particular emphasis on alpha-lipoic acid (ALA), carnitine (CARN) and Coenzyme Q10 (CoQ10). Findings from this review will contribute to a deeper understanding of these disorders and foster novel therapeutic strategies to enhance patient outcomes.


Assuntos
Síndrome do Cromossomo X Frágil , Doenças Mitocondriais , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Tremor/tratamento farmacológico , Tremor/genética , Antioxidantes/uso terapêutico , Ataxia/tratamento farmacológico , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética
5.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834018

RESUMO

A remarkable feature of the brain is its sexual dimorphism. Sexual dimorphism in brain structure and function is associated with clinical implications documented previously in healthy individuals but also in those who suffer from various brain disorders. Sex-based differences concerning some features such as the risk, prevalence, age of onset, and symptomatology have been confirmed in a range of neurological and neuropsychiatric diseases. The mechanisms responsible for the establishment of sex-based differences between men and women are not fully understood. The present paper provides up-to-date data on sex-related dissimilarities observed in brain disorders and highlights the most relevant features that differ between males and females. The topic is very important as the recognition of disparities between the sexes might allow for the identification of therapeutic targets and pharmacological approaches for intractable neurological and neuropsychiatric disorders.


Assuntos
Encefalopatias , Caracteres Sexuais , Humanos , Masculino , Feminino , Encéfalo
6.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502075

RESUMO

Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos , Animais , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos
7.
Trends Genet ; 33(10): 703-714, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28826631

RESUMO

Fragile X syndrome (FXS), a heritable intellectual and autism spectrum disorder (ASD), results from the loss of Fragile X mental retardation protein (FMRP). This neurodevelopmental disease state exhibits neural circuit hyperconnectivity and hyperexcitability. Canonically, FMRP functions as an mRNA-binding translation suppressor, but recent findings have enormously expanded its proposed roles. Although connections between burgeoning FMRP functions remain unknown, recent advances have extended understanding of its involvement in RNA, channel, and protein binding that modulate calcium signaling, activity-dependent critical period development, and the excitation-inhibition (E/I) neural circuitry balance. In this review, we contextualize 3 years of FXS model research. Future directions extrapolated from recent advances focus on discovering links between FMRP roles to determine whether FMRP has a multitude of unrelated functions or whether combinatorial mechanisms can explain its multifaceted existence.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos
8.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086711

RESUMO

Fragile X syndrome (FXS) is a leading single-gene cause of intellectual disability (ID) with autism features. This study analysed diagnostic and prognostic utility of the Fragile X-Related Epigenetic Element 2 DNA methylation (FREE2m) assessed by Methylation Specific-Quantitative Melt Analysis and the EpiTYPER system, in retrospectively retrieved newborn blood spots (NBS) and newly created dried blood spots (DBS) from 65 children with FXS (~2-17 years). A further 168 NBS from infants from the general population were used to establish control reference ranges, in both sexes. FREE2m analysis showed sensitivity and specificity approaching 100%. In FXS males, NBS FREE2m strongly correlated with intellectual functioning and autism features, however associations were not as strong for FXS females. Fragile X mental retardation 1 gene (FMR1) mRNA levels in blood were correlated with FREE2m in both NBS and DBS, for both sexes. In females, DNAm was significantly increased at birth with a decrease in childhood. The findings support the use of FREE2m analysis in newborns for screening, diagnostic and prognostic testing in FXS.


Assuntos
Transtorno Autístico/genética , Metilação de DNA/genética , Síndrome do Cromossomo X Frágil/genética , Deficiência Intelectual/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Epigênese Genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Neurobiol Dis ; 127: 53-64, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30771457

RESUMO

Recent work shows Fragile X Mental Retardation Protein (FMRP) drives the translation of very large proteins (>2000 aa) mediating neurodevelopment. Loss of function results in Fragile X syndrome (FXS), the leading heritable cause of intellectual disability (ID) and autism spectrum disorder (ASD). Using the Drosophila FXS disease model, we discover FMRP positively regulates the translation of the very large A-Kinase Anchor Protein (AKAP) Rugose (>3000 aa), homolog of ASD-associated human Neurobeachin (NBEA). In the central brain Mushroom Body (MB) circuit, where Protein Kinase A (PKA) signaling is necessary for learning/memory, FMRP loss reduces Rugose levels and targeted FMRP overexpression elevates Rugose levels. Using a new in vivo transgenic PKA activity reporter (PKA-SPARK), we find FMRP loss reduces PKA activity in MB Kenyon cells whereas FMRP overexpression elevates PKA activity. Consistently, loss of Rugose reduces PKA activity, but Rugose overexpression has no independent effect. A well-established PKA output is regulation of F-actin cytoskeleton dynamics. In the FXS disease model, F-actin is aberrantly accumulated in MB lobes and single MB Kenyon cells. Consistently, Rugose loss results in similar F-actin accumulation. Moreover, targeted FMRP, Rugose and PKA overexpression all result in increased F-actin accumulation in the MB circuit. These findings uncover a FMRP-Rugose-PKA mechanism regulating actin cytoskeleton. This study reveals a novel FMRP mechanism controlling neuronal PKA activity, and demonstrates a shared mechanistic connection between FXS and NBEA associated ASD disease states, with a common link to PKA and F-actin misregulation in brain neural circuits. SIGNIFICANCE STATEMENT: Autism spectrum disorder (ASD) arises from a wide array of genetic lesions, and it is therefore critical to identify common underlying molecular mechanisms. Here, we link two ASD states; Neurobeachin (NBEA) associated ASD and Fragile X syndrome (FXS), the most common inherited ASD. Using established Drosophila disease models, we find Fragile X Mental Retardation Protein (FMRP) positively regulates translation of NBEA homolog Rugose, consistent with a recent advance showing FMRP promotes translation of very large proteins associated with ASD. FXS exhibits reduced cAMP induction, a potent activator of PKA, and Rugose/NBEA is a PKA anchor. Consistently, we find brain PKA activity strikingly reduced in both ASD models. We discover this pathway regulation controls actin cytoskeleton dynamics in brain neural circuits.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Actinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteína do X Frágil da Deficiência Intelectual/genética , Corpos Pedunculados/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima
10.
Genet Med ; 20(12): 1627-1634, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29595813

RESUMO

PURPOSE: Developmental delay phenotypes have been associated with FMR1 premutation (PM: 55-200 CGG repeats) and "gray zone" (GZ: 45-54 CGG repeats) alleles. However, these associations have not been confirmed by larger studies to be useful in pediatric diagnostic or screening settings. METHODS: This study determined the prevalence of PM and GZ alleles in two independent cohorts of 19,076 pediatric referrals to developmental delay diagnostic testing through Victorian Clinical Genetics Service (cohort 1: N = 10,235; cohort 2: N = 8841), compared with two independent general population cohorts (newborn screening N = 1997; carrier screening by the Victorian Clinical Genetics Service prepair program N = 14,249). RESULTS: PM and GZ prevalence rates were not significantly increased (p > 0.05) in either developmental delay cohort (male PM: 0.12-0.22%; female PM: 0.26-0.33%; male GZ: 0.68-0.69%; female GZ: 1.59-2.13-%) compared with general population cohorts (male PM: 0.20%; female PM: 0.27-0.82%; male GZ: 0.79%; female GZ: 1.43-2.51%). Furthermore, CGG size distributions were comparable across datasets, with each having a modal value of 29 or 30 and ~1/3 females and ~1/5 males having at least one allele with ≤26 CGG repeats. CONCLUSION: These data do not support the causative link between PM and GZ expansions and developmental-delay phenotypes in pediatric settings.


Assuntos
Deficiências do Desenvolvimento/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos/genética , Adolescente , Alelos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Síndrome do Cromossomo X Frágil/fisiopatologia , Testes Genéticos , Genética Populacional , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Caracteres Sexuais
11.
J Neurosci ; 36(45): 11418-11426, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27911744

RESUMO

RNA-binding proteins (RBPs) acting at various steps in the post-transcriptional regulation of gene expression play crucial roles in neuronal development and synaptic plasticity. Genetic mutations affecting several RBPs and associated factors lead to diverse neurological symptoms, as characterized by neurodevelopmental and neuropsychiatric disorders, neuromuscular and neurodegenerative diseases, and can often be multisystemic diseases. We will highlight the physiological roles of a few specific proteins in molecular mechanisms of cytoplasmic mRNA regulation, and how these processes are dysregulated in genetic disease. Recent advances in computational biology and genomewide analysis, integrated with diverse experimental approaches and model systems, have provided new insights into conserved mechanisms and the shared pathobiology of mRNA dysregulation in disease. Progress has been made to understand the pathobiology of disease mechanisms for myotonic dystrophy, spinal muscular atrophy, and fragile X syndrome, with broader implications for other RBP-associated genetic neurological diseases. This gained knowledge of underlying basic mechanisms has paved the way to the development of therapeutic strategies targeting disease mechanisms.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Doenças do Sistema Nervoso/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Animais , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Humanos
12.
Hum Reprod ; 32(7): 1508-1511, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472405

RESUMO

STUDY QUESTION: What is the association between the ovarian response and the number of CGG repeats among full mutation and premutation carriers of fragile X (FMR1), undergoing controlled ovarian hyperstimulation (COH) for PGD? SUMMARY ANSWER: Ovarian response was normal in full mutation patients but decreased in premutation carriers, although the number of repeats was not statistically significantly associated with the number of oocytes retrieved. WHAT IS KNOWN ALREADY: There is inconsistent data in the literature regarding ovarian response in FMR1 carriers. Studies exploring the ovarian response of full mutation patients are lacking. STUDY DESIGN, SIZE, DURATION: Retrospective study, a university affiliated tertiary hospital, IVF unit, PGD referral center. PARTICIPANTS/MATERIALS, SETTING, METHODS: We examined the medical records of all women undergoing fresh IVF-PGD cycles due to fragile X. Data recorded included demography, duration of stimulation, amount of gonadotropins administered, number of dominant follicles, maximal E2 levels and number of oocytes retrieved. Data were analyzed using univariate and multivariate mixed models. P-values <0.05 were considered significant. Data were collected from the medical records of 21 patients with a full mutation on the FMR1 gene and 51 premutation carriers. Overall 309 fresh cycles were analyzed. MAIN RESULTS AND THE ROLE OF CHANCE: Premutation carriers displayed reduced ovarian response, as demonstrated by fewer oocytes retrieved. In contrast, full mutation patients had a normal response. Comparison of premutation carriers and full mutation patients showed: mean oocytes retrieved per cycle (8.4 ± 1.1 versus 14.1 ± 1.7, P = 0.005), lower levels of estradiol (E2; 1756 ± 177, versus 2928 ± 263, P = 0.0004), respectively. There was no significant difference between premutation carriers and full mutation patients in regard to fertilization rate, cleavage rate or biopsy rate. No correlation was found between the number of repeats in the premutation carriers and the number of oocytes retrieved or E2 levels. Age and the type of protocol were the only factors found to be in correlation with the number of the oocyte retrieved (P = 0.037, and P = 0.003, respectively) among the premutation carriers. Similarly, no association was found between the number of repeats and the fertilization rate, cleavage rate or biopsy rate among premutation carriers. LIMITATIONS, REASONS FOR CAUTION: We had a relatively low number of premutation carriers with >100 repeats, which made it challenging to draw a firm conclusions from this group. WIDER IMPLICATIONS OF THE FINDINGS: Physicians must address the increased risk for reduced ovarian response and  primary ovarian insufficiency (POI) among carriers and consider surveillance of ovarian reserve markers. The last, might expedite family plans completion or fertility preservation. STUDY FUNDING/COMPETING INTEREST(S): None.


Assuntos
Síndrome do Cromossomo X Frágil/fisiopatologia , Gonadotropinas/uso terapêutico , Heterozigoto , Infertilidade Feminina/terapia , Ovário/efeitos dos fármacos , Indução da Ovulação , Insuficiência Ovariana Primária/fisiopatologia , Repetições de Trinucleotídeos , Adulto , Estudos de Coortes , Feminino , Fármacos para a Fertilidade Feminina/uso terapêutico , Fertilização in vitro , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Aconselhamento Genético , Humanos , Infertilidade Feminina/etiologia , Mutação , Recuperação de Oócitos , Reserva Ovariana , Ovário/fisiopatologia , Ovulação/efeitos dos fármacos , Diagnóstico Pré-Implantação , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/genética , Encaminhamento e Consulta , Estudos Retrospectivos , Centros de Atenção Terciária
13.
Int J Mol Sci ; 18(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632163

RESUMO

Fragile X syndrome (FXS) is the most common monogenic form of autism spectrum disorder (ASD). FXS with ASD results from the loss of fragile X mental retardation (fmr) gene products, including fragile X mental retardation protein (FMRP), which triggers a variety of physiological and behavioral abnormalities. This disorder is also correlated with clock components underlying behavioral circadian rhythms and, thus, a mutation of the fmr gene can result in disturbed sleep patterns and altered circadian rhythms. As a result, FXS with ASD individuals may experience dysregulation of melatonin synthesis and alterations in melatonin-dependent signaling pathways that can impair vigilance, learning, and memory abilities, and may be linked to autistic behaviors such as abnormal anxiety responses. Although a wide variety of possible causes, symptoms, and clinical features of ASD have been studied, the correlation between altered circadian rhythms and FXS with ASD has yet to be extensively investigated. Recent studies have highlighted the impact of melatonin on the nervous, immune, and metabolic systems and, even though the utilization of melatonin for sleep dysfunctions in ASD has been considered in clinical research, future studies should investigate its neuroprotective role during the developmental period in individuals with ASD. Thus, the present review focuses on the regulatory circuits involved in the dysregulation of melatonin and disruptions in the circadian system in individuals with FXS with ASD. Additionally, the neuroprotective effects of melatonin intervention therapies, including improvements in neuroplasticity and physical capabilities, are discussed and the molecular mechanisms underlying this disorder are reviewed. The authors suggest that melatonin may be a useful treatment for FXS with ASD in terms of alleviating the adverse effects of variations in the circadian rhythm.


Assuntos
Transtorno do Espectro Autista/complicações , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Melatonina/uso terapêutico , Ansiedade , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Humanos , Deficiência Intelectual , Aprendizagem , Melatonina/metabolismo , Melatonina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Fatores de Risco , Convulsões/tratamento farmacológico , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/tratamento farmacológico
14.
ACS Chem Neurosci ; 15(2): 230-235, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38133821

RESUMO

Abnormal expansion of trinucleotide CGG repeats is responsible for Fragile X syndrome. AGG interruptions in CGG repeat tracts were found in most healthy individuals, suggesting a crucial role in preventing disease-prone repeat expansion. Previous biophysics studies emphasize a difference in the secondary structure affected by AGG interruptions. However, the mechanism of how AGG interruptions impede repeat expansion remains elusive. We utilized single-molecule fluorescence resonance energy transfer spectroscopy to investigate the structural dynamics of CGG repeats and their AGG-interrupted variants. Tandem CGG repeats fold into a stem-loop hairpin structure with the capability to undergo a conformational rearrangement to modulate the length of the overhang. However, this conformational rearrangement is much more retarded when two AGG interruptions are present. Considering the significance of hairpin slippage in repeat expansion, we present a molecular basis suggesting that the internal loop created by two AGG interruptions acts as a barrier, obstructing the hairpin slippage reconfiguration. This impediment potentially plays a crucial role in curbing abnormal expansion, thereby contributing to the genomic stability.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Repetições de Trinucleotídeos/genética , Alelos
15.
Front Synaptic Neurosci ; 15: 1135479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035256

RESUMO

Fragile X Syndrome (FXS) is the best-known form of inherited intellectual disability caused by the loss-of-function mutation in a single gene. The FMR1 gene mutation abolishes the expression of Fragile X Messenger Ribonucleoprotein (FMRP), which regulates the expression of many synaptic proteins. Cortical pyramidal neurons in postmortem FXS patient brains show abnormally high density and immature morphology of dendritic spines; this phenotype is replicated in the Fmr1 knockout (KO) mouse. While FMRP is well-positioned in the dendrite to regulate synaptic plasticity, intriguing in vitro and in vivo data show that wild type neurons embedded in a network of Fmr1 KO neurons or glia exhibit spine abnormalities just as neurons in Fmr1 global KO mice. This raises the question: does FMRP regulate synaptic morphology and dynamics in a cell-autonomous manner, or do the synaptic phenotypes arise from abnormal pre-synaptic inputs? To address this question, we combined viral and mouse genetic approaches to delete FMRP from a very sparse subset of cortical layer 5 pyramidal neurons (L5 PyrNs) either during early postnatal development or in adulthood. We then followed the structural dynamics of dendritic spines on these Fmr1 KO neurons by in vivo two-photon microscopy. We found that, while L5 PyrNs in adult Fmr1 global KO mice have abnormally high density of thin spines, single-cell Fmr1 KO in adulthood does not affect spine density, morphology, or dynamics. On the contrary, neurons with neonatal FMRP deletion have normal spine density but elevated spine formation at 1 month of age, replicating the phenotype in Fmr1 global KO mice. Interestingly, these neurons exhibit elevated thin spine density, but normal total spine density, by adulthood. Together, our data reveal cell-autonomous FMRP regulation of cortical synaptic dynamics during adolescence, but spine defects in adulthood also implicate non-cell-autonomous factors.

16.
Front Genet ; 13: 866021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110216

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X syndrome (FXS) are primary examples of fragile X-related disorders (FXDs) caused by abnormal expansion of CGG repeats above a certain threshold in the 5'-untranslated region of the fragile X mental retardation (FMR1) gene. Both diseases have distinct clinical manifestations and molecular pathogenesis. FXTAS is a late-adult-onset neurodegenerative disorder caused by a premutation (PM) allele (CGG expansion of 55-200 repeats), resulting in FMR1 gene hyperexpression. On the other hand, FXS is a neurodevelopmental disorder that results from a full mutation (FM) allele (CGG expansions of ≥200 repeats) leading to heterochromatization and transcriptional silencing of the FMR1 gene. The main challenge is to determine how CGG repeat expansion affects the fundamentally distinct nature of FMR1 expression in FM and PM ranges. Abnormal CGG repeat expansions form a variety of non-canonical DNA and RNA structures that can disrupt various cellular processes and cause distinct effects in PM and FM alleles. Here, we review these structures and how they are related to underlying mutations and disease pathology in FXS and FXTAS. Finally, as new CGG expansions within the genome have been identified, it will be interesting to determine their implications in disease pathology and treatment.

17.
Front Neuroimaging ; 1: 903191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555160

RESUMO

Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS) are neurodevelopmental disorders with similar clinical and behavior symptoms and partially overlapping and yet distinct neurobiological origins. It is therefore important to distinguish these disorders from each other as well as from typical development. Examining disruptions in functional connectivity often characteristic of neurodevelopment disorders may be one approach to doing so. This review focuses on EEG and MEG studies of resting state in ASD and FXS, a neuroimaging paradigm frequently used with difficult-to-test populations. It compares the brain regions and frequency bands that appear to be impacted, either in power or connectivity, in each disorder; as well as how these abnormalities may result in the observed symptoms. It argues that the findings in these studies are inconsistent and do not fit neatly into existing models of ASD and FXS, then highlights the gaps in the literature and recommends future avenues of inquiry.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36688938

RESUMO

Our understanding of the molecular functions of the nucleocytoplasmic FMRP protein, which, if absent or dysfunctional, causes the fragile X syndrome (FXS), largely revolves around its involvement in protein translation regulation in the cytoplasm. Recent studies have begun honing in on the nuclear and genomic functions of FMRP. We have shown that during DNA replication stress, cells derived from FXS patients sustain increased level of R-loop formation and DNA double strand breaks. Here, we describe a transcriptomic analysis of these cells in order to identify those genes most impacted by the loss of FMRP with and without replication stress. We show that FMRP loss causes transcriptomic changes previously reported in untreated conditions. Importantly, we also show that replication stress, in addition to causing excess of DSB, results in down-regulation of transcription in virtually all DNA repair pathways. This finding suggests that despite normal DNA damage response, FXS patient-derived cells experience R-loop-induced DNA breakage as well as impaired DNA repair functions, effectively a double jeopardy. We suggest that it is imperative to deepen the understanding of the nuclear functions, particularly a genome protective function, of FMRP, which will lead to discoveries of novel therapeutic interventions for the FXS.

19.
Cells ; 11(6)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35326495

RESUMO

The European Fragile X Network met in Wroclaw, Poland, November 2021, and agreed to work towards the eradication of the word "retardation" in regard to the naming of the fragile X gene (FRAXA) and protein (FMRP). There are further genes which have "retardation" or abbreviations for "retardation" in their names or full designations, including FMR1, FMR2, FXR1, FXR2, NUFIP1, AFF1, CYFIP1, etc. "Retardation" was commonly used as a term in years past, but now any reference, even in an abbreviation, is offensive. This article discusses the stigmatisation associated with "retardation", which leads to discrimination; the inaccuracy of using "retardation" in these designations; and the breadth of fragile X syndrome being beyond that of neurodiversity. A more inclusive terminology is called for, one which ceases to use any reference to "retardation". Precedents for offensive gene names being altered is set out. The proposal is to approach the HGNC (HUGO [Human Genome Organisation] Gene Nomenclature Committee) for new terminology to be enacted. Ideas from other researchers in the field are welcomed.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Humanos , Proteínas Nucleares/metabolismo , Polônia , Proteínas de Ligação a RNA
20.
Nutrients ; 13(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445048

RESUMO

This study evaluates the prevalence of autistic behaviors in fragile X syndrome as a function of infant diet. Retrospective survey data from the Fragile X Syndrome Nutrition Study, which included data on infant feeding and caregiver-reported developmental milestones for 190 children with fragile X syndrome enrolled in the Fragile X Online Registry with Accessible Database (FORWARD), were analyzed. Exploratory, sex-specific associations were found linking the use of soy-based infant formula with worse autistic behaviors related to language in females and self-injurious behavior in males. These findings prompt prospective evaluation of the effects of soy-based infant formula on disease comorbidities in fragile X syndrome, a rare disorder for which newborn screening could be implemented if there was an intervention. Gastrointestinal problems were the most common reason cited for switching to soy-based infant formula. Thus, these findings also support the study of early gastrointestinal problems in fragile X syndrome, which may underly the development and severity of disease comorbidities. In conjunction with comorbidity data from the previous analyses of the Fragile X Syndrome Nutrition Study, the findings indicate that premutation fragile X mothers should be encouraged to breastfeed.


Assuntos
Transtorno do Espectro Autista/epidemiologia , Comportamento Alimentar/psicologia , Síndrome do Cromossomo X Frágil/psicologia , Fórmulas Infantis/estatística & dados numéricos , Fenômenos Fisiológicos da Nutrição do Lactente/genética , Adolescente , Transtorno do Espectro Autista/genética , Comorbidade , Feminino , Síndrome do Cromossomo X Frágil/fisiopatologia , Gastroenteropatias/epidemiologia , Gastroenteropatias/genética , Humanos , Lactente , Masculino , Inquéritos Nutricionais , Pais , Prevalência , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA