Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37732510

RESUMO

Locomotion in benthic invertebrates can strongly affect habitat selection and ecosystem nutrient cycling. In the case of freshwater mussels, the drivers of locomotion are largely unresolved. Our aim was to assess the influence of light presence and intensity on the locomotory behaviour of freshwater mussels in controlled laboratory experiments. The species investigated in our study were Anodonta anatina and Unio pictorum, two widely distributed mussels in European lentic and lotic inland waters. At low algal concentrations, known to be associated with more frequent locomotory activities, we found that both species moved primarily in the absence of light (72.7% of all movements across experiments). However, the movements of both species were directed towards the light source, resembling a net-positive 'phototactic' response but in the absence of light. The distance to the light source, which was negatively correlated to light intensity, had a positive effect on the distance covered in locomotory activities by A. anatina but not by U. pictorum. Intraspecific variation in shell size had no impact on movement distance, indicating that the energetic costs of movement were not a limiting factor. We suggest that the observed movement towards brighter locations helps to enhance food quantity and quality, whilst movement in darkness mitigates predation risks.


Assuntos
Bivalves , Unionidae , Animais , Ecossistema , Locomoção , Alimentos
2.
J Appl Toxicol ; 43(9): 1393-1405, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37055923

RESUMO

Produced water (PW) generated by oil companies is a highly impacting waste that contains chemicals such as metals and organic and inorganic compounds. Given its polluting potential, PW requires effective treatment before being discharged into the environment. Conventional treatments have limited efficiency in removing PW toxicity, so alternative approaches must be developed and standardized. In this context, treatment with adsorbent materials like magnetized vermiculite (VMT-mag) is highlighted. This work aimed to evaluate the efficiency of treatment with VMT-mag in reducing PW toxicity to aquatic biota. For this purpose, three aquatic species (the midge Chironomus riparius, the planarian Girardia tigrina, and the crustacean Daphnia magna) were exposed to untreated PW and to PW treated with VMT-mag at laboratory conditions. The assessed endpoints included mortality, growth, emergence, and developmental time of C. riparius; mortality, locomotion, feeding, and head regeneration of G. tigrina; and intrinsic population growth rate (r) and reproductive output of D. magna. The results showed that all the species exposed to raw PW were impaired: C. riparius had delayed development, G. tigrina had reduced locomotor activity and delayed head regeneration, and D. magna had reduced reproduction and delayed intrinsic population growth rate (r). Most of the analyzed parameters showed that treatment with VMT-mag diminished PW toxicity. Therefore, using VMT-mag to treat PW may be the key to reducing the PW effects on aquatic organisms.


Assuntos
Silicatos de Alumínio , Indústria de Petróleo e Gás , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Animais , Silicatos de Alumínio/química , Organismos Aquáticos , Daphnia , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Testes de Toxicidade
3.
Environ Res ; 213: 113641, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716817

RESUMO

Several studies have shown that ingestion of microplastics causes adverse effects in aquatic organisms, including sediment-dwelling invertebrates. Most studies focus on evaluating the effects of plastic particles alone without testing the mediating effects of different natural stressors and thus lacking realistic exposure scenarios. The present study addresses the interactive effects of exposure to polyethylene microplastics (PE-MPs; 2.5 g/kg) in the midge Chironomus riparius life history traits under different temperatures (15, 20 and 25 °C), a salinity gradient (0, 1 and 3 g L-1 sodium chloride - NaCl) and different levels of food (0.5, 0.25 and 0.125 mg macerated fish food larva-1day-1). By the analyses of linear models and independent action models applied to different life-history traits, such as larval growth, development time and imagoes body weight, the present work reveals that under temperatures lower than 20 °C or severe food shortage (<0.25 mg macerated fish food larva-1day-1), microplastics' effects can be stronger than those observed at standard toxicity test conditions (20 °C and 0.5 mg food larva-1day-1). Additionally, we also found that, in general, toxicity induced by PE-MPs to C. riparius larvae was reduced under warmer temperature (25 °C) and salinity. As observed, MPs toxicity can be mediated by natural stressors, which underlines the importance of co-exposure studies. In this sense, these results contribute to a more accurate risk assessment of microplastics. Despite the complex interactions between microplastics and natural factors here tested, were not found evidence that the deleterious effects of PE-MPs on C. riparius life cycle history are aggravated under increased temperature, food shortage, or salinisation of freshwaters.


Assuntos
Chironomidae , Características de História de Vida , Poluentes Químicos da Água , Animais , Larva , Microplásticos , Plásticos/toxicidade , Polietileno/toxicidade , Poluentes Químicos da Água/análise
4.
Glob Chang Biol ; 26(2): 364-379, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31553112

RESUMO

The appeal of trait-based approaches for assessing environmental vulnerabilities arises from the potential insight they provide into the mechanisms underlying the changes in populations and community structure. Traits can provide ecologically based explanations for observed responses to environmental changes, along with predictive power gained by developing relationships between traits and environmental variables. Despite these potential benefits, questions remain regarding the utility and limitations of these approaches, which we explore focusing on the following questions: (a) How reliable are predictions of biotic responses to changing conditions based on single trait-environment relationships? (b) What factors constrain detection of single trait-environment relationships, and how can they be addressed? (c) Can we use information on meta-community processes to reveal conditions when assumptions underlying trait-based studies are not met? We address these questions by reviewing published literature on aquatic invertebrate communities from stream ecosystems. Our findings help to define factors that influence the successful application of trait-based approaches in addressing the complex, multifaceted effects of changing climate conditions on hydrologic and thermal regimes in stream ecosystems. Key conclusions are that observed relationships between traits and environmental stressors are often inconsistent with predefined hypotheses derived from current trait-based thinking, particularly related to single trait-environment relationships. Factors that can influence findings of trait-based assessments include intercorrelations of among traits and among environmental variables, spatial scale, strength of biotic interactions, intensity of habitat disturbance, degree of abiotic stress, and methods of trait characterization. Several recommendations are made for practice and further study to address these concerns, including using phylogenetic relatedness to address intercorrelation. With proper consideration of these issues, trait-based assessment of organismal vulnerability to environmental changes can become a useful tool to conserve threatened populations into the future.


Assuntos
Ecossistema , Invertebrados , Animais , Clima , Água Doce , Filogenia
5.
Oecologia ; 194(4): 709-722, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33175251

RESUMO

Barriers preventing species from dispersing to a location can have a major influence on how communities assemble. Dispersal success may also depend on whether dispersers have to colonise an established community or a largely depauperate location. In freshwater systems, dams and weirs have fragmented rivers, potentially limiting dispersal of biota along rivers. Decommissioning aqueducts on two weirs, each within a tributary of different regulated rivers, delivered flow to previously dry riverbeds and additional flows to the main stem, regulated rivers further downstream. This provided an opportunity to test how removal of dispersal constraints affected community assembly in new habitats and whether changed dispersal can alter existing communities. The results were very similar for the two systems. Even with dispersal constrained via reduced drift rates, the new communities in the newly formed habitat in tributaries rapidly resembled unimpacted reference communities that were the source of colonists. For established communities (regulated rivers), greater flow increased the densities of filter feeders but this was due to greater areas of fast-flowing habitat (a change in environmental constraints) rather than higher dispersal rates. Our study illustrates that communities can quickly re-assemble when natural channels that have been dry for decades are re-wetted by flows that deliver dispersers from intact locations upstream. Nevertheless, boosting flows and concomitant densities of dispersers had no strong effects on existing communities. Instead, increased discharges effected a reduction in environmental constraints, which altered trophic structure. Thus, increases in discharge and dispersal produced different outcomes in new versus established communities.


Assuntos
Ecossistema , Água , Biota , Rios
6.
Ecotoxicol Environ Saf ; 191: 110172, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978762

RESUMO

The majority of pharmaceuticals and personal health-care products are ionisable molecules at environmentally relevant pHs. The ionization state of these molecules in freshwater ecosystems may influence their toxicity potential to aquatic organisms. In this study we evaluated to what extent varying pH conditions may influence the toxicity of the antibiotic enrofloxacin (ENR) and the personal care product ingredient triclosan (TCS) to three freshwater invertebrates: the ephemeropteran Cloeon dipterum, the amphipod Gammarus pulex and the snail Physella acuta. Acute toxicity tests were performed by adjusting the water pH to four nominal levels: 6.5, 7.0, 7.5 and 8.0. Furthermore, we tested the efficiency of three toxicity models with different assumptions regarding the uptake and toxicity potential of ionisable chemicals with the experimental data produced in this study. The results of the toxicity tests indicate that pH fluctuations of only 1.5 units can influence EC50-48 h and EC50-96 h values by a factor of 1.4-2.7. Overall, the model that only focuses on the fraction of neutral chemical and the model that takes into account ion-trapping of the test molecules showed the best performance, although present limitations to perform risk assessments across a wide pH range (i.e., well above or below the substance pKa). Under such conditions, the model that takes into account the toxicity of the neutral and the ionized chemical form is preferred. The results of this study show that pH fluctuations can have a considerable influence on toxicity thresholds, and should therefore be taken into account for the risk assessment of ionisable pharmaceuticals and personal health-care products. Based on our results, an assessment factor of at least three should be used to account for toxicity differences between standard laboratory and field pH conditions. The models evaluated here can be used to perform refined risk assessments by taking into account the influence of temporal and spatial pH fluctuations on aquatic toxicity.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cosméticos/toxicidade , Água Doce/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Cosméticos/química , Ecossistema , Enrofloxacina/química , Enrofloxacina/toxicidade , Concentração de Íons de Hidrogênio , Modelos Teóricos , Medição de Risco , Caramujos/efeitos dos fármacos , Testes de Toxicidade , Triclosan/química , Triclosan/toxicidade , Poluentes Químicos da Água/química
7.
Environ Res ; 176: 108565, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31280028

RESUMO

Emerging pollutants occur in complex mixtures in rivers and have the potential to interact with freshwater organisms. The chronic effects of nominal exposure to 3 µg/L of fullerenes (C60) and 1 µg/L of triclosan (TCS) alone and in a binary mixture, were evaluated using the freshwater snail Radix balthica. Pollutants accumulation, reproductive output and feeding behavior were selected as sublethal endpoints. After 21 days of exposure, we did not observe interactive effects between TCS and C60 on the studied endpoints, except for the accumulation of C60 in R. balthica in TCS + C60 treatment, which was lower than when the fullerenes were alone. Neither TCS nor C60 caused significant effects on reproduction, expressed as number of eggs per individual, but an increase in the clutch size was observed in treatments with TCS at the third week of exposure, independently of the presence of C60 (16.15 ± 1.67 and 18.9 ± 4.01 eggs/egg mass in TCS and TCS + C60 treatments, respectively, vs. 13.17 ±â€¯4.01 in control). The presence of C60 significantly enhanced the grazing activity of R. balthica during the first seven days (4.95 ±â€¯1.35 and 3.91 ±â€¯0.59% of the area grazed per individual in C60 and TCS + C60 treatments, respectively, vs 2.6 ±â€¯0.39% in control). The accumulation of TCS was quite similar in treatments where this pollutant was present (BAF ≈ 1007 L/kg d.w.); however, the accumulation of C60 was higher when the nanoparticles were alone (BAF = 254.88 L/kg d.w.) than when it was in the binary mixture (BAF = 7.79 L/kg d.w). Overall, although TCS has been listed as an endocrine disrupter compound, no significant effects on reproduction were observed in the assayed conditions. Regarding C60, the limited effects on feeding activity and the low BAF obtained in this experiment indicate that fullerenes do not have ecological consequences of relevance at the studied environmental concentrations in freshwater snails.


Assuntos
Fulerenos/toxicidade , Caramujos/fisiologia , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Água Doce , Reprodução/efeitos dos fármacos , Testes de Toxicidade
8.
Ecology ; 99(6): 1370-1381, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604060

RESUMO

The majority of food web studies are based on connectivity, top-down impacts, bottom-up flows, or trophic position (TP), and ecologists have argued for decades which is best. Rarely have any two been considered simultaneously. The present study uses a procedure that integrates the last three approaches based on taxon-specific secondary production and gut analyses. Ingestion flows are quantified to create a flow web and the same data are used to quantify TP for all taxa. An individual predator's impacts also are estimated using the ratio of its ingestion (I) of each prey to prey production (P) to create an I/P web. This procedure was applied to 41 invertebrate taxa inhabiting submerged woody habitat in a southeastern U.S. river. A complex flow web starting with five basal food resources had 462 flows >1 mg·m-2 ·yr-1 , providing far more information than a connectivity web. Total flows from basal resources to primary consumers/omnivores were dominated by allochthonous amorphous detritus and ranged from 1 to >50,000 mg·m-2 ·yr-1 . Most predator-prey flows were much lower (<50 mg·m-2 ·yr-1 ), but some were >1,000  mg·m-2 ·yr-1 . The I/P web showed that 83% of individual predator impacts were weak (<10%), whereas total predator impacts were often strong (e.g., 35% of prey sustained an impact >90%). Quantitative estimates of TP ranged from 2 to 3.7, contrasting sharply with seven integer-based trophic levels based on longest feeding chain. Traditional omnivores (TP = 2.4-2.9) played an important role by consuming more prey and exerting higher impacts on primary consumers than strict predators (TP ≥ 3). This study illustrates how simultaneous quantification of flow pathways, predator impacts, and TP together provide an integrated characterization of natural food webs.


Assuntos
Cadeia Alimentar , Rios , Ecossistema
9.
J Sep Sci ; 41(19): 3706-3715, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30094966

RESUMO

A simple sample preparation method based on a modified liquid-phase extraction approach to extract selected pharmaceuticals and personal care products from freshwater organisms is described. Extracted samples were analysed using liquid chromatography with Q-Exactive plus hybrid quadrupole Orbitrap mass spectrometry, using 2.6 µm C18 media. A 0.1% v/v acetic acid/acetonitrile mobile phase was applied over a 20 min gradient. Method detection limits in full scan mode were ca. 0.04-2.38 ng of analyte per g of sample. Linearity ranged from 0.9750 to 0.9996 over the calibration range of 0.01-100 µg/L; MS mass accuracy was <2 ppm for most analytes. This method was applied to quantify six pharmaceuticals and personal care products in seven invertebrate samples. For tandem mass spectrometry analysis, selection of precursor ions was performed for each pharmaceutical, with Mass Frontier software illustrating the fragmentation mechanism. Effects of collision energy on intensities of ions was further investigated. The tandem mass spectrometry condition resulting in the highest signal of respective selected product ion was selected to confirm each pharmaceutical, which was initially observed in the full scan mode. Results indicate that pharmaceuticals and personal care products found to be present in water-ways, may be incorporated into organisms that live in the environment of affected water streams.


Assuntos
Água Doce/química , Poluentes Químicos da Água/análise , Animais , Cromatografia Líquida de Alta Pressão , Invertebrados , Espectrometria de Massas em Tandem
10.
Ecotoxicol Environ Saf ; 130: 19-28, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27062342

RESUMO

The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1µM, but not 10µM, ß-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100µM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities.


Assuntos
Ensaios Enzimáticos , Planárias/efeitos dos fármacos , Planárias/enzimologia , O-Dealquilase 7-Alcoxicumarina/metabolismo , Animais , Biotransformação , Catecol O-Metiltransferase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Monitoramento Ambiental/métodos , Água Doce , Modelos Biológicos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Xenobióticos/metabolismo , Xenobióticos/toxicidade , beta-Naftoflavona/metabolismo
11.
Bull Environ Contam Toxicol ; 96(4): 438-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26693935

RESUMO

Esfenvalerate is a neurotoxic pyrethroid insecticide widely used for agricultural and residential purposes and is considered toxic to nontarget organisms such as fish and aquatic invertebrates. In this study, we evaluated the toxicity of esfenvalerate on the aquatic oligochaete Lumbriculus variegatus. In the acute test, organisms showed visible signs of stress but no LC50 value could be determined. In the 28-day chronic test, a significant decrease in reproduction was observed with a NOEC value of 0.25 µg/kg and a LOEC value of 2.34 µg/kg. As for biomass per worm, a significant decrease was also observed with a NOEC value of 2.34 µg/kg and a LOEC value of 36.36 µg/kg. Reproductive impairment and reductions in biomass of L. variegatus exposed to environmentally realistic concentrations of esfenvalerate observed in laboratory tests suggests potential deleterious effects of this pyrethroid on oligochaete natural populations.


Assuntos
Inseticidas/toxicidade , Nitrilas/toxicidade , Oligoquetos/efeitos dos fármacos , Piretrinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Monitoramento Ambiental , Nível de Efeito Adverso não Observado , Oligoquetos/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
12.
Ecotoxicol Environ Saf ; 118: 37-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25899672

RESUMO

The input of metals into freshwater ecosystems from natural and anthropogenic sources impairs water quality and can lead to biological alterations in organisms and plants, compromising the structure and the function of these ecosystems. Biochemical biomarkers may provide early detection of exposure to contaminants and indicate potential effects at higher levels of biological organisation. The effects of 48h exposures to copper and zinc on Atyaephyra desmarestii and Echinogammarus meridionalis were evaluated with a battery of biomarkers of oxidative stress and the determination of ingestion rates. The results showed different responses of biomarkers between species and each metal. Copper inhibited the enzymatic defence system of both species without signs of oxidative damage. Zinc induced the defence system in E. meriodionalis with no evidence of oxidative damage. However, in A. desmarestii exposed to zinc was observed oxidative damage. In addition, only zinc had significantly reduced the ingestion rate and just for E. meridionalis. The value of the integrated biomarkers response increased with concentration of both metals, which indicates that might be a valuable tool to interpretation of data as a whole, as different parameters have different weight according to type of exposure.


Assuntos
Anfípodes/efeitos dos fármacos , Cobre/toxicidade , Decápodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Anfípodes/metabolismo , Animais , Biomarcadores/metabolismo , Decápodes/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
13.
Ecotoxicol Environ Saf ; 108: 1-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038265

RESUMO

The widespread contamination and persistence of the herbicide atrazine residues in the environment resulted in the exposure of non-target organisms. The present study was undertaken to investigate the effect of atrazine in the response of oxidative stress biomarkers in the freshwater shrimp Palaemonetes argentinus and the protective effect of vitamin-E against atrazine-induced toxicity. Therefore, two batches of P. argentinus were fed for 21 days with a commercial food enriched in proteins (D1) or with D2, composed of D1 enriched with vitamin-E (6.8 and 16.0mg% of vitamin-E, respectively). Subsequently, half of the individuals of each group were exposed to atrazine (0.4mgL(-1)) for 24h and the others remained as controls. Atrazine promoted oxidative stress response in P. argentinus fed with D1 as indicated by enhanced H2O2 content and induction of superoxide dismutase, glutathione-S-transferases and glutathione reductase. This antioxidant activity would prevent the increment of thiobarbituric acid reactive substances in the shrimp tissues. P. argentinus fed with D2 reversed the response of the biomarkers measured. However, the activation of antioxidants response had an energetic cost, which was revealed by a decrease in lipids storage in shrimps. These results show the modulatory effect of vit-E on oxidative stress and its potential use as an effective antioxidant to be applied in chemoprotection strategies during aquaculture.


Assuntos
Antioxidantes/farmacologia , Atrazina/toxicidade , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Palaemonidae/efeitos dos fármacos , Vitamina E/farmacologia , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Dieta , Metabolismo Energético , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxirredução , Palaemonidae/crescimento & desenvolvimento , Palaemonidae/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vitamina E/metabolismo
14.
Environ Pollut ; 357: 124459, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942275

RESUMO

Imidacloprid is a neonicotinoid insecticide that has received particular attention due to its widespread use and potential adverse effects for aquatic and terrestrial ecosystems. Its toxicity to aquatic organisms has been evaluated in central and southern Europe as well as in (sub-)tropical regions of Africa and Asia, showing high toxic potential for some aquatic insects and zooplankton taxa. However, its toxicity to aquatic organisms representative of tropical regions of Latin America has never been evaluated. To fill this knowledge gap, we carried out a mesocosm experiment to assess the short- and long-term effects of imidacloprid on freshwater invertebrate communities representative of the Ecuadorian Amazon. A mesocosm experiment was conducted with five weekly applications of imidacloprid at four nominal concentrations (0.01 µg/L, 0.1 µg/L, 1 µg/L and 10 µg/L). Toxic effects were evaluated on zooplankton and macroinvertebrate populations and communities, as well as on water quality parameters for 70 days. Given the climatic conditions prevailing in the study area, characterized by a high solar radiation and abundant rainfall that resulted in mesocosm overflow, there was a rapid dissipation of the test compound from the water column (half-life: 4 days). The macroinvertebrate taxa Callibaetis pictus (Ephemeroptera), Chironomus sp. (Diptera), and the zooplankton taxon Macrocyclops sp., showed population declines caused by the imidacloprid treatment, with a 21-d Time Weighted Average No Observed Effect Concentrations (21-d TWA NOEC) of 0.46 µg/L, except for C. pictus which presented a 21-d TWA NOEC of 0.05 µg/L. In general terms, the sensitivity of these taxa to imidacloprid was greater than that reported for surrogate taxa in temperate zones and similar to that reported in other (sub-)tropical regions. These results confirm the high sensitivity of tropical aquatic invertebrates to this compound and suggest the need to establish regulations for the control of imidacloprid contamination in Amazonian freshwater ecosystems.


Assuntos
Organismos Aquáticos , Inseticidas , Invertebrados , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Neonicotinoides/toxicidade , Animais , Nitrocompostos/toxicidade , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Invertebrados/efeitos dos fármacos , Equador , Organismos Aquáticos/efeitos dos fármacos , Monitoramento Ambiental , Zooplâncton/efeitos dos fármacos , Ecossistema
15.
Environ Pollut ; 356: 124235, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38801881

RESUMO

Native and invasive species often occupy similar ecological niches and environments where they face comparable risks from chemical exposure. Sometimes, invasive species are phylogenetically related to native species, e.g. they may come from the same family and have potentially similar sensitivities to environmental stressors due to phylogenetic conservatism and ecological similarity. However, empirical studies that aim to understand the nuanced impacts of chemicals on the full range of closely related species are rare, yet they would help to comprehend patterns of current biodiversity loss and species turnover. Behavioral sublethal endpoints are of increasing ecotoxicological interest. Therefore, we investigated behavioral responses (i.e., change in movement behavior) of the four dominant amphipod species in the Rhine-Main area (central Germany) when exposed to the neonicotinoid thiacloprid. Moreover, beyond species-specific behavioral responses, ecological interactions (e.g. parasitation with Acanthocephala) play a crucial role in shaping behavior, and we have considered these infections in our analysis. Our findings revealed distinct baseline behaviors and species-specific responses to thiacloprid exposure. Notably, Gammarus fossarum exhibited biphasic behavioral changes with hyperactivity at low concentrations that decreased at higher concentrations. Whereas Gammarus pulex, Gammarus roeselii and the invasive species Dikerogammarus villosus, showed no or weaker behavioral responses. This may partly explain why G. fossarum disappears in chemically polluted regions while the other species persist there to a certain degree. But it also shows that potential pre-exposure in the habitat may influence behavioral responses of the other amphipod species, because habituation occurs, and potential hyperactivity would be harmful to individuals in the habitat. The observed responses were further influenced by acanthocephalan parasites, which altered baseline behavior in G. roeselii and enhanced the behavioral response to thiacloprid exposure. Our results underscore the intricate and diverse nature of responses among closely related amphipod species, highlighting their unique vulnerabilities in anthropogenically impacted freshwater ecosystems.


Assuntos
Anfípodes , Espécies Introduzidas , Neonicotinoides , Poluentes Químicos da Água , Animais , Anfípodes/efeitos dos fármacos , Anfípodes/fisiologia , Neonicotinoides/toxicidade , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Alemanha , Comportamento Animal/efeitos dos fármacos , Tiazinas
16.
Sci Total Environ ; 945: 173992, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901595

RESUMO

Worldwide, aquatic biodiversity is severely threatened as a result of anthropogenic pressures such as pollution, habitat destruction and climate change. Widescale legislation resulted in reduced nutrient- and pesticide loads, and restoration measures allowed modest recovery of freshwater biodiversity. However, from 2010 onwards, recovery in the otherwise unrestored aquatic habitats stagnated. The aim of the present study was therefore to reveal long-term trends in aquatic biodiversity in an anthropogenic landscape and to explain the observed patterns. To this end, over 40 years of biomonitoring data of the indicative taxa group Trichoptera (caddisflies), with an exceptionally high spatial and temporal resolution, was employed. Periods of recovery, stagnation, and decline were delineated using linear and non-linear modelling approaches. Subsequently, species were grouped based on abundance patterns over time and this grouping was used to ascertain species-specific responses to anthropogenic stressors using a trait-based approach. Richness and abundance of all Trichoptera jointly, as well as of the five most abundant and the remaining 136 species, significantly increased from 1980 to significant breakpoints from 2010 onwards, after which these metrics, except the abundances of the 5 most abundant, declined significantly. Trend-based species groupings were not significantly explained by biological traits or ecological preferences. However, Trichoptera species increasing in abundance were less sensitive to climate change and poor water quality, or concerned sensitive species which benefited from restoration measures. Species with stable or declining abundances showed higher sensitivity to climate change. The Trichoptera declining in abundance indicated that conditions in non-protected or restored habitats did not improve due to climate change on top of the other anthropogenic pressures. These observations reinforce the need for increased efforts to improve the only moderately restored water- and habitat quality in anthropogenic landscapes to halt further aquatic ecosystem degradation and to turn biodiversity losses again into recoveries.


Assuntos
Biodiversidade , Mudança Climática , Insetos , Animais , Monitoramento Ambiental , Ecossistema , Especificidade da Espécie
17.
Water Res ; 243: 120388, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517151

RESUMO

Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Águas Residuárias , Poluentes Químicos da Água/química , Invertebrados , Água Doce
18.
Sci Total Environ ; 879: 163017, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36963681

RESUMO

In recent years, declining insect biodiversity has sparked interest among scientists and drawn the attention of society and politicians. However, our understanding of the extent of this decline is incomplete, particularly for freshwater insects that provide a key trophic link between aquatic and terrestrial ecosystems, but that are also especially vulnerable to climate change. To investigate the response of freshwater insects to climate change, we quantified shifts in insect abundance and diversity across 7264 samples covering Central Europe during 1990-2018 and related these changes to annual data on temperature and precipitation. We observed both increases in richness (10.6 %) and abundance (9.5 %) of freshwater insects over the past three decades. These changes were related to increases in summer temperature and summer precipitation, which had negative effects on species richness, and to increases in winter temperature and precipitation, which had positive effects. Further we found that increased temperature was generally related to increased abundance, whereas increased precipitation was associated with declines, thus highlighting the particularly varying impacts on differing insect orders. Given that freshwater insects have been more severely affected by global change than marine and terrestrial species, the observed increases are a positive sign, but the overall situation of freshwater invertebrates is still critical.


Assuntos
Ecossistema , Rios , Animais , Invertebrados , Biodiversidade , Insetos
19.
Sci Total Environ ; 905: 167144, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730070

RESUMO

There remains a persistent concern that freshwater biodiversity is in decline and being threatened by pollution. As the UK, and particularly England, is a densely populated nation with rivers of modest dilution capacity, this location is very suitable to examine how freshwater biodiversity has responded to human pressures over the past 30 years. A long-term dataset of 223,325 freshwater macroinvertebrate records from 1989 to 2018 for England was retrieved and examined. A sub-set of approximately 200 sites per English Region (1515 sites in total with 62,514 samples), with the longest and most consistent records were matched with predicted wastewater exposure, upstream land cover and terrain characteristics (latitude, altitude, slope gradient and flow discharge). To understand changes in macroinvertebrate diversity and sensitivity with respect to these parameters, the biotic indices of (i) overall family richness, (ii) Ephemeroptera, Plecoptera, Trichoptera (EPT) family richness, and (iii) the Biological Monitoring Working Party (BMWP) scores of NTAXA (number of scoring taxa) and (iv) ASPT (average score per taxon) were selected. A review of how close the BMWP scores come to those expected at minimally impacted reference sites was included. For all latitudes, altitudes, channel slope, river size, wastewater exposure levels, and differing proportions of upstream woodland, seminatural, arable and urban land cover, all diversity or sensitivity indices examined improved over this period, although this improvement has slowed in some cases post 2003. Mean overall family richness has increased from 15 to 25 family groups, a 66 % improvement. The improvement in mean EPT family richness (3 to 10 families, >300 % improvement), which are considered to be particularly sensitive to pollution, implies macroinvertebrate diversity has benefited from a national improvement in critical components of water quality.


Assuntos
Rios , Águas Residuárias , Animais , Humanos , Monitoramento Ambiental/métodos , Ecossistema , Invertebrados , Biodiversidade , Água Doce
20.
Sci Total Environ ; 872: 162135, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775146

RESUMO

Environmental fluctuation forms a framework of variability within which species have evolved. Environmental fluctuation includes predictability, such as diel cycles of aquatic oxygen fluctuation driven by primary producers. Oxygen availability and fluctuation shape the physiological responses of aquatic animals to warming, so that, in theory, oxygen fluctuation could influence their thermal ecology. We describe annual oxygen variability in agricultural drainage channels and show that disruption of oxygen fluctuation through dredging of plants reduces the thermal tolerance of freshwater animals. We compared the temperature responses of snails, amphipods, leeches and mussels exposed to either natural oxygen fluctuation or constant oxygen in situ under different acclimation periods. Oxygen saturation in channel water ranged from c. 0 % saturation at night to >300 % during the day. Temperature showed normal seasonal variation and was almost synchronous with daily oxygen fluctuation. A dredging event in 2020 dramatically reduced dissolved oxygen variability and the correlation between oxygen and temperature was lost. The tolerance of invertebrates to thermal stress was significantly lower when natural fluctuation in oxygen availability was reduced and decoupled from temperature. This highlights the importance of natural cycles of variability and the need to include finer scale effects, including indirect biological effects, in modelling the ecosystem-level consequences of climate change. Furthermore, restoration and management of primary producers in aquatic habitats could be important to improve the thermal protection of aquatic invertebrates and their resistance to environmental variation imposed by climate change.


Assuntos
Ecossistema , Invertebrados , Animais , Invertebrados/fisiologia , Mudança Climática , Água Doce , Oxigênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA