Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Pharm ; 20(12): 6380-6390, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37947441

RESUMO

Freezing is commonly encountered during the processing and storage of biomacromolecule products. Therefore, understanding the phase and state transitions in pharmaceutical frozen solutions is crucial for the rational development of biopharmaceuticals. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) was used to analyze solutions containing sodium phosphate buffer, histidine, and trehalose. Upon freezing, crystallization of disodium phosphate hydrogen dodecahydrate (Na2HPO4·12H2O, DPDH) and histidine was identified using 31P and 13C ssNMR, respectively, and confirmed by synchrotron X-ray diffractometry (SXRD). Using histidine as a molecular probe and based on the chemical shifts of atoms of interest, the pH of the freeze concentrate was measured. The unfrozen water content in freeze concentrates was quantified by 1H single pulse experiments. 13C-insensitive nuclei enhancement by polarization transfer (INEPT) and cross-polarization (CP) experiments were used as orthogonal tools to characterize the solutes in a "mobile" and a more "solid-like" state in the freeze-concentrated solutions, respectively. The above analyses were applied to a commercial monoclonal antibody (mAb) formulation of dupilumab. This work further establishes ssNMR spectroscopy as a highly capable biophysical tool to investigate the attributes of biopharmaceuticals and thereby provide insights into process optimization and formulation development.


Assuntos
Produtos Biológicos , Histidina , Congelamento , Difração de Raios X , Soluções , Espectroscopia de Ressonância Magnética , Liofilização
2.
Solid State Nucl Magn Reson ; 106: 101643, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31972419

RESUMO

Solution NMR is a key tool to study intrinsically disordered proteins (IDPs), whose importance for biological function is widely accepted. However, disordered proteins are not limited to solution and are also found in non-soluble systems such as fibrils and membrane proteins. In this Trends article, I will discuss how solid-state NMR can be used to study disorder in non-soluble proteins. Techniques based on dipolar couplings can study static protein disorder which either occurs naturally as e.g. in spider silk or can be induced by freeze trapping IDPs or unfolded proteins. In this case, structural ensembles are directly reflected by a static distribution of dihedral angels that can be determined by the distribution of chemical shifts or other methods. Techniques based on J-couplings can detect dynamic protein disorder under MAS. In this case, only average chemical shifts are measured but disorder can be characterized with a variety of data including secondary chemical shifts, relaxation rates, paramagnetic relaxation enhancements, or residual dipolar couplings. I describe both technical aspects and examples of solid-state NMR on protein disorder and end the article with a discussion of challenges and opportunities of this emerging field.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Humanos , Conformação Proteica , Solubilidade
3.
Solid State Nucl Magn Reson ; 98: 1-11, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30641444

RESUMO

In this article we give an overview over the use of DNP-enhanced solid-state NMR spectroscopy for the investigation of unfolded, disordered and misfolded proteins. We first provide an overview over studies in which DNP spectroscopy has successfully been applied for the structural investigation of well-folded amyloid fibrils formed by short peptides as well as full-length proteins. Sample cooling to cryogenic temperatures often leads to severe line broadening of resonance signals and thus a loss in resolution. However, inhomogeneous line broadening at low temperatures provides valuable information about residual dynamics and flexibility in proteins, and, in combination with appropriate selective isotope labeling techniques, inhomogeneous linewidths in disordered proteins or protein regions may be exploited for evaluation of conformational ensembles. In the last paragraph we highlight some recent studies where DNP-enhanced MAS-NMR-spectroscopy was applied to the study of disordered proteins/protein regions and inhomogeneous sample preparations.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Desdobramento de Proteína , Proteínas/química , Humanos , Estabilidade Proteica , Proteínas/metabolismo , Temperatura
4.
J Pharm Sci ; 113(8): 2405-2412, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38643897

RESUMO

Freezing is essential for the stability of biological drug substances and products, particularly in frozen solution formulations and during the primary drying of lyophilized preparations. However, the unfrozen segment within the frozen matrix can alter solute concentration, ionic strength, and stabilizer crystallization, posing risks of increased biophysical instability and faster chemical degradation. While quantifying the unfrozen water content is important for designing stable biopharmaceuticals, there is a lack of analytical techniques for in situ quantitative measurements. In this study, we introduce a 1H magic angle spinning NMR technique to identify the freezing point (Tice) and quantify mobile water content in frozen biologics, applying this method to analyze the freezing of a commercial high-concentration drug product, Dupixent®. Our results demonstrate that water freezing is influenced by buffer salt properties and formulation composition, including the presence of sugar cryoprotectants and protein concentration. Additionally, the 1H chemical shift can probe pH in the unfrozen phase, potentially predicting the microenvironmental acidity in the frozen state. Our proposed methodology provides fresh insights into the analysis of freeze-concentrated solutions, enhancing our understanding of the stability of frozen and lyophilized biopharmaceuticals.


Assuntos
Liofilização , Congelamento , Água , Água/química , Liofilização/métodos , Espectroscopia de Ressonância Magnética/métodos , Estabilidade de Medicamentos , Crioprotetores/química , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Soluções/química , Química Farmacêutica/métodos , Concentração Osmolar
5.
Int J Pharm ; 609: 121145, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34600056

RESUMO

The aim of the study is to investigate the thermal behavior of poloxamer 188 (P188) in binary (P188-water) and ternary (P188-trehalose-water) solutions during freezing and thawing. The thermal behavior of P188 in frozen (binary and ternary) systems was characterized by differential scanning calorimetry (DSC) and low-temperature X-ray powder diffractometry (XPRD) as a complementary technique. The influence of processing conditions (cooling rate, annealing) and a noncrystallizing co-solute (addition of trehalose) on the behavior of P188 was evaluated during freezing as well as thawing. In rapidly cooled (10 °C/min) aqueous binary solutions, P188 (10% w/v) was retained in the amorphous state. At slower cooling rates (0.5-5 °C/min), the extent of crystallization depended on the cooling rate. In ternary P188-trehalose-water systems (P188 4% w/v, trehalose 0-10% w/v), a concentration dependent inhibition of P188 crystallization was observed with increasing trehalose concentration. However, irrespective of trehalose concentration, annealing resulted in P188 crystallization. The presence of trehalose as well as the processing conditions (cooling rate and annealing) influenced the physical state of P188 at different stages of freezing and thawing. As the cooling rate decreased, the extent of P188 crystallization progressively increased. In presence of trehalose (≥4.0% w/v) crystallization of P188 (4.0% w/v) was inhibited and this effect could be reversed by annealing. Depending on the intended application, the physical form of P188 could be modulated, by annealing even in presence of a noncrystallizing solute.


Assuntos
Poloxâmero , Água , Varredura Diferencial de Calorimetria , Cristalização , Liofilização , Congelamento , Soluções , Trealose
6.
J Hazard Mater ; 384: 121298, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585282

RESUMO

The dark dissolution behavior of plattnerite (ß-PbO2) was investigated in frozen solutions containing halide ions and compared with those in aqueous solution. The amount of dissolved lead in the frozen solutions varied depending on the solution pH and the kind and concentration of halide ions. The presence of bromide and iodide ions enhanced the dissolution of lead in the aqueous phase, whereas the effect of chloride was insignificant. Compared with the aqueous phase dissolution, ß-PbO2 dissolution in the frozen solution was slightly enhanced in the presence of bromide but suppressed in the presence of iodide. Iodide ions seemed to be relatively more trapped in the bulk ice (ice-crystal lattice) than bromide ions, which might be related to the suppressed dissolution of lead oxide in the presence of iodide. The co-existence of bromide (or iodide) and chloride ions in the frozen solution enhanced the dissolution of lead, which seems to be enabled by an additional reaction pathway involving the formation of mixed halide radicals, whereas such kind of synergistic enhancements were not observed in aqueous solution. The halide-induced lead oxide dissolution in frozen solutions can be related to the behavior of lead ions found in various media of frozen environments.

7.
J Am Soc Mass Spectrom ; 30(8): 1455-1463, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30993639

RESUMO

Since its introduction, matrix-assisted laser desorption/ionization (MALDI) has been widely used for the mass analysis of biomolecules. The "soft ionization" of MALDI enables accurate mass determination of intact biomolecules. However, the ionization and desorption processes of MALDI are not adequately soft as many labile biomolecules, such as glycoconjugates containing sialic acid or the sulfate functional group, easily dissociate into fragments and sometimes, no intact molecules are observed. In this study, we compared the conventional matrix of MALDI, namely 2,5-dihydroxybenzoic acid, to various soft matrices of MALDI-specifically, 5-methoxysalicylic acid, diamond nanoparticle trilayers, HgTe nanostructures, ionic liquid, and droplets of frozen solutions-by using three labile glycoconjugates as analytes: gangliosides, heparin, and pullulan. We demonstrated that droplets of frozen solution are the softest matrices for gangliosides and heparin. In particular, droplets of frozen solution do not generate fragments for gangliosides and can be used to determine the relative abundance of various gangliosides, whereas ionic liquid 2,5-dihydroxybenzoic acid butylamine is the most suitable matrix for pullulan mass analysis. Graphical Abstract.


Assuntos
Glicoconjugados/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Gangliosídeos/análise , Gentisatos/química , Glucanos/análise , Heparina/análise , Éteres de Hidroxibenzoatos/química , Líquidos Iônicos/química , Nanoestruturas/química , Salicilatos/química
8.
J Pharm Sci ; 100(4): 1288-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24081466

RESUMO

Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH

Assuntos
Ácidos Carboxílicos/química , Soluções Tampão , Varredura Diferencial de Calorimetria , Cristalização , Liofilização , Congelamento , Concentração de Íons de Hidrogênio , Soluções Farmacêuticas/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA