Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(8): 1325-1345.e22, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35366418

RESUMO

Protein aggregation is a hallmark of multiple human pathologies. Autophagy selectively degrades protein aggregates via aggrephagy. How selectivity is achieved has been elusive. Here, we identify the chaperonin subunit CCT2 as an autophagy receptor regulating the clearance of aggregation-prone proteins in the cell and the mouse brain. CCT2 associates with aggregation-prone proteins independent of cargo ubiquitination and interacts with autophagosome marker ATG8s through a non-classical VLIR motif. In addition, CCT2 regulates aggrephagy independently of the ubiquitin-binding receptors (P62, NBR1, and TAX1BP1) or chaperone-mediated autophagy. Unlike P62, NBR1, and TAX1BP1, which facilitate the clearance of protein condensates with liquidity, CCT2 specifically promotes the autophagic degradation of protein aggregates with little liquidity (solid aggregates). Furthermore, aggregation-prone protein accumulation induces the functional switch of CCT2 from a chaperone subunit to an autophagy receptor by promoting CCT2 monomer formation, which exposes the VLIR to ATG8s interaction and, therefore, enables the autophagic function.


Assuntos
Chaperonina com TCP-1 , Macroautofagia , Agregados Proteicos , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Chaperonina com TCP-1/metabolismo , Proteína Sequestossoma-1/metabolismo
2.
Annu Rev Cell Dev Biol ; 37: 143-169, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34152791

RESUMO

Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Associadas aos Microtúbulos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
3.
Mol Cell ; 76(2): 268-285, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31585693

RESUMO

The clearance of surplus, broken, or dangerous components is key for maintaining cellular homeostasis. The failure to remove protein aggregates, damaged organelles, or intracellular pathogens leads to diseases, including neurodegeneration, cancer, and infectious diseases. Autophagy is the evolutionarily conserved pathway that sequesters cytoplasmic components in specialized vesicles, autophagosomes, which transport the cargo to the degradative compartments (vacuoles or lysosomes). Research during the past few decades has elucidated how autophagosomes engulf their substrates selectively. This type of autophagy involves a growing number of selective autophagy receptors (SARs) (e.g., Atg19 in yeasts, p62/SQSTM1 in mammals), which bind to the cargo and simultaneously engage components of the core autophagic machinery via direct interaction with the ubiquitin-like proteins (UBLs) of the Atg8/LC3/GABARAP family and adaptors, Atg11 (in yeasts) or FIP200 (in mammals). In this Review, we critically discuss the biology of the SARs with special emphasis on their interactions with UBLs.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Leveduras/metabolismo , Animais , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação , Proteínas Fúngicas/genética , Humanos , Ligantes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ubiquitinação , Ubiquitinas/metabolismo , Leveduras/genética
4.
Proc Natl Acad Sci U S A ; 121(11): e2315550121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437556

RESUMO

TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.


Assuntos
Autofagia , Proteínas de Ciclo Celular , Animais , Família da Proteína 8 Relacionada à Autofagia , Sítios de Ligação , Rim , Mamíferos
5.
Trends Biochem Sci ; 46(8): 673-686, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558127

RESUMO

The ATG8 family proteins are critical players in autophagy, a cytoprotective process that mediates degradation of cytosolic cargo. During autophagy, ATG8s conjugate to autophagosome membranes to facilitate cargo recruitment, autophagosome biogenesis, transport, and fusion with lysosomes, for cargo degradation. In addition to these canonical functions, recent reports demonstrate that ATG8s are also delivered to single-membrane organelles, which leads to highly divergent degradative or secretory fates, vesicle maturation, and cargo specification. The association of ATG8s with different vesicles involves complex regulatory mechanisms still to be fully elucidated. Whether individual ATG8 family members play unique canonical or non-canonical roles, also remains unclear. This review summarizes the many open molecular questions regarding ATG8s that are only beginning to be unraveled.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Autofagossomos , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Lisossomos
6.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37589340

RESUMO

Autophagy is a recycling mechanism involved in cellular homeostasis with key implications for health and disease. The conjugation of the ATG8 family proteins, which includes LC3B (also known as MAP1LC3B), to autophagosome membranes, constitutes a hallmark of the canonical autophagy process. After ATG8 proteins are conjugated to the autophagosome membranes via lipidation, they orchestrate a plethora of protein-protein interactions that support key steps of the autophagy process. These include binding to cargo receptors to allow cargo recruitment, association with proteins implicated in autophagosome transport and autophagosome-lysosome fusion. How these diverse and critical protein-protein interactions are regulated is still not well understood. Recent reports have highlighted crucial roles for post-translational modifications of ATG8 proteins in the regulation of ATG8 functions and the autophagy process. This Review summarizes the main post-translational regulatory events discovered to date to influence the autophagy process, mostly described in mammalian cells, including ubiquitylation, acetylation, lipidation and phosphorylation, as well as their known contributions to the autophagy process, physiology and disease.


Assuntos
Autofagia , Processamento de Proteína Pós-Traducional , Animais , Família da Proteína 8 Relacionada à Autofagia/genética , Fosforilação , Autofagossomos , Mamíferos
7.
J Cell Sci ; 136(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37701987

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) exhibits elevated levels of autophagy, which promote tumor progression and treatment resistance. ATG4B is an autophagy-related cysteine protease under consideration as a potential therapeutic target, but it is largely unexplored in PDAC. Here, we investigated the clinical and functional relevance of ATG4B expression in PDAC. Using two PDAC patient cohorts, we found that low ATG4B mRNA or protein expression is associated with worse patient survival outcomes, poorly differentiated PDAC tumors and a lack of survival benefit from adjuvant chemotherapy. In PDAC cell lines, ATG4B knockout reduced proliferation, abolished processing of LC3B (also known as MAP1LC3B), and reduced GABARAP and GABARAPL1 levels, but increased ATG4A levels. ATG4B and ATG4A double knockout lines displayed a further reduction in proliferation, characterized by delays in G1-S phase transition and mitosis. Pro-LC3B accumulated aberrantly at the centrosome with a concomitant increase in centrosomal proteins PCM1 and CEP131, which was rescued by exogenous ATG4B. The two-stage cell cycle defects following ATG4B and ATG4A loss have important therapeutic implications for PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Neoplasias Pancreáticas/genética , Autofagia/genética , Linhagem Celular Tumoral , Ciclo Celular/genética , Proliferação de Células/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas
8.
J Cell Sci ; 135(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35665638

RESUMO

The formation of autophagosomes and their fusion with lysosomes are key events that underpin autophagic degradation of cargoes. The core ATG8 system, which consists of the ATG8 family of ubiquitin-like proteins and the machineries that conjugate them onto autophagosomal membranes, are among the most-studied autophagy components. Despite the research focus on the core ATG8 system, there are conflicting reports regarding its essential roles in autophagy. Here, we reconcile prior observations of the core ATG8 system into a unifying model of their function that aims to consider apparently conflicting discoveries. Bypass pathways of autophagy that function independently of the core ATG8 system are also discussed.


Assuntos
Autofagossomos , Proteínas Associadas aos Microtúbulos , Autofagossomos/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
9.
J Cell Biochem ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780422

RESUMO

Induction of Atg8-family protein (LC3/GABARAP proteins in human) interactions with target proteins of interest by proximity-inducing small molecules offers the possibility for novel targeted protein degradation approaches. However, despite intensive screening campaigns during the last 5 years, no potent ligands for LC3/GABARAPs have been developed, rendering this approach largely unexplored and unsuitable for therapeutic exploitation. In this Viewpoint, we analyze the reported attempts identifying LC3/GABARAP inhibitors and provide our own point of view why no potent inhibitors have been found. Additionally, we designate reasonable directions for the identification of potent and probably selective LC3/GABARAP inhibitors for alternative therapeutic applications.

10.
EMBO J ; 38(22): e101994, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31625181

RESUMO

Mammalian homologs of yeast Atg8 protein (mAtg8s) are important in autophagy, but their exact mode of action remains ill-defined. Syntaxin 17 (Stx17), a SNARE with major roles in autophagy, was recently shown to bind mAtg8s. Here, we identified LC3-interacting regions (LIRs) in several SNAREs that broaden the landscape of the mAtg8-SNARE interactions. We found that Syntaxin 16 (Stx16) and its cognate SNARE partners all have LIR motifs and bind mAtg8s. Knockout of Stx16 caused defects in lysosome biogenesis, whereas a Stx16 and Stx17 double knockout completely blocked autophagic flux and decreased mitophagy, pexophagy, xenophagy, and ribophagy. Mechanistic analyses revealed that mAtg8s and Stx16 control several properties of lysosomal compartments including their function as platforms for active mTOR. These findings reveal a broad direct interaction of mAtg8s with SNAREs with impact on membrane remodeling in eukaryotic cells and expand the roles of mAtg8s to lysosome biogenesis.


Assuntos
Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Lisossomos/metabolismo , Proteínas Qa-SNARE/metabolismo , Sintaxina 16/metabolismo , Motivos de Aminoácidos , Família da Proteína 8 Relacionada à Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Redes e Vias Metabólicas , Ligação Proteica , Domínios Proteicos , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas Qa-SNARE/genética , RNA Interferente Pequeno/genética , Sintaxina 16/antagonistas & inibidores , Sintaxina 16/genética
11.
Mol Cell Biochem ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37440122

RESUMO

Mammalian autophagy-related protein Atg8, including the LC3 subfamily and GABARAP subfamily. Atg8 proteins play a vital role in autophagy initiation, autophagosome formation and transport, and autophagy-lysosome fusion. GABARAP subfamily proteins (GABARAPs) share a high degree of homology with LC3 family proteins, and their unique roles are often overlooked. GABARAPs are as indispensable as LC3 in autophagy. Deletion of GABARAPs fails autophagy flux induction and autophagy lysosomal fusion, which leads to the failure of autophagy. GABARAPs are also involved in the transport of selective autophagy receptors. They are engaged in various particular autophagy processes, including mitochondrial autophagy, endoplasmic reticulum autophagy, Golgi autophagy, centrosome autophagy, and dorphagy. Furthermore, GABARAPs are closely related to the transport and delivery of the inhibitory neurotransmitter γ-GABAA and the angiotensin II AT1 receptor (AT1R), tumor growth, metastasis, and prognosis. GABARAPs also have been confirmed to be involved in various diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. In order to better understand the role and therapeutic potential of GABARAPs, this article comprehensively reviews the autophagic and non-autophagic functions of GABARAPs, as well as the research progress of the role and mechanism of GABARAPs in cancer, cardiovascular diseases and neurodegenerative diseases. It emphasizes the significance of GABARAPs in the clinical prevention and treatment of diseases, and may provide new therapeutic ideas and targets for human diseases. GABARAP and GABARAPL1 in the serum of cancer patients are positively correlated with the prognosis of patients, which can be used as a clinical biomarker, predictor and potential therapeutic target. GABARAP family proteins: autophagy and non-autophagy related functions in diseases. By Figdraw ( https://www.figdraw.com ).

12.
Proc Natl Acad Sci U S A ; 117(35): 21391-21402, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817423

RESUMO

Syntaxin17, a key autophagosomal N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, can associate with ATG8 family proteins SNAP29 and VAMP8 to facilitate the membrane fusion process between the double-membraned autophagosome and single-membraned lysosome in mammalian macroautophagy. However, the inherent properties of Syntaxin17 and the mechanistic basis underlying the interactions of Syntaxin17 with its binding proteins remain largely unknown. Here, using biochemical, NMR, and structural approaches, we systemically characterized Syntaxin17 as well as its interactions with ATG8 family proteins, SNAP29 and VAMP8. We discovered that Syntaxin17 alone adopts an autoinhibited conformation mediated by a direct interaction between its Habc domain and the Qa-SNARE motif. In addition, we revealed that the Qa-SNARE region of Syntaxin17 contains one LC3-interacting region (LIR) motif, which preferentially binds to GABARAP subfamily members. Importantly, the GABARAP binding of Syntaxin17 can release its autoinhibited state. The determined crystal structure of the Syntaxin17 LIR-GABARAP complex not only provides mechanistic insights into the interaction between Syntaxin17 and GABARAP but also reveals an unconventional LIR motif with a C-terminally extended 310 helix for selectively binding to ATG8 family proteins. Finally, we also elucidated structural arrangements of the autophagic Syntaxin17-SNAP29-VAMP8 SNARE core complex, and uncovered its conserved biochemical and structural characteristics common to all other SNAREs. In all, our findings reveal three distinct states of Syntaxin17, and provide mechanistic insights into the Syntaxin17-mediated autophagosome-lysosome fusion process.


Assuntos
Autofagossomos/fisiologia , Lisossomos/fisiologia , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Motivos de Aminoácidos , Proteínas Reguladoras de Apoptose/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Escherichia coli , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
13.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982156

RESUMO

Cardiolipin (CL) is a key lipid for damaged mitochondrial recognition by the LC3/GABARAP human autophagy proteins. The role of ceramide (Cer) in this process is unclear, but CL and Cer have been proposed to coexist in mitochondria under certain conditions. Varela et al. showed that in model membranes composed of egg sphingomyelin (eSM), dioleoyl phosphatidylethanolamine (DOPE), and CL, the addition of Cer enhanced the binding of LC3/GABARAP proteins to bilayers. Cer gave rise to lateral phase separation of Cer-rich rigid domains but protein binding took place mainly in the fluid continuous phase. In the present study, a biophysical analysis of bilayers composed of eSM, DOPE, CL, and/or Cer was attempted to understand the relevance of this lipid coexistence. Bilayers were studied by differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy. Upon the addition of CL and Cer, one continuous phase and two segregated ones were formed. In bilayers with egg phosphatidylcholine instead of eSM, in which the binding of LC3/GABARAP proteins hardly increased with Cer in the former study, a single segregated phase was formed. Assuming that phase separation at the nanoscale is ruled by the same principles acting at the micrometer scale, it is proposed that Cer-enriched rigid nanodomains, stabilized by eSM:Cer interactions formed within the DOPE- and CL-enriched fluid phase, result in structural defects at the rigid/fluid nanointerfaces, thus hypothetically facilitatingLC3/GABARAP protein interaction.


Assuntos
Cardiolipinas , Ceramidas , Humanos , Ceramidas/química , Bicamadas Lipídicas/química , Macroautofagia , Esfingomielinas/química , Mitocôndrias
14.
Proteins ; 90(2): 476-484, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34546588

RESUMO

We have performed fully atomistic molecular dynamics simulations of the intracellular domain of a model of the GABAA receptor with and without the GABA receptor associated protein (GABARAP) bound. We have also calculated the electrostatic potential due to the receptor, in the absence and presence of GABARAP. We find that GABARAP binding changes the electrostatic properties around the GABAA receptor and could lead to increased conductivity of chloride ions through the receptor. We also find that ion motions that would result in conducting currents are observed nearly twice as often when GABARAP binds. These results are consistent with data from electrophysiological experiments.


Assuntos
Receptores de GABA-A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Proteínas Associadas aos Microtúbulos , Ligação Proteica
15.
EMBO Rep ; 21(3): e48412, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32009292

RESUMO

The intracellular trafficking pathway, macroautophagy, is a recycling and disposal service that can be upregulated during periods of stress to maintain cellular homeostasis. An essential phase is the elongation and closure of the phagophore to seal and isolate unwanted cargo prior to lysosomal degradation. Human ATG2A and ATG2B proteins, through their interaction with WIPI proteins, are thought to be key players during phagophore elongation and closure, but little mechanistic detail is known about their function. We have identified a highly conserved motif driving the interaction between human ATG2 and GABARAP proteins that is in close proximity to the ATG2-WIPI4 interaction site. We show that the ATG2A-GABARAP interaction mutants are unable to form and close phagophores resulting in blocked autophagy, similar to ATG2A/ATG2B double-knockout cells. In contrast, the ATG2A-WIPI4 interaction mutant fully restored phagophore formation and autophagy flux, similar to wild-type ATG2A. Taken together, we provide new mechanistic insights into the requirements for ATG2 function at the phagophore and suggest that an ATG2-GABARAP/GABARAP-L1 interaction is essential for phagophore formation, whereas ATG2-WIPI4 interaction is dispensable.


Assuntos
Autofagossomos , Proteínas de Membrana , Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
16.
EMBO Rep ; 21(7): e48192, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32337819

RESUMO

Autophagy is an essential cellular quality control process that has emerged as a critical one for vascular homeostasis. Here, we show that trichoplein (TCHP) links autophagy with endothelial cell (EC) function. TCHP localizes to centriolar satellites, where it binds and stabilizes PCM1. Loss of TCHP leads to delocalization and proteasome-dependent degradation of PCM1, further resulting in degradation of PCM1's binding partner GABARAP. Autophagic flux under basal conditions is impaired in THCP-depleted ECs, and SQSTM1/p62 (p62) accumulates. We further show that TCHP promotes autophagosome maturation and efficient clearance of p62 within lysosomes, without affecting their degradative capacity. Reduced TCHP and high p62 levels are detected in primary ECs from patients with coronary artery disease. This phenotype correlates with impaired EC function and can be ameliorated by NF-κB inhibition. Moreover, Tchp knock-out mice accumulate of p62 in the heart and cardiac vessels correlating with reduced cardiac vascularization. Taken together, our data reveal that TCHP regulates endothelial cell function via an autophagy-mediated mechanism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Autofagia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Centríolos/metabolismo , Células Endoteliais/metabolismo , Humanos , Camundongos , NF-kappa B , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
17.
Cell Mol Life Sci ; 78(8): 3817-3851, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33580835

RESUMO

Cells use mitophagy to remove dysfunctional or excess mitochondria, frequently in response to imposed stresses, such as hypoxia and nutrient deprivation. Mitochondrial cargo receptors (MCR) induced by these stresses target mitochondria to autophagosomes through interaction with members of the LC3/GABARAP family. There are a growing number of these MCRs, including BNIP3, BNIP3L, FUNDC1, Bcl2-L-13, FKBP8, Prohibitin-2, and others, in addition to mitochondrial protein targets of PINK1/Parkin phospho-ubiquitination. There is also an emerging link between mitochondrial lipid signaling and mitophagy where ceramide, sphingosine-1-phosphate, and cardiolipin have all been shown to promote mitophagy. Here, we review the upstream signaling mechanisms that regulate mitophagy, including components of the mitochondrial fission machinery, AMPK, ATF4, FoxOs, Sirtuins, and mtDNA release, and address the significance of these pathways for stress responses in tumorigenesis and metastasis. In particular, we focus on how mitophagy modulators intersect with cell cycle control and survival pathways in cancer, including following ECM detachment and during cell migration and metastasis. Finally, we interrogate how mitophagy affects tissue atrophy during cancer cachexia and therapy responses in the clinic.


Assuntos
Carcinogênese/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Neoplasias/metabolismo , Animais , Carcinogênese/patologia , Humanos , Mitocôndrias/patologia , Dinâmica Mitocondrial , Metástase Neoplásica/patologia , Neoplasias/patologia
18.
Handb Exp Pharmacol ; 271: 83-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33404775

RESUMO

We reported previously that GEC1 (glandular epithelial cell 1), a member of microtubule-associated proteins (MAPs), interacted directly with the C-tail of KOR (KCT) and tubulin and enhanced cell surface expression of KOR in CHO cells by facilitating its trafficking along the export pathway. Two GEC1 analogs (GABARAP and GATE16) were also shown to increase KOR expression. In addition, to understand the underlying mechanism, we demonstrated that N-ethylmaleimide-sensitive factor (NSF), an essential component for membrane fusion, co-immunoprecipitated with GEC1 from brain extracts. In this study, using pull-down techniques, we have found that (1) GEC1 interacts with NSF directly and prefers the ADP-bound NSF to the ATP-bound NSF; (2) D1 and/or D2 domain(s) of NSF interact with GEC1, but the N domain of NSF does not; (3) NSF does not interact with KCT directly, but forms a protein complex with KCT via GEC1; (4) NSF and/or α-SNAP do not affect KCT-GEC1 interaction. Thus, GEC1 (vs the α-SNAP/SNAREs complex) binds to NSF in distinctive ways in terms of the ADP- or ATP-bound form and domains of NSF involved. In conclusion, GEC1 may, via its direct interactions with KOR, NSF, and tubulin, enhance trafficking and fusion of KOR-containing vesicles selectively along the export pathway, which leads to increase in surface expression of KOR. GABARAP and GATE16 may enhance KOR expression in a similar way.


Assuntos
Proteínas Associadas aos Microtúbulos , Receptores Opioides kappa , Animais , Cricetinae , Cricetulus , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
19.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563459

RESUMO

(1) Background: Disfunctions in autophagy machinery have been identified in various conditions, including neurodegenerative diseases, cancer, and inflammation. Among mammalian autophagy proteins, the Atg8 family member GABARAP has been shown to be greatly involved in the autophagy process of prostate cancer cells, supporting the idea that GABARAP inhibitors could be valuable tools to fight the progression of tumors. (2) Methods: In this paper, starting from the X-ray crystal structure of GABARAP in a complex with an AnkirinB-LIR domain, we identify two new peptides by applying in silico drug design techniques. The two ligands are synthesized, biophysically assayed, and biologically evaluated to ascertain their potential anticancer profile. (3) Results: Two cyclic peptides (WC8 and WC10) displayed promising biological activity, high conformational stability (due to the presence of disulfide bridges), and Kd values in the low micromolar range. The anticancer assays, performed on PC-3 cells, proved that both peptides exhibit antiproliferative effects comparable to those of peptide K1, a known GABARAP inhibitor. (4) Conclusions: WC8 and WC10 can be considered new GABARAP inhibitors to be employed as pharmacological tools or even templates for the rational design of new small molecules.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Associadas aos Microtúbulos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/química , Peptídeos Cíclicos/farmacologia
20.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054896

RESUMO

A long noncoding RNA (lncRNA), nuclear enriched abundant transcript 1 (NEAT1) variant 1 (NEAT1v1), is involved in the maintenance of cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). CSCs are suggested to play important roles in therapeutic resistance. Therefore, we investigated whether NEAT1v1 is involved in the sensitivity to radiation therapy in HCC. Gene knockdown was performed using short hairpin RNAs, and NEAT1v1-overexpressing HCC cell lines were generated by stable transfection with a NEAT1v1-expressing plasmid DNA. Cells were irradiated using an X-ray generator. We found that NEAT1 knockdown enhanced the radiosensitivity of HCC cell lines and concomitantly inhibited autophagy. NEAT1v1 overexpression enhanced autophagy in the irradiated cells and conferred radioresistance. Gamma-aminobutyric acid receptor-associated protein (GABARAP) expression was downregulated by NEAT1 knockdown, whereas it was upregulated in NEAT1v1-overexpressing cells. Moreover, GABARAP was required for NEAT1v1-induced autophagy and radioresistance as its knockdown significantly inhibited autophagy and sensitized the cells to radiation. Since GABARAP is a crucial protein for the autophagosome-lysosome fusion, our results suggest that NEAT1v1 confers radioresistance to HCC by promoting autophagy through GABARAP.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Interferência de RNA , RNA Longo não Codificante/genética , Tolerância a Radiação/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/radioterapia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA