RESUMO
BACKGROUND: Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults with the lowest survival rates five years post-diagnosis. Oncolytic viruses (OVs) selectively target and damage cancer cells, and for this reason they are being investigated as new therapeutic tools also against GBM. METHODS: An oncolytic herpes simplex virus type 1 (oHSV-1) with deletions in the γ34.5 neurovirulence gene and the US12 gene, expressing enhanced green fluorescent protein (EGFP-oHSV-1) as reporter gene was generated and tested for its capacity to infect and kill the murine GL261 glioblastoma (GBM) cell line. Syngeneic mice were orthotopically injected with GL261cells. Seven days post-implantation, EGFP-oHSV-1 was administered intratumorally. Twenty-one days after parental tumor challenge in the opposite brain hemisphere, mice were sacrified and their brains were analysed by immunohistochemistry to assess tumor presence and cell infiltrate. RESULTS: oHSV-1 replicates and induces cell death of GL261 cells in vitro. A single intracranial injection of EGFP-oHSV-1 in established GL261 tumors significantly prolongs survival in all treated mice compared to placebo treatment. Notably, 45% of treated mice became long-term survivors, and rejected GL261 cells upon rechallenge in the contralateral brain hemisphere, indicating an anamnestic antitumoral immune response. Post-mortem analysis revealed a profound modification of the tumor microenvironment with increased infiltration of CD4 + and CD8 + T lymphocytes, intertumoral vascular collapse and activation and redistribution of macrophage, microglia, and astroglia in the tumor area, with the formation of intense fibrotic tissue suggestive of complete rejection in long-term survivor mice. CONCLUSIONS: EGFP-oHSV1 demonstrates potent antitumoral activity in an immunocompetent GBM model as a monotherapy, resulting from direct cell killing combined with the stimulation of a protective adaptive immune response. These results open the way to possible application of our strategy in clinical setting.
Assuntos
Imunidade Adaptativa , Glioblastoma , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Animais , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/patologia , Linhagem Celular Tumoral , Terapia Viral Oncolítica/métodos , Vetores Genéticos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Vírus Oncolíticos/genética , Camundongos Endogâmicos C57BL , Proteínas de Fluorescência Verde/metabolismo , Camundongos , HumanosRESUMO
The aims of this study were to develop co-delivery systems of paclitaxel (PTX) and etoposide prodrug (4'-O-benzyloxycarbonyl-etoposide, ETP-cbz) based on non-cross-linked human serum albumin (HSA) and poly(lactide-co-glycolide) nanoparticles and to evaluate the synergistic potential of these drugs in vitro. The nanoformulations were prepared by the high-pressure homogenisation technique and characterised using DLS, TEM, SEM, AFM, HPLC, CZE, in-vitro release, and cytotoxicity in human and murine glioma cells. All nanoparticles had 90-150 nm in size and negative ζ-potentials. The Neuro2A cells were the most sensitive to both HSA- and PLGA-based co-delivery systems (IC50 0.024 µM and 0.053 µM, respectively). The drugs' synergistic effect (combination index < 0.9) was observed in the GL261 cells for both types of co-delivery formulations and in the Neuro2A cells for the HSA-based system. These nanodelivery systems may be useful to improve combination chemotherapy for brain tumour treatment. To our knowledge, this is the first report describing the non-cross-linked HSA-based co-delivery nanosuspension which was prepared using nab™ technology.
Assuntos
Neoplasias Encefálicas , Nanopartículas , Pró-Fármacos , Humanos , Camundongos , Animais , Paclitaxel/farmacologia , Etoposídeo/farmacologia , Pró-Fármacos/farmacologia , Albumina Sérica Humana , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológicoRESUMO
OBJECTIVE: Salidroside (SAL) is a marker glycoside of Rhodiola rosea with significant antioxidant, anti-inflammatory, and other health benefits. In this study, we determined its neuroprotective effects against Cd-induced toxicity in cultured cells and mice. MATERIALS AND METHODS: GL261 cell and Cd-intoxicated mouse model were used. ICP-MS and MWM were performed to measure Cd content and Cd-induced cognitive impairment in mice, respectively. RESULTS: SAL attenuated Cd toxicity in GL261 cells as well as protected mice from substantial organic damage and cognitive deficits. SAL treatment alleviated Cd-induced oxidative stress, glial cell activation, and elevation of pro-inflammatory factors including TNF-α, IL-1ß, and IL-6. Cd-induced cognitive deficits observed in the Morris water maze in mice were rescued by SAL. At the mechanistic level, SAL maintained the activity of antioxidant enzymes such as SOD and GSH-Px in the serum and brain, and scavenged the peroxidation product MDA, thereby restoring redox homeostasis in vivo, attenuating neuronal damage, and ultimately antagonized Cd-induced toxicity. Furthermore, Cd activated the RIP1-driven inflammatory signaling pathway and Notch/HES-1 signaling axis in the brain, leading to inflammation and neuronal loss, which could be attenuated by SAL. CONCLUSION: SAL is a natural product with good anti-Cd effects, indicating that Rhodiola rosea is promising plant that is worthy of cultivation for health and economic benefits.
Assuntos
Cádmio , Rhodiola , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cádmio/toxicidade , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Camundongos , Fenóis , Transdução de SinaisRESUMO
Multimodal treatment adding immunotherapy and photodynamic treatment (PDT) to standard therapy might improve the devastating therapeutic outcome of glioblastoma multiforme patients. As a first step, we provide investigations to optimize dendritic cell (DC) vaccination by using PDT and ionizing radiation (IR) to achieve maximal synergistic effects. In vitro experiments were conducted on murine glioblastoma GL261 cells, primary DCs differentiated from bone marrow and T cells, isolated from the spleen. Induction of cell death, reactive oxygen species, and inhibition of proliferation by tetrahydroporphyrin-tetratosylat (THPTS)-PDT and IR were confirmed by WST-1, LDH, ROS, and BrdU assay. Tumor cargo (lysate or cells) for DC load was treated with different combinations of THPTS-PDT, freeze/thaw cycles, and IR and immunogenicity analyzed by induction of T-cell activation. Cellular markers (CD11c, 83, 86, 40, 44, 69, 3, 4, 8, PD-L1) were quantified by flow cytometry. Cytotoxic T-cell response was evaluated by calcein AM assay. Immunogenicity of THPTS-PDT-treated GL261 cells lysate was superior to IR-treated lysate, or treated whole cells proven by increased DC phagocytosis, T-cell adhesion, proliferation, cytolytic activity, and cytokine release. These data strongly support the application of PDT together with IR for optimal immunogenic cell death induction in tumor cell lysate used to pulse DC vaccines.
Assuntos
Glioblastoma , Fotoquimioterapia , Animais , Morte Celular , Linhagem Celular Tumoral , Células Dendríticas , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêuticoRESUMO
PURPOSE: Due to the recent rise in immunotherapy research to treat glioblastoma (GBM), immunocompetent mouse models have become increasingly crucial. However, the character and kinetics of the immune response against the most prevalent immunocompetent GBM models, GL261 and CT2A, have not been well studied, nor has the impact of commonly-used marker proteins and foreign antigens. METHODS: In this study, we compared the immune response in these models using flow cytometry and immunohistochemistry as well as investigated several factors that influence the immune response, including kinetics, tumor size, and expression of commonly-used marker proteins and foreign antigens. We hypothesize that these factors influence the immune response enough to warrant consideration when studying new immunotherapeutic approaches for GBM. RESULTS: CT2A-Luc, but not GL261-Luc2, drastically increased the number of T cells in the brain compared with wild-type controls, and significantly altered CT2A's responsiveness to anti-PD-1 antibody therapy. Additionally, a larger cell inoculum size in the GL261 model increased the T cell response's magnitude at day 28 post-injection. CT2A and GL261 models both stimulate a peak T cell immune response at day 21 post-injection. CONCLUSIONS: Our results suggest that the impact of foreign proteins like luciferase on the intracranial immune response is dependent upon the model, with CT2A being more sensitive to added markers. In particular, luciferase expression in CT2A could lead to meaningful misinterpretations of results from immune checkpoint inhibitor (ICI) studies.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Imunidade Adaptativa , Animais , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/terapia , Glioma/terapia , Luciferases , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Glioblastoma (GBM) is a lethal astrocyte-derived tumor that is currently treated with a multi-modal approach of surgical resection, radiotherapy, and temozolomide-based chemotherapy. Alternatives to current therapies are urgently needed as its prognosis remains poor. Anthracyclines are a class of compounds that show great potential as GBM chemotherapeutic agents and are widely used to treat solid tumors outside the central nervous system. Here we investigate the cytotoxic effects of doxorubicin and other anthracyclines on GL261 glioma tumor cells in anticipation of novel anthracycline-based CNS therapies. Three methods were used to quantify dose-dependent effects of anthracyclines on adherent GL261 tumor cells, a murine cell-based model of GBM. MTT assays quantified anthracycline effects on cell viability, comet assays examined doxorubicin genotoxicity, and flow cytometry with Annexin V/PI staining characterized doxorubicin-induced apoptosis and necrosis. Dose-dependent reductions in GL261 cell viability were found in cells treated with doxorubicin (EC50 = 4.9 µM), epirubicin (EC50 = 5.9 µM), and idarubicin (EC50 = 4.4 µM). Comet assays showed DNA damage following doxorubicin treatments, peaking at concentrations of 1.0 µM and declining after 25 µM. Lastly, flow cytometric analysis of doxorubicin-treated cells showed dose-dependent induction of apoptosis (EC50 = 5.2 µM). Together, these results characterized the cytotoxic effects of anthracyclines on GL261 glioma cells. We found dose-dependent apoptotic induction; however at high concentrations we find that cell death is likely necrotic. Our results support the continued exploration of anthracyclines as compounds with significant potential for improved GBM treatments.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Citotoxinas/farmacologia , Doxorrubicina/farmacologia , Epirubicina/farmacologia , Idarubicina/farmacologia , Neuroglia/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/tratamento farmacológico , Humanos , Camundongos , Modelos Biológicos , Neuroglia/metabolismo , Neuroglia/patologiaRESUMO
Glucocorticosteroids, including dexamethasone (Dex), are commonly used to control tumor-induced edema in the brain tumor patients. There are increasing evidences that immunosuppressive action of Dex interferes with immune surveillance resulting in lower patients overall survival; however, the mechanisms underlying these actions remain unclear. Changes in the expression of sialic acids are critical features of many cancers that reduce their immunogenicity and increase viability. Sialoglycans can be recognized by CD33-related Siglecs that negatively regulate the immune response and thereby impair immune surveillance. In this study, we analysed the effect of Dex on cell surface sialylation pattern and recognition of these structures by Siglec-F receptor in poorly immunogenic GL261 and immunogenic SMA560 glioma cells. Relative amount of α2.3-, α2.6- and α2.8-linked sialic acids were detected by Western blot with MAA (Maackia amurensis) and SNA (Sambucus nigra) lectins, and flow cytometry using monoclonal antibody anti-PSA-NCAM. In response to Dex, α2.8 sialylation in both, GL261 and SMA560 was increased, whereas the level of α2.3-linked sialic acids remained unchanged. Moreover, we found the opposite effects of Dex on α2.6 sialylation in poorly immunogenic and immunogenic glioma cells. Furthermore, changes in sialylation pattern were accompanied by dose-dependent effects of Dex on Siglec-F binding to glioma cell membranes as well as decreased α-neuraminidase activity. These results suggest that glucocorticosteroid-induced alterations in cell surface sialylation and Siglecs recognition may dampen anti-tumor immunity, and participate in glioma-promoting process by immune cells. Our study gives new view on corticosteroid therapy in glioma patients.
Assuntos
Biomarcadores Tumorais/imunologia , Dexametasona/farmacologia , Glioma/imunologia , Imunomodulação/efeitos dos fármacos , Ácido N-Acetilneuramínico/imunologia , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Proteínas de Neoplasias/imunologiaRESUMO
Gliomas represent the most common primary malignant brain tumors in adults, with an extremely poor prognosis. Among several risk factors, lifestyle was also recently identified as a major risk factor for the development of primary glioma. In the present study, we explore the relationship between obesity and glioma in a cellular model. Thus, we have study the influence of adipocytes secretome on glioma cell line GL261. Using the 3T3-L1 adipocyte cell line, and its conditioned medium (adipokines-enriched medium), we showed that adipocyte-released factors relate with glioma angiogenic, growth, hormones and metabolic behavior by MALDI-TOF-MS and proteomic array analysis. In a first view, STI1, hnRNPs and PGK1 are under expressed on CGl. Similarly, both carbonic anhydrase and aldose reductase are even suppressed in glioma cells that grown under adipokines-enriched environment. Contrariwise, RFC1, KIF5C, ANXA2, N-RAP and RACK1 are overexpressed in GL261 cell the in the presence of the adipokines-enriched medium. We further identified the factors that are released by adipocyte cells, and revealed that several pro-inflammatory and angiogenic factors, such as IL-6, IL-11, LIF, PAI-1, TNF-α, endocan, HGF, VEGF IGF-I, were secreted to the medium into a high extent, whereas TIMP-1 and SerpinE1 were under expressed on CGl. This study discloses an interesting in vitro model for the study of glioma biology under a "obesity" environment, that can be explored for the understanding of cancer cells biology, for the search of biomarkers, prognostic markers and therapeutic approaches.
Assuntos
Adipócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Inflamação/metabolismo , Células 3T3-L1 , Animais , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Glioma/patologia , Camundongos , Proteoma , ProteômicaRESUMO
Glioblastoma (GBM) is an aggressive brain cancer with an average survival rate of 15 months. The composition of the GBM tumor microenvironment-its pH, the presence of growth and immune factors, neurotransmitters, and gliotransmitters-plays an important role in GBM pathophysiology and facilitates tumor survival and growth. In particular, GBM tumor cells produce glutamate, which is toxic to healthy tissue and is associated with increased tumor invasion into adjacent brain regions. The conditions that lead to this excitotoxic release of glutamate are not completely understood. Previous studies have demonstrated that extracellular ATP is present at high levels in the tumor microenvironment, and that ATP stimulates the release of glutamate from astrocytes in culture. Here we examine the functional effects of extracellular ATP on the GL261 cell line, a model system for high-grade astrocytomas such as GBM. We show that treatment with ATP leads to an immediate, dose-dependent influx of calcium into the cell that is partially inhibited by an antagonist (o-ATP) of the ionotropic ATP receptor P2X7. In addition, GL261 cells respond to extracellular ATP with a dose-dependent release of glutamate. Consistent with other reports, we find that ATP is toxic to GL261 cells at high concentrations. Together, these results provide insight into the mechanisms responsible for glutamate production by tumor cells and inform future studies that will identify how the GBM tumor microenvironment facilitates tumor invasion into healthy areas of the brain.
Assuntos
Trifosfato de Adenosina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Glioma/metabolismo , Ácido Glutâmico/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/metabolismo , Receptores Purinérgicos P2X7/metabolismoRESUMO
BACKGROUND: The tumor-derived GL261 cell line is used as a model for studying glioblastoma and other high-grade gliomas, and can be cultured adherently or as free-floating aggregates known as neurospheres. These different culture conditions give rise to distinct phenotypes, with increased tumorigenicity displayed by neurosphere-cultured cells. An important technique for understanding GL261 pathobiology is live cell fluorescent imaging of intracellular calcium. However, live cell imaging of GL261 neurospheres presents a technical challenge, as experimental manipulations where drugs are added to the extracellular media cause the cells to move during analysis. Here we present a method to immobilize GL261 neurospheres with low melting point agarose for calcium imaging using the fluorescent calcium sensor fura-2. METHODS: GL261 cells were obtained from the NCI-Frederick Cancer Research Tumor Repository and cultured as adherent cells or induced to form neurospheres by placing freshly trypsinized cells into serum-free media containing fibroblast growth factor 2, epidermal growth factor, and B-27 supplement. Prior to experiments, adherent cells were loaded with fura-2 and cultured on 8-well chamber slides. Non-adherent neurospheres were first loaded with fura-2, placed in droplets onto an 8-well chamber slide, and finally covered with a thin layer of low melting point agarose to immobilize the cells. Ratiometric pseudocolored images were obtained during treatment with ATP, capsaicin, or vehicle control. Cells were marked as responsive if fluorescence levels increased more than 30% above baseline. Differences between treatment groups were tested using Student's t-tests and one-way ANOVA. RESULTS: We found that cellular responses to pharmacological treatments differ based on cellular phenotype. Adherent cells and neurospheres both responded to ATP with a rise in intracellular calcium. Notably, capsaicin treatment led to robust responses in GL261 neurospheres but not adherent cells. CONCLUSIONS: We demonstrate the use of low melting point agarose for immobilizing GL261 cells, a method that is broadly applicable to any cell type cultured in suspension, including acutely trypsinized cells and primary tumor cells. Our results indicate that it is important to consider GL261 phenotype (adherent or neurosphere) when interpreting data regarding physiological responses to experimental compounds.
Assuntos
Antineoplásicos/farmacologia , Cálcio/metabolismo , Imagem Molecular/métodos , Fenótipo , Trifosfato de Adenosina/farmacologia , Capsaicina/farmacologia , Linhagem Celular Tumoral , Fluorometria/métodos , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Esferoides CelularesRESUMO
Glycoprotein nonmetastatic melanoma protein B (GPNMB), which is involved in invasion and metastasis, was found to be overexpressed in various cancers. High levels of GPNMB and Na+/K+-ATPase α subunits are associated with a poor prognosis in glioblastoma patients. We showed that GPNMB interacts with Na+/K+-ATPase α subunits to activate PI3K/Akt and MEK/ERK pathways. However, it remains unclear whether the interaction of GPNMB and Na+/K+-ATPase α subunits is involves in progression of glioma. The tumor size induced by the injection of glioma GL261 cells was larger in transgenic mice overexpressing GPNMB when compared with wild-type mice. Additionally, the interaction of GPNMB and Na+/K+-ATPase α subunits was identified in the murine glioma model and in the tumors of glioblastoma patients. Ouabain, a Na+/K+-ATPase inhibitor, suppressed the glioma growth induced by the injection of glioma cells in the transgenic mice overexpressing GPNMB and blocked the GPNMB-induced migration of glioma cells. These findings indicate that GPNMB promotes glioma growth via Na+/K+-ATPase α subunits. Thus, the interaction between GPNMB and Na+, K+-ATPase α subunits represents a novel therapeutic target for the treatment of brain glioblastomas.
Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas do Olho/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicoproteínas de Membrana/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Invasividade NeoplásicaRESUMO
Novel N,N-dialkyl carboxy coumarins have been synthesized as potential anticancer agents via inhibition of monocarboxylate transporter 1 (MCT1). These coumarin carboxylic acids have been evaluated for their in vitro MCT1 inhibition, MTT cancer cell viability, bidirectional Caco-2 cell permeability, and stability in human and liver microsomes. These results indicate that one of the lead candidate compounds 4a has good absorption, metabolic stability, and a low drug efflux ratio. Systemic toxicity studies with lead compound 4a in healthy mice demonstrate that this inhibitor is well tolerated based on zero animal mortality and normal body weight gains compared to the control group. In vivo tumor growth inhibition studies in mice show that the candidate compound 4a exhibits significant single agent activity in MCT1 expressing GL261-luc2 syngraft model but doesn't show significant activity in MCT4 expressing MDA-MB-231 xenograft model, indicating the selectivity of 4a for MCT1 expressing tumors.
Assuntos
Antineoplásicos/farmacologia , Ácidos Carboxílicos/farmacologia , Cumarínicos/farmacologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Estrutura Molecular , Transportadores de Ácidos Monocarboxílicos/metabolismo , Relação Estrutura-Atividade , Simportadores/metabolismoRESUMO
Non-invasive monitoring of response to treatment of glioblastoma (GB) is nowadays carried out using MRI. MRS and MR spectroscopic imaging (MRSI) constitute promising tools for this undertaking. A temozolomide (TMZ) protocol was optimized for GL261 GB. Sixty-three mice were studied by MRI/MRS/MRSI. The spectroscopic information was used for the classification of control brain and untreated and responding GB, and validated against post-mortem immunostainings in selected animals. A classification system was developed, based on the MRSI-sampled metabolome of normal brain parenchyma, untreated and responding GB, with a 93% accuracy. Classification of an independent test set yielded a balanced error rate of 6% or less. Classifications correlated well both with tumor volume changes detected by MRI after two TMZ cycles and with the histopathological data: a significant decrease (p < 0.05) in the proliferation and mitotic rates and a 4.6-fold increase in the apoptotic rate. A surrogate response biomarker based on the linear combination of 12 spectral features has been found in the MRS/MRSI pattern of treated tumors, allowing the non-invasive classification of growing and responding GL261 GB. The methodology described can be applied to preclinical treatment efficacy studies to test new antitumoral drugs, and begets translational potential for early response detection in clinical studies.
Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão , Animais , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/análise , Antineoplásicos Alquilantes/farmacocinética , Apoptose , Encéfalo/metabolismo , Neoplasias Encefálicas/química , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dacarbazina/administração & dosagem , Dacarbazina/análise , Dacarbazina/farmacocinética , Dacarbazina/uso terapêutico , Esquema de Medicação , Feminino , Glioblastoma/química , Glioblastoma/patologia , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Temozolomida , Carga TumoralRESUMO
Glioblastoma (GBM) is the most aggressive and prevalent primary brain malignancy in adults. Current treatments provide limited benefit, and thus, the median overall survival of GBM patients is only 15 months. GBM progression is highly dependent on its ability to evade immune response, so understanding the mechanisms behind GBM-driven immunosuppression seems crucial for designing more efficient therapies. Animal models of GBM constitute a convenient tool in glioma research, and several different approaches have been already developed to model this disease in vivo, including genetic and xenograft models. Here, we describe a murine syngeneic model of glioma which recapitulates many of the key features of human disease, including complex tumor microenvironment. We present an optimized protocol for stereotactic intracranial implantation of GL261 cells into C57BL/6 mice which results in tumor growth in the striatum. This model has been widely used to get insight into glioma biology, as well as in the studies aiming at the development and validation of new therapeutic approaches.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Camundongos , Animais , Glioblastoma/patologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Glioma/patologia , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Microambiente TumoralRESUMO
PURPOSE: Distinguishing recurrent brain tumor from treatment effects, including late time-to-onset radiation necrosis (RN), presents an on-going challenge in post-treatment imaging of neuro-oncology patients. Experiments were performed in a novel mouse model that recapitulates the relevant clinical histologic features of recurrent glioblastoma growing in a RN environment, the mixed tumor/RN model. The goal of this work was to apply single-voxel deuterium (2H) magnetic resonance spectroscopy (MRS), in concert with administration of deuterated glucose, to determine if the metabolic signature of aerobic glycolysis (Warburg effect: glucose â lactate in the presence of O2), a distinguishing characteristic of proliferating tumor, provides a quantitative readout of the tumor fraction (percent) in a mixed tumor/RN lesion. PROCEDURES: 2H MRS employed the SPin-ECho full-Intensity Acquired Localized (SPECIAL) MRS pulse sequence and outer volume suppression at 11.74 T. For each subject, a single 2H MRS voxel was placed over the mixed lesion as defined by contrast enhanced (CE) 1H T1-weighted MRI. Following intravenous administration of [6,6-2H2]glucose (Glc), 2H MRS monitored the glycolytic conversion to [3,3-2H2]lactate (Lac) and glutamate + glutamine (Glu + Gln = Glx). RESULTS: Based on previous work, the tumor fraction of the mixed lesion was quantified as the ratio of tumor volume, defined by 1H magnetization transfer experiments, vs. the total mixed-lesion volume. Metabolite 2H MR spectral-amplitude values were converted to metabolite concentrations using the natural-abundance semi-heavy water (1HO2H) resonance as an internal concentration standard. The 2H MR-determined [Lac] / [Glx] ratio was strongly linearly correlated with tumor fraction in the mixed lesion (n = 9), Pearson's r = 0.87, and 77% of the variation in the [Lac] / [Glx] ratio was due to tumor percent r2 = 0.77. CONCLUSIONS: This preclinical study supports the proposal that 2H MR could occupy a well-defined secondary role when standard-of-care 1H imaging is non-diagnostic regarding tumor presence and/or response to therapy.
Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Deutério , Glioblastoma/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Modelos Animais de Doenças , Ácido Láctico/metabolismo , Necrose , Glucose , Imageamento por Ressonância MagnéticaRESUMO
Targeted drug delivery for primary brain tumors, particularly gliomas, is currently a promising approach to reduce patient relapse rates. The use of substitutable scaffolds, which enable the sustained release of clinically relevant doses of anticancer medications, offers the potential to decrease the toxic burden on the patient's organism while also enhancing their quality of life and overall survival. Upconversion nanoparticles (UCNPs) are being actively explored as promising agents for detection and monitoring of tumor growth, and as therapeutic agents that can provide isolated therapeutic effects and enhance standard chemotherapy. Our study is focused on the feasibility of constructing scaffolds using methacrylated hyaluronic acid with additional impregnation of UCNPs and the chemotherapeutic drug temozolomide (TMZ) for glioma treatment. The designed scaffolds have been demonstrated their efficacy as a drug and UCNPs delivery system for gliomas. Using the aggressive orthotopic glioma model in vivo, it was found that the scaffolds possess the capacity to ameliorate neurological disorders in mice. Moreover, upon intracranial co-implantation of the scaffolds and glioma cells, the constructs disintegrate into distinct segments, augmenting the release of UCNPs into the surrounding tissue and concurrently reducing postoperative damage to brain tissue. The use of TMZ in the scaffold composition contributed to restraining glioma development and the reduction of tumor invasiveness. Our findings unveil promising prospects for the application of photopolymerizable biocompatible scaffolds in the realm of neuro-oncology.
RESUMO
Glioblastoma (GBM) is the most aggressive brain cancer. To model GBM in research, orthotopic brain tumor models, including syngeneic models like GL261 and genetically engineered mouse models like TRP, are used. In longitudinal studies, tumor growth and the treatment response are typically tracked with in vivo imaging, including bioluminescence imaging (BLI), which is quick, cost-effective, and easily quantifiable. However, BLI requires luciferase-tagged cells, and recent studies indicate that the luciferase gene can elicit an immune response, leading to tumor rejection and experimental variation. We sought to optimize the engraftment of two luciferase-expressing GBM models, GL261 Red-FLuc and TRP-mCherry-FLuc, showing differences in tumor take, with GL261 Red-FLuc cells requiring immunocompromised mice for 100% engraftment. Immunohistochemistry and MRI revealed distinct tumor characteristics: GL261 Red-FLuc tumors were well-demarcated with densely packed cells, high mitotic activity, and vascularization. In contrast, TRP-mCherry-FLuc tumors were large, invasive, and necrotic, with perivascular invasion. Quantifying the tumor volume using the HALO® AI analysis platform yielded results comparable to manual measurements, providing a standardized and efficient approach for the reliable, high-throughput analysis of luciferase-expressing tumors. Our study highlights the importance of considering tumor engraftment when using luciferase-expressing GBM models, providing insights for preclinical research design.
RESUMO
Research in the past decade on immunogenic cell death (ICD) has shown that the immunogenicity of dying tumor cells is crucial for effective anticancer therapy. ICD induction leads to the emission of specific damage-associated molecular patterns (DAMPs), which act as danger signals and as adjuvants to activate specific anti-tumor immune responses, leading to the elimination of tumor cells and the formation of long-term immunological memory. ICD can be triggered by many anticancer treatment modalities, including photodynamic therapy (PDT). However, due to the variety of photosensitizers used and the lack of a universally adopted PDT protocol, there is a need to develop novel PDT with a proven ICD capability. In the present study, we characterized the abilities of two photoactive dyes to induce ICD in experimental glioma in vitro and in vivo. One dye was from the tetracyanotetra(aryl)porphyrazine group with 9-phenanthrenyl (pz I), and the other was from the 4-(4-fluorobenzyoxy)phenyl (pz III) group in the aryl frame of the macrocycle. We showed that after the photosensitizers penetrated into murine glioma GL261 cells, they localized predominantly in the Golgi apparatus and partially in the endoplasmic reticulum, providing efficient phototoxic activity against glioma GL261 cells upon light irradiation at a dose of 20 J/cm2 (λex 630 nm; 20 mW/cm2). We demonstrated that pz I-PDT and pz III-PDT can act as efficient ICD inducers when applied to glioma GL261 cells, facilitating the release of two crucial DAMPs (ATP and HMGB1). Moreover, glioma GL261 cells stimulated with pz I-PDT or pz III-PDT provided strong protection against tumor growth in a prophylactic subcutaneous glioma vaccination model. Finally, we showed that dendritic cell (DC) vaccines pulsed with the lysates of glioma GL261 cells pre-treated with pz-I-PDT or pz-III-PDT could act as effective inducers of adaptive anti-tumor immunity in an intracranial orthotopic glioma mouse model.
RESUMO
Therapeutic antibodies targeting immune checkpoints have shown limited efficacy in clinical trials in glioblastoma (GBM) patients. Ultrasound-mediated blood-brain barrier opening (UMBO) using low-intensity pulsed ultrasound improved drug delivery to the brain. We explored the safety and the efficacy of UMBO plus immune checkpoint inhibitors in preclinical models of GBM. A blood-brain barrier (BBB) opening was performed using a 1 MHz preclinical ultrasound system in combination with 10 µL/g microbubbles. Brain penetration of immune checkpoint inhibitors was determined, and immune cell populations were evaluated using flow cytometry. The impact of repeated treatments on survival was determined. In syngeneic GL261-bearing immunocompetent mice, we showed that UMBO safely and repeatedly opened the BBB. BBB opening was confirmed visually and microscopically using Evans blue dye and magnetic resonance imaging. UMBO plus anti-PDL-1 was associated with a significant improvement of overall survival compared to anti-PD-L1 alone. Using mass spectroscopy, we showed that the penetration of therapeutic antibodies can be increased when delivered intravenously compared to non-sonicated brains. Furthermore, we observed an enhancement of activated microglia percentage when combined with anti-PD-L1. Here, we report that the combination of UMBO and anti-PD-L1 dramatically increases GL261-bearing mice's survival compared to their counterparts treated with anti-PD-L1 alone. Our study highlights the BBB as a limitation to overcome in order to increase the efficacy of anti-PD-L1 in GBM and supports clinical trials combining UMBO and in GBM patients.
RESUMO
Orthotopic glioblastoma xenografts are paramount for evaluating the effect of innovative anti-cancer treatments. In longitudinal studies, tumor growth (or regression) of glioblastoma can only be monitored by noninvasive imaging. For this purpose, bioluminescence imaging (BLI) has gained popularity because of its low cost and easy access. In the context of the development of new nanomedicines for treating glioblastoma, we were using luciferase-expressing GL261 cell lines. Incidentally, using BLI in a specific GL261 glioblastoma model with cells expressing both luciferase and the green fluorescent protein (GL261-luc-GFP), we observed an apparent spontaneous regression. By contrast, the magnetic resonance imaging (MRI) analysis revealed that the tumors were actually growing over time. For other models (GL261 expressing only luciferase and U87 expressing both luciferase and GFP), data from BLI and MRI correlated well. We found that the divergence in results coming from different imaging modalities was not due to the tumor localization nor the penetration depth of light but was rather linked to the instability in luciferase expression in the viral construct used for the GL261-luc-GFP model. In conclusion, the use of multi-modality imaging prevents possible errors in tumor growth evaluation, and checking the stability of luciferase expression is mandatory when using BLI as the sole imaging modality.