Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828908

RESUMO

During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades , Proteínas com Domínio T , Animais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Botões de Extremidades/metabolismo , Botões de Extremidades/embriologia , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Regulação para Cima/genética , Padronização Corporal/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Mesoderma/embriologia
2.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968120

RESUMO

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Assuntos
Quinases Dyrk , Proteínas Hedgehog , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco , Animais , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proliferação de Células , Cílios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Nucleares , Proteínas Repressoras
3.
Cell Mol Life Sci ; 81(1): 74, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308696

RESUMO

Intervertebral disc degeneration is closely related to abnormal phenotypic changes in disc cells. However, the mechanism by which disc cell phenotypes are maintained remains poorly understood. Here, Hedgehog-responsive cells were found to be specifically localized in the inner annulus fibrosus and cartilaginous endplate of postnatal discs, likely activated by Indian Hedgehog. Global inhibition of Hedgehog signaling using a pharmacological inhibitor or Agc1-CreERT2-mediated deletion of Smo in disc cells of juvenile mice led to spontaneous degenerative changes in annulus fibrosus and cartilaginous endplate accompanied by aberrant disc cell differentiation in adult mice. In contrast, Krt19-CreER-mediated deletion of Smo specifically in nucleus pulposus cells led to healthy discs and normal disc cell phenotypes. Similarly, age-related degeneration of nucleus pulposus was accelerated by genetic inactivation of Hedgehog signaling in all disc cells, but not in nucleus pulposus cells. Furthermore, inactivation of Gli2 in disc cells resulted in partial loss of the vertebral growth plate but otherwise healthy discs, whereas deletion of Gli3 in disc cells largely corrected disc defects caused by Smo ablation in mice. Taken together, our findings not only revealed for the first time a direct role of Hedgehog-Gli3 signaling in maintaining homeostasis and cell phenotypes of annuls fibrosus and cartilaginous endplate, but also identified disc-intrinsic Hedgehog signaling as a novel non-cell-autonomous mechanism to regulate nucleus pulposus cell phenotype and protect mice from age-dependent nucleus pulposus degeneration. Thus, targeting Hedgehog signaling may represent a potential therapeutic strategy for the prevention and treatment of intervertebral disc degeneration.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Camundongos , Animais , Degeneração do Disco Intervertebral/genética , Proteínas Hedgehog/genética , Fenótipo
4.
Dev Biol ; 504: 128-136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37805104

RESUMO

Transcriptional responses to the Hedgehog (HH) signaling pathway are primarily modulated by GLI repression in the mouse limb. Previous studies suggested a role for the BAF chromatin remodeling complex in mediating GLI repression. Consistent with this possibility, the core BAF complex protein SMARCC1 is present at most active limb enhancers including the majority of GLI enhancers. However, in contrast to GLI repression which reduces chromatin accessibility, SMARCC1 maintains chromatin accessibility at most enhancers, including those bound by GLI. Moreover, SMARCC1 binding at GLI-regulated enhancers occurs independently of GLI3. Consistent with previous studies, some individual GLI target genes are mis-regulated in Smarcc1 conditional knockouts, though most GLI target genes are unaffected. Moreover, SMARCC1 is not necessary for mediating constitutive GLI repression in HH mutant limb buds. We conclude that SMARCC1 does not mediate GLI3 repression, which we propose utilizes alternative chromatin remodeling complexes.


Assuntos
Cromatina , Botões de Extremidades , Animais , Camundongos , Cromatina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Botões de Extremidades/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
5.
Dev Growth Differ ; 66(1): 75-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925606

RESUMO

Abnormal expression of the transcriptional regulator and hedgehog (Hh) signaling pathway effector Gli3 is known to trigger congenital disease, most frequently affecting the central nervous system (CNS) and the limbs. Accurate delineation of the genomic cis-regulatory landscape controlling Gli3 transcription during embryonic development is critical for the interpretation of noncoding variants associated with congenital defects. Here, we employed a comparative genomic analysis on fish species with a slow rate of molecular evolution to identify seven previously unknown conserved noncoding elements (CNEs) in Gli3 intronic intervals (CNE15-21). Transgenic assays in zebrafish revealed that most of these elements drive activities in Gli3 expressing tissues, predominantly the fins, CNS, and the heart. Intersection of these CNEs with human disease associated SNPs identified CNE15 as a putative mammalian craniofacial enhancer, with conserved activity in vertebrates and potentially affected by mutation associated with human craniofacial morphology. Finally, comparative functional dissection of an appendage-specific CNE conserved in slowly evolving fish (elephant shark), but not in teleost (CNE14/hs1586) indicates co-option of limb specificity from other tissues prior to the divergence of amniotes and lobe-finned fish. These results uncover a novel subset of intronic Gli3 enhancers that arose in the common ancestor of gnathostomes and whose sequence components were likely gradually modified in other species during the process of evolutionary diversification.


Assuntos
Elementos Facilitadores Genéticos , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Elementos Facilitadores Genéticos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Animais Geneticamente Modificados , Mamíferos , Evolução Molecular , Sequência Conservada/genética
6.
Bioessays ; 44(12): e2200139, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251875

RESUMO

Hedgehog (HH) signaling is a conserved pathway that drives developmental growth and is essential for the formation of most organs. The expression of HH target genes is regulated by a dual switch mechanism where GLI proteins function as bifunctional transcriptional activators (in the presence of HH signaling) and transcriptional repressors (in the absence of HH signaling). This results in a tight control of GLI target gene expression during rapidly changing levels of pathway activity. It has long been presumed that GLI proteins also repress target genes prior to the initial expression of HH in a given tissue. This idea forms the basis for the limb bud pre-patterning model for regulating digit number. Recent findings indicate that GLI repressor proteins are indeed present prior to HH signaling but contrary to this model, GLI proteins are inert as they do not regulate transcriptional responses or enhancer chromatin modifications at this time. These findings suggest that GLI transcriptional repressor activity is not a default state as assumed, but is itself regulated in an unknown fashion. We discuss these findings and their implications for understanding pre-patterning, digit regulation, and HH-driven disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fatores de Transcrição/metabolismo , Transdução de Sinais/fisiologia , Expressão Gênica
7.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750251

RESUMO

One of the central problems of vertebrate evolution is understanding the relationship among the distal portions of fins and limbs. Lacking comparable morphological markers of these regions in fish and tetrapods, these relationships have remained uncertain for the past century and a half. Here we show that Gli3 functions in controlling the proliferative expansion of distal progenitors are shared among dorsal and paired fins as well as tetrapod limbs. Mutant knockout gli3 fins in medaka (Oryzias latipes) form multiple radials and rays, in a pattern reminiscent of the polydactyly observed in Gli3-null mutant mice. In limbs, Gli3 controls both anterior-posterior patterning and cell proliferation, two processes that can be genetically uncoupled. In situ hybridization, quantification of proliferation markers, and analysis of regulatory regions reveal that in paired and dorsal fins, gli3 plays a main role in controlling proliferation but not in patterning. Moreover, gli3 down-regulation in shh mutant fins rescues fin loss in a manner similar to how Gli3 deficiency restores digits in the limbs of Shh mutant mouse embryos. We hypothesize that the Gli3/Shh gene pathway preceded the origin of paired appendages and was originally involved in modulating cell proliferation. Accordingly, the distal regions of dorsal fins, paired fins, and limbs retain a deep regulatory and functional homology that predates the origin of paired appendages.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Redes Reguladoras de Genes/genética , Proteínas do Tecido Nervoso/genética , Oryzias/genética , Proteína Gli3 com Dedos de Zinco/genética , Animais , Evolução Biológica , Padronização Corporal/genética , Proliferação de Células/genética , Extremidades/crescimento & desenvolvimento , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos
8.
Am J Med Genet A ; 191(9): 2337-2343, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37435845

RESUMO

Two children are presented who have a distinct syndrome of multiple buccolingual frenula, a stiff and short fifth finger with small nails, a hypothalamic hamartoma, mild to moderate neurological impairment, and mild endocrinological symptoms. No variant assessed to be pathogenic or likely pathogenic was detected in the GLI3 gene in either child. This syndrome appears to be distinct from the inherited Pallister-Hall syndrome associated with GLI3 variants, which is characterized by hypothalamic hamartoma, mesoaxial polydactyly, and other anomalies. In the individuals described here, manifestations outside of the central nervous system were milder and the mesoaxial polydactyly, which is common in individuals with Pallister-Hall syndrome, was absent. Instead, these children had multiple buccolingual frenula together with the unusual appearance of the fifth digit. It remains unclear whether these two individuals represent a separate nosologic entity or if they represent a milder manifestation of one of the more severe syndromes associated with a hypothalamic hamartoma.


Assuntos
Hamartoma , Doenças Hipotalâmicas , Síndrome de Pallister-Hall , Polidactilia , Criança , Humanos , Síndrome de Pallister-Hall/diagnóstico , Síndrome de Pallister-Hall/genética , Hamartoma/diagnóstico , Hamartoma/genética , Hamartoma/patologia , Doenças Hipotalâmicas/diagnóstico , Doenças Hipotalâmicas/genética , Doenças Hipotalâmicas/patologia , Polidactilia/genética
9.
Proc Natl Acad Sci U S A ; 117(2): 1090-1096, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31896583

RESUMO

In the tetrapod limb, the digits (fingers or toes) are the elements most subject to morphological diversification in response to functional adaptations. However, despite their functional importance, the mechanisms controlling digit morphology remain poorly understood. Here we have focused on understanding the special morphology of the thumb (digit 1), the acquisition of which was an important adaptation of the human hand. To this end, we have studied the limbs of the Hoxa13 mouse mutant that specifically fail to form digit 1. We show that, consistent with the role of Hoxa13 in Hoxd transcriptional regulation, the expression of Hoxd13 in Hoxa13 mutant limbs does not extend into the presumptive digit 1 territory, which is therefore devoid of distal Hox transcripts, a circumstance that can explain its agenesis. The loss of Hoxd13 expression, exclusively in digit 1 territory, correlates with increased Gli3 repressor activity, a Hoxd negative regulator, resulting from increased Gli3 transcription that, in turn, is due to the release from the negative modulation exerted by Hox13 paralogs on Gli3 regulatory sequences. Our results indicate that Hoxa13 acts hierarchically to initiate the formation of digit 1 by reducing Gli3 transcription and by enabling expansion of the 5'Hoxd second expression phase, thereby establishing anterior-posterior asymmetry in the handplate. Our work uncovers a mutual antagonism between Gli3 and Hox13 paralogs that has important implications for Hox and Gli3 gene regulation in the context of development and evolution.


Assuntos
Extremidades/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Transcriptoma , Proteína Gli3 com Dedos de Zinco/genética
10.
Dev Dyn ; 251(9): 1439-1455, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34719843

RESUMO

BACKGROUND: The phalanges are the final skeletal elements to form in the vertebrate limb and their identity is regulated by signaling at the phalanx forming region (PFR) located at the tip of the developing digit ray. Here, we seek to explore the relationship between PFR activity and phalanx morphogenesis, which define the most distal limb skeletal elements, and signals associated with termination of limb outgrowth. RESULTS: As Grem1 is extinguished in the distal chick limb mesoderm, the chondrogenesis marker Aggrecan is up-regulated in the metatarsals and phalanges. Fate mapping confirms that subridge mesoderm cells contribute to the metatarsal and phalanges when subridge Grem1 is down-regulated. Grem1 overexpression specifically blocks chick phalanx development by inhibiting PFR activity. PFR activity and digit development are also disrupted following overexpression of a Gli3 repressor, which results in Grem1 expression in the distal limb and downregulation of Bmpr1b. CONCLUSIONS: Based on expression and fate mapping studies, we propose that downregulation of Grem1 in the distal limb marks the transition from metatarsal to phalanx development. This suggests that downregulation of Grem1 in the distal limb mesoderm is necessary for phalanx development. Grem1 downregulation allows for full PFR activity and phalanx progenitor cell commitment to digit fate.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Regulação para Baixo , Extremidades , Botões de Extremidades/metabolismo , Mesoderma/metabolismo , Transdução de Sinais
11.
Genes Chromosomes Cancer ; 61(2): 63-70, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34651371

RESUMO

Low-grade endometrial stromal sarcoma (ESS) is a hormone-responsive low-grade sarcoma typically occurring in the uterine corpus in women. Their genetic hallmarks are recurrent gene fusions involving JAZF1, partnering with either SUZ12 gene or less commonly with PHF1. Low-grade ESS-like sarcoma, or endometrioid stromal sarcoma, is exceptionally rare in males and has been reported to date only in two cases, one in the paratesticular area and the other of prostatic stromal origin. We report herein two new cases of low-grade ESS-like sarcoma in male patients, one presenting as a periprostatic/peri-rectal mass with a JAZF1-GLI3 fusion, while the other as a paratesticular mass with a JAZF1-PHF1 fusion. As the GLI3 fusion appeared novel, we searched the transcriptional signature of 35 low-grade ESS from our archives and found a similar JAZF1-GLI3 fusion in a low-grade ESS arising from the uterine corpus, supporting a common pathogenesis. Histopathologically, both cases demonstrate cellular, monotonous proliferation of ovoid to fusiform cells with a background of arteriolar vascular network. Immunohistochemically, the neoplastic cells express ER, PR, and CD10, similar to ESS. One case also expresses diffuse and strong AR. On follow-up, the patient with the periprostatic mass recurred 2 years after initial surgery with peritoneal "sarcomatosis." We describe the salient diagnostic morphologic, immunohistochemical, and molecular features and discuss the differential diagnosis and possible pathogenesis of this unusual entity.


Assuntos
Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Neoplasias dos Genitais Masculinos , Proteínas de Fusão Oncogênica/genética , Neoplasias Pélvicas , Sarcoma , Humanos , Masculino , Pessoa de Meia-Idade
12.
Am J Med Genet C Semin Med Genet ; 190(3): 264-278, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36165461

RESUMO

Pallister-Hall syndrome (PHS) is a rare autosomal dominant disease diagnosed by the presence of hypothalamic hamartoma, mesoaxial polydactyly and a truncating variant in the middle third of the GLI-Kruppel family member 3 (GLI3) gene. PHS may also include a wide range of clinical phenotypes affecting multiple organ systems including congenital anomalies of the kidney and urinary tract (CAKUT). The observed clinical phenotypes are consistent with the essential role of GLI3, a transcriptional effector in the hedgehog (Hh) signaling pathway, in organogenesis. However, the mechanisms by which truncation of GLI3 in PHS results in such a variety of clinical phenotypes with variable severity, even within the same organ, remain unclear. In this study we focus on presentation of CAKUT in PHS. A systematic analysis of reported PHS patients (n = 78) revealed a prevalence of 26.9% (21/78) of CAKUT. Hypoplasia (± dysplasia) and agenesis were the two main types of CAKUT; bilateral and unilateral CAKUT were reported with equal frequency. Examination of clinical phenotypes with CAKUT revealed a significant association between CAKUT and craniofacial defects, bifid epiglottis and a Disorder of Sex Development, specifically affecting external genitalia. Lastly, we determined that PHS patients with CAKUT predominately had substitution type variants (as opposed to deletion type variants in non-CAKUT PHS patients) in the middle third of the GLI3 gene. These results provide a foundation for future work aimed at uncovering the molecular mechanisms by which variant GLI3 result in the wide range and severity of clinical features observed in PHS.


Assuntos
Anormalidades Múltiplas , Síndrome de Pallister-Hall , Sistema Urinário , Humanos , Síndrome de Pallister-Hall/diagnóstico , Síndrome de Pallister-Hall/genética , Proteína Gli3 com Dedos de Zinco/genética , Fatores de Transcrição Kruppel-Like/genética , Anormalidades Múltiplas/genética , Proteínas do Tecido Nervoso/genética , Proteínas Hedgehog , Rim
13.
Development ; 146(14)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31221640

RESUMO

Bone protrusions provide stable anchoring sites for ligaments and tendons and define the unique morphology of each long bone. Despite their importance, the mechanism by which superstructures are patterned is unknown. Here, we identify components of the genetic program that control the patterning of Sox9+/Scx+ superstructure progenitors in mouse and show that this program includes both global and regional regulatory modules. Using light-sheet fluorescence microscopy combined with genetic lineage labeling, we mapped the broad contribution of the Sox9+/Scx+ progenitors to the formation of bone superstructures. Then, by combining literature-based evidence, comparative transcriptomic analysis and genetic mouse models, we identified Gli3 as a global regulator of superstructure patterning, whereas Pbx1, Pbx2, Hoxa11 and Hoxd11 act as proximal and distal regulators, respectively. Moreover, by demonstrating a dose-dependent pattern regulation in Gli3 and Pbx1 compound mutations, we show that the global and regional regulatory modules work in a coordinated manner. Collectively, our results provide strong evidence for genetic regulation of superstructure patterning, which further supports the notion that long bone development is a modular process.This article has an associated 'The people behind the papers' interview.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Osso e Ossos/anatomia & histologia , Osso e Ossos/embriologia , Genes Controladores do Desenvolvimento , Proteínas de Homeodomínio/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Desenvolvimento Ósseo/genética , Osso e Ossos/metabolismo , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes Controladores do Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Ligamentos/anatomia & histologia , Ligamentos/embriologia , Ligamentos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Gravidez , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Tendões/anatomia & histologia , Tendões/embriologia , Tendões/metabolismo
14.
FASEB J ; 35(5): e21587, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33891350

RESUMO

We examined the association between genotype and resistance training-induced changes (12 wk) in dual x-ray energy absorptiometry (DXA)-derived lean soft tissue mass (LSTM) as well as muscle fiber cross-sectional area (fCSA; vastus lateralis; n = 109; age = 22 ± 2 y, BMI = 24.7 ± 3.1 kg/m2 ). Over 315 000 genetic polymorphisms were interrogated from muscle using DNA microarrays. First, a targeted investigation was performed where single nucleotide polymorphisms (SNP) identified from a systematic literature review were related to changes in LSTM and fCSA. Next, genome-wide association (GWA) studies were performed to reveal associations between novel SNP targets with pre- to post-training change scores in mean fCSA and LSTM. Our targeted investigation revealed no genotype-by-time interactions for 12 common polymorphisms regarding the change in mean fCSA or change in LSTM. Our first GWA study indicated no SNP were associated with the change in LSTM. However, the second GWA study indicated two SNP exceeded the significance level with the change in mean fCSA (P = 6.9 × 10-7 for rs4675569, 1.7 × 10-6 for rs10263647). While the former target is not annotated (chr2:205936846 (GRCh38.p12)), the latter target (chr7:41971865 (GRCh38.p12)) is an intron variant of the GLI Family Zinc Finger 3 (GLI3) gene. Follow-up analyses indicated fCSA increases were greater in the T/C and C/C GLI3 genotypes than the T/T GLI3 genotype (P < .05). Data from the Auburn cohort also revealed participants with the T/C and C/C genotypes exhibited increases in satellite cell number with training (P < .05), whereas T/T participants did not. Additionally, those with the T/C and C/C genotypes achieved myonuclear addition in response to training (P < .05), whereas the T/T participants did not. In summary, this is the first GWA study to examine how polymorphisms associate with the change in hypertrophy measures following resistance training. Future studies are needed to determine if the GLI3 variant differentiates hypertrophic responses to resistance training given the potential link between this gene and satellite cell physiology.


Assuntos
Hipertrofia/patologia , Íntrons , Fibras Musculares Esqueléticas/patologia , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Treinamento Resistido/efeitos adversos , Proteína Gli3 com Dedos de Zinco/genética , Adulto , Estudo de Associação Genômica Ampla , Humanos , Hipertrofia/etiologia , Hipertrofia/metabolismo , Masculino , Fibras Musculares Esqueléticas/metabolismo , Adulto Jovem
15.
J Neurosci ; 40(2): 311-326, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31767679

RESUMO

During mammalian development, gonadotropin-releasing-hormone-1 neurons (GnRH-1ns) migrate from the developing vomeronasal organ (VNO) into the brain asserting control of pubertal onset and fertility. Recent data suggest that correct development of the olfactory ensheathing cells (OEC) is imperative for normal GnRH-1 neuronal migration. However, the full ensemble of molecular pathways that regulate OEC development remains to be fully deciphered. Loss-of-function of the transcription factor Gli3 is known to disrupt olfactory development, however, if Gli3 plays a role in GnRH-1 neuronal development is unclear. By analyzing Gli3 extra-toe mutants (Gli3Xt/Xt), we found that Gli3 loss-of-function compromises the onset of achaete-scute family bHLH transcription factor 1 (Ascl-1)+ vomeronasal progenitors and the formation of OEC in the nasal mucosa. Surprisingly, GnRH-1 neurogenesis was intact in Gli3Xt/Xt mice but they displayed significant defects in GnRH-1 neuronal migration. In contrast, Ascl-1null mutants showed reduced neurogenesis for both vomeronasal and GnRH-1ns but less severe defects in OEC development. These observations suggest that Gli3 is critical for OEC development in the nasal mucosa and subsequent GnRH-1 neuronal migration. However, the nonoverlapping phenotypes between Ascl-1 and Gli3 mutants indicate that Ascl-1, while crucial for GnRH-1 neurogenesis, is not required for normal OEC development. Because Kallmann syndrome (KS) is characterized by abnormal GnRH-1ns migration, we examined whole-exome sequencing data from KS subjects. We identified and validated a GLI3 loss-of-function variant in a KS individual. These findings provide new insights into GnRH-1 and OECs development and demonstrate that human GLI3 mutations contribute to KS etiology.SIGNIFICANCE STATEMENT The transcription factor Gli3 is necessary for correct development of the olfactory system. However, if Gli3 plays a role in controlling GnRH-1 neuronal development has not been addressed. We found that Gli3 loss-of-function compromises the onset of Ascl-1+ vomeronasal progenitors, formation of olfactory ensheathing cells in the nasal mucosa, and impairs GnRH-1 neuronal migration to the brain. By analyzing Ascl-1null mutants we dissociated the neurogenic defects observed in Gli3 mutants from lack of olfactory ensheathing cells in the nasal mucosa, moreover, we discovered that Ascl-1 is necessary for GnRH-1 ontogeny. Analyzing human whole-exome sequencing data, we identified a GLI3 loss-of-function variant in a KS individual. Our data suggest that GLI3 is a candidate gene contributing to KS etiology.


Assuntos
Síndrome de Kallmann/genética , Neurogênese/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Órgão Vomeronasal/fisiologia , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Movimento Celular/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Bulbo Olfatório/crescimento & desenvolvimento , Mucosa Olfatória/metabolismo , Precursores de Proteínas/metabolismo , Proteína Gli3 com Dedos de Zinco/genética
16.
Semin Cell Dev Biol ; 93: 153-163, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31429406

RESUMO

The Hedgehog (Hh) signaling pathway is crucial for the development of vertebrate and invertebrate animals alike. Hh ligand binds its receptor Patched (Ptc), allowing the activation of the obligate signal transducer Smoothened (Smo). The levels and localizations of both Ptc and Smo are regulated by ubiquitination, and Smo is under additional regulation by phosphorylation and SUMOylation. Downstream of Smo, the Ci/Gli family of transcription factors regulates the transcriptional responses to Hh. Phosphorylation, ubiquitination and SUMOylation are important for the stability and localization of Ci/Gli proteins and Hh signaling output. Finally, Suppressor of Fused directly regulates Ci/Gli proteins and itself is under proteolytic regulation that is critical for normal Hh signaling.


Assuntos
Proteínas Hedgehog/metabolismo , Proteostase , Transdução de Sinais , Animais , Humanos
17.
Dev Genes Evol ; 231(1-2): 21-32, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33655411

RESUMO

The zinc finger-containing transcription factor Gli3 is a key mediator of Hedgehog (Hh) signaling pathway. In vertebrates, Gli3 has widespread expression pattern during early embryonic development. Along the anteroposterior axes of the central nervous system (CNS), dorsoventral neural pattern elaboration is achieved through Hh mediated spatio-temporal deployment of Gli3 transcripts. Previously, we and others uncovered a set of enhancers that mediate many of the known aspects of Gli3 expression during neurogenesis. However, the potential role of Gli3 associated enhancers in trait evolution has not yet received any significant attention. Here, we investigate the evolutionary patterns of Gli3 associated CNS-specific enhancers that have been reported so far. A subset of these enhancers has undergone an accelerated rate of molecular evolution in the human lineage in comparison to other primates/mammals. These fast-evolving enhancers have acquired human-specific changes in transcription factor binding sites (TFBSs). These human-unique changes within subset of Gli3 associated CNS-specific enhancers were further validated as single nucleotide polymorphisms through 1000 Genome Project Phase 3 data. This work not only infers the molecular evolutionary patterns of Gli3 associated enhancers but also provides clues for putative genetic basis of the population-specificity of gene expression regulation.


Assuntos
Sistema Nervoso Central/metabolismo , Elementos Facilitadores Genéticos , Proteínas do Tecido Nervoso/genética , Seleção Genética , Proteína Gli3 com Dedos de Zinco/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Evolução Molecular , Humanos , Neurogênese
18.
Development ; 145(17)2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30093555

RESUMO

The cerebral cortex contains an enormous number of neurons, allowing it to perform highly complex neural tasks. Understanding how these neurons develop at the correct time and place and in accurate numbers constitutes a major challenge. Here, we demonstrate a novel role for Gli3, a key regulator of cortical development, in cortical neurogenesis. We show that the onset of neuron formation is delayed in Gli3 conditional mouse mutants. Gene expression profiling and cell cycle measurements indicate that shortening of the G1 and S phases in radial glial cells precedes this delay. Reduced G1 length correlates with an upregulation of the cyclin-dependent kinase gene Cdk6, which is directly regulated by Gli3. Moreover, pharmacological interference with Cdk6 function rescues the delayed neurogenesis in Gli3 mutant embryos. Overall, our data indicate that Gli3 controls the onset of cortical neurogenesis by determining the levels of Cdk6 expression, thereby regulating neuronal output and cortical size.


Assuntos
Ciclo Celular/fisiologia , Córtex Cerebral/embriologia , Quinase 6 Dependente de Ciclina/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Córtex Cerebral/citologia , Quinase 6 Dependente de Ciclina/genética , Feminino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Proteína Gli3 com Dedos de Zinco/genética
19.
Development ; 145(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29487109

RESUMO

The primary cilium is a microtubule-based organelle required for Hedgehog (Hh) signaling and consists of a basal body, a ciliary axoneme and a compartment between the first two structures, called the transition zone (TZ). The TZ serves as a gatekeeper to control protein composition in cilia, but less is known about its role in ciliary bud formation. Here, we show that centrosomal protein Dzip1l is required for Hh signaling between Smoothened and Sufu. Dzip1l colocalizes with basal body appendage proteins and Rpgrip1l, a TZ protein. Loss of Dzip1l results in reduced ciliogenesis and dysmorphic cilia in vivo Dzip1l interacts with, and acts upstream of, Cby, an appendage protein, in ciliogenesis. Dzip1l also has overlapping functions with Bromi (Tbc1d32) in ciliogenesis, cilia morphogenesis and neural tube patterning. Loss of Dzip1l arrests ciliogenesis at the stage of ciliary bud formation from the TZ. Consistent with this, Dzip1l mutant cells fail to remove the capping protein Cp110 (Ccp110) from the distal end of mother centrioles and to recruit Rpgrip1l to the TZ. Therefore, Dzip1l promotes ciliary bud formation and is required for the integrity of the TZ.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Padronização Corporal/genética , Técnicas de Cultura de Células , Centríolos/metabolismo , Cílios/fisiologia , Imunofluorescência , Camundongos , Organogênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
20.
Development ; 145(12)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29802149

RESUMO

Skeletal myogenesis serves as a paradigm to investigate the molecular mechanisms underlying exquisitely regulated cell fate decisions in developing embryos. The evolutionarily conserved miR-133 family of microRNAs is expressed in the myogenic lineage, but how it acts remains incompletely understood. Here, we performed genome-wide differential transcriptomics of miR-133 knockdown (KD) embryonic somites, the source of vertebrate skeletal muscle. These analyses, performed in chick embryos, revealed extensive downregulation of Sonic hedgehog (Shh) pathway components: patched receptors, Hedgehog interacting protein and the transcriptional activator Gli1. By contrast, Gli3, a transcriptional repressor, was de-repressed and confirmed as a direct miR-133 target. Phenotypically, miR-133 KD impaired myotome formation and growth by disrupting proliferation, extracellular matrix deposition and epithelialization. Together, these observations suggest that miR-133-mediated Gli3 silencing is crucial for embryonic myogenesis. Consistent with this idea, we found that activation of Shh signalling by either purmorphamine, or KD of Gli3 by antisense morpholino, rescued the miR-133 KD phenotype. Thus, we identify a novel Shh/myogenic regulatory factor/miR-133/Gli3 axis that connects epithelial morphogenesis with myogenic fate specification.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/biossíntese , MicroRNAs/genética , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Proteínas do Tecido Nervoso/biossíntese , Receptores Patched/biossíntese , Proteína Gli3 com Dedos de Zinco/biossíntese , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Embrião de Galinha , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Cultura Primária de Células , Proteína GLI1 em Dedos de Zinco/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA