Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 115(7): 2107-2116, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641866

RESUMO

Aging is a life phenomenon that occurs in most living organisms and is a major risk factor for many diseases, including cancer. Cellular senescence is a cellular trait induced by various genomic and epigenetic stresses. Senescent cells are characterized by irreversible cell growth arrest and excessive secretion of inflammatory cytokines (senescence-associated secretory phenotypes, SASP). Chronic tissue microinflammation induced by SASP contributes to the pathogenesis of a variety of age-related diseases, including cancer. Senolysis is a promising new strategy to selectively eliminate senescent cells in order to suppress chronic inflammation, suggesting its potential use as an anticancer therapy. This review summarizes recent findings on the molecular basis of senescence in cancer cells and senolysis.


Assuntos
Senescência Celular , Neoplasias , Fenótipo Secretor Associado à Senescência , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Inflamação/metabolismo , Envelhecimento/metabolismo , Citocinas/metabolismo
2.
Mol Med ; 30(1): 64, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760723

RESUMO

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Assuntos
Endometriose , Glutaminase , Glutamina , Estabilidade de RNA , RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Glutaminase/metabolismo , Glutaminase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Glutamina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Ligação Proteica
3.
Pharmacol Res ; 206: 107252, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945380

RESUMO

Adagrasib (MRTX849), an approved and promising KRAS G12C inhibitor, has shown the promising results for treating patients with advanced non-small cell lung cancer (NSCLC) or colorectal cancer (CRC) harboring KRAS-activating mutations. However, emergence of the acquired resistance limits its long-term efficacy and clinical application. Further understanding of the mechanism of the acquired resistance is crucial for developing more new effective therapeutic strategies. Herein, we firstly found a new connection between the acquired resistance to MRTX849 and nuclear factor erythroid 2-related factor 2 (Nrf2). The expression levels of Nrf2 and GLS1 proteins were substantially elevated in different CRC cell lines with the acquired resistance to MRTX849 in comparison with their corresponding parental cell lines. Next, we discovered that RA-V, one of natural cyclopeptides isolated from the roots of Rubia yunnanensis, could restore the response of resistant CRC cells to MRTX849. The results of molecular mechanisms showed that RA-V suppressed Nrf2 protein through the ubiquitin-proteasome-dependent degradation, leading to the induction of oxidative and ER stress, and DNA damage in CRC cell lines. Consequently, RA-V reverses the resistance to MRTX849 by inhibiting the Nrf2/GLS1 axis, which shows the potential for further developing into one of novel adjuvant therapies of MRTX849.


Assuntos
Neoplasias Colorretais , Fator 2 Relacionado a NF-E2 , Peptídeos Cíclicos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Camundongos Nus
4.
Exp Mol Pathol ; 137: 104896, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703552

RESUMO

BACKGROUND: Glutaminase 1 (GLS1), a key enzyme in glutamine metabolism in cancer cells, acts as a tumor promoter and could be a potential therapeutic target. CB-839, a GLS1-specific inhibitor, was developed recently. Herein, we aimed to elucidate the anti-tumor effects and mechanism of action of CB-839 in colorectal cancer (CRC). METHODS: Using the UCSC Xena public database, we evaluated GLS1 expression in various cancers. Immunostaining for GLS1 was performed on 154 surgically resected human CRC specimens. Subsequently, we examined the GLS1 mRNA expression levels in eight CRC cell lines and evaluated the association between GLS1 expression and CB-839 efficacy. To create a reproducible CRC model with abundant stroma and an allogeneic immune response, we co-transplanted CT26 and stem cells into BALB/c mice and treated them with CB-839. Finally, RNA sequencing of mouse tumors was performed. RESULTS: Database analysis showed higher GLS1 expression in CRC tissues than in normal colon tissues. Clinical samples from 114 of the 154 patients with CRC showed positive GLS1 expression. GLS1 expression in clinical CRC tissues correlated with vascular invasion. CB-839 treatment inhibited cancer cell proliferation depending on GLS1 expression in vitro and inhibited tumor growth and metastasis in the CRC mouse model. RNA sequencing revealed that CB-839 treatment inhibited stromal activation, tumor growth, migration, and angiogenesis. These findings were validated through in vitro and in vivo experiments and clinical specimen analysis. CONCLUSIONS: GLS1 expression in CRC plays important roles in tumor progression. CB-839 has inhibitory effects on cancer proliferation and the tumor microenvironment.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Glutaminase , Camundongos Endogâmicos BALB C , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Animais , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Glutaminase/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Benzenoacetamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Células Estromais/metabolismo , Células Estromais/patologia , Células Estromais/efeitos dos fármacos , Tiadiazóis/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Pessoa de Meia-Idade , Modelos Animais de Doenças
5.
Molecules ; 29(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339370

RESUMO

In this study, novel ergosterol peroxide (EP) derivatives were synthesized and evaluated to assess their antiproliferative activity against four human cancer cell lines (A549, HepG2, MCF-7, and MDA-MB-231). Compound 3g exhibited the most potent antiproliferative activity, with an IC50 value of 3.20 µM against MDA-MB-231. This value was 5.4-fold higher than that of the parental EP. Bioassay optimization further identified 3g as a novel glutaminase 1 (GLS1) inhibitor (IC50 = 3.77 µM). In MDA-MB-231 cells, 3g reduced the cellular glutamate levels by blocking the glutamine hydrolysis pathway, which triggered reactive oxygen species production and induced caspase-dependent apoptosis. Molecular docking indicated that 3g interacts with the reaction site of the variable binding pocket by forming multiple interactions with GLS1. In a mouse model of breast cancer, 3g showed remarkable therapeutic effects at a dose of 50 mg/kg, with no apparent toxicity. Based on these results, 3g could be further evaluated as a novel GLS1 inhibitor for triple-negative breast cancer (TNBC) therapy.


Assuntos
Antineoplásicos , Proliferação de Células , Ergosterol , Glutaminase , Simulação de Acoplamento Molecular , Neoplasias de Mama Triplo Negativas , Humanos , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ergosterol/análogos & derivados , Ergosterol/química , Ergosterol/farmacologia , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 93: 129438, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549852

RESUMO

GLS1 is an attractive target not only as anticancer agents but also as candidates for various potential pharmaceutical applications such as anti-aging and anti-obesity treatments. We performed docking simulations based on the complex crystal structure of GLS1 and its inhibitor CB-839 and found that compound A bearing a thiadiazole skeleton exhibits GLS1 inhibition. Furthermore, we synthesized 27 thiadiazole derivatives in an effort to obtain a more potent GLS1 inhibitor. Among the synthesized derivatives, 4d showed more potent GLS1 inhibitory activity (IC50 of 46.7 µM) than known GLS1 inhibitor DON and A. Therefore, 4d is a very promising novel GLS1 inhibitor.


Assuntos
Antineoplásicos , Tiadiazóis , Antineoplásicos/farmacologia , Glutaminase/antagonistas & inibidores , Tiadiazóis/farmacologia , Tiadiazóis/química
7.
Bioorg Med Chem Lett ; 87: 129266, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011768

RESUMO

Glutaminase converts glutamine into glutamic acid and has two isoforms: glutaminase 1 (GLS1) and glutaminase 2 (GLS2). GLS1 is overexpressed in several tumors, and research to develop glutaminase inhibitors as antitumor drugs is currently underway. The present study examined candidate GLS1 inhibitors using in silico screening and attempted to synthesize novel GLS1 inhibitors and assess their GLS1 inhibitory activities in a mouse kidney extract and against recombinant mouse and human GLS1. Novel compounds were synthesized using compound C as the lead compound, and their GLS1 inhibitory activities were evaluated using the mouse kidney extract. Among the derivatives tested, the trans-4-hydroxycyclohexylamide derivative 2j exhibited the strongest inhibitory activity. We also assessed the GLS1 inhibitory activities of the derivatives 2j, 5i, and 8a against recombinant mouse and human GLS1. The derivatives 5i and 8a significantly decreased the production of glutamic acid at 10 mM. In conclusion, we herein identified two compounds that exhibited GLS1 inhibitory activities with equal potencies as known GLS1 inhibitors. These results will contribute to the development of effective novel GLS1 inhibitors with more potent inhibitory activity.


Assuntos
Ácido Glutâmico , Glutaminase , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Glutamina , Relação Estrutura-Atividade
8.
Drug Resist Updat ; 63: 100852, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849943

RESUMO

NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Citratos/uso terapêutico , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Oncogenes , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética
9.
Ecotoxicol Environ Saf ; 255: 114763, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37032576

RESUMO

Methyl tertiary-butyl ether (MTBE) is a new unleaded gasoline additive, which is considered to be associated with abnormal lipid metabolism in many studies, but the metabolic characteristics and mechanism are still unclear. To observe the characteristics of lipid metabolism induced by MTBE and possible pathways, 21 male Wistar rats got intragastric administration for 24 weeks. The serum lipid metabolism indexes and metabolites were analyzed separately by a biochemical analyzer and untargeted metabolomics. And found that serum high-density lipoprotein cholesterol (HDL-C) levels in the exposure group were significantly reduced, and serum very low-density lipoprotein (VLDL) levels were significantly increased. In untargeted metabolomics, 190 differential metabolites were obtained. Among them, 23 metabolites were found to show the same trend in MTBE exposure groups, which might play a key role in systemic energy metabolism. Further metabolic pathways analysis showed that D-Glutamine, D-glutamate metabolism, and the other three pathways were affected by MTBE significantly. Therefore, we evaluated serum glutamine and glutamate levels and found that MTBE exposure significantly reduced glutamine levels and increased glutamate levels in rat serum and L-02 cells. Further, the key regulatory gene of glutamine metabolism, glutaminase 1 isoform (GLS1), was significantly up-regulated in rat liver and L-02 cells exposed to MTBE. While the effect of glutamine and glutamate metabolism induced by MTBE could be weakened by BPTES, an antagonist of GLS1. In conclusion, our results indicated that MTBE exposure could change the level of glutamine metabolism by promoting GLS1 expression and ultimately lead to abnormal lipid metabolism.


Assuntos
Poluentes Atmosféricos , Transtornos do Metabolismo dos Lipídeos , Éteres Metílicos , Ratos , Masculino , Animais , Poluentes Atmosféricos/metabolismo , Glutaminase/metabolismo , Metabolismo dos Lipídeos , Glutamina , Regulação para Cima , Ratos Wistar , Éteres Metílicos/metabolismo , Isoformas de Proteínas/metabolismo
10.
Biochem Biophys Res Commun ; 634: 1-9, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36223657

RESUMO

Nonalcoholic steatohepatitis (NASH) is emerging as a major cause of end-stage liver disease, but nowadays no pharmacological therapies are approved and there is an urgent need to develop new therapeutic targets. Glutaminase 1 (GLS1) knockdown had been put forward to alleviate NASH, but its mechanism is still unclear. Herein, to explore the exact relationship between glutamine metabolism and NASH development, we establish a NASH mice model and identified JHU-083, a proven GLS1 inhibitor, could efficiently alleviate NASH. Remarkably, JHU-083 could decrease lipid contents in the liver by enhancing fatty acid oxidation capacity considerably and transcriptomic analysis revealed JHU-083 administration could influence proline metabolism. Then we found the efficacy of JHU-083 on lipid metabolism relied on proline and when proline metabolism was blocked, GLS1 inhibitors no longer worked. Our data suggest that inhibiting glutamine hydrolysis could promote fatty acid oxidation by regulating proline metabolism, which is closely associated with NASH development and could be considered a new possible therapeutic target for NASH therapy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo , Prolina/metabolismo , Camundongos Endogâmicos C57BL
11.
Bioorg Med Chem Lett ; 75: 128956, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36038117

RESUMO

Glutamine-addicted cancer metabolism is recently recognized as novel cancer target especially for KRAS and KEAP1 co-occurring mutations. Selective glutaminase1 (GLS1) inhibition was reported using BPTES which has novel mode of allosteric inhibition. However, BPTES is a highly hydrophobic and symmetric molecule with very poor solubility which results in suboptimal pharmacokinetic parameters and hinders its further development. As an ongoing effort to identify more drug-like GLS1 inhibitors via systematic structure - activity relationship (SAR) analysis of BPTES analogs, we disclose our novel macrocycles for GLS1 inhibition with conclusive SAR analysis on the core, core linker, and wing linker, respectively. Selected molecules resulted in reduction in intracellular glutamate levels in LR (LDK378-resistant) cells which is consistent to cell viability result. Finally, compounds 13 selectively reduced the growth of A549 and H460 cells which have co-occurring mutations including KRAS and KEAP1.


Assuntos
Glutaminase , Tiadiazóis , Animais , Glutamatos , Glutamina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Relação Estrutura-Atividade , Sulfetos/química , Tiadiazóis/química
12.
Mol Biol Rep ; 49(8): 7409-7415, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35655054

RESUMO

BACKGROUND: The c-myc oncogene, which causes glutamine dependence in triple negative breast cancers (TNBC), is also the target of one of the signaling pathways affected by ß-Escin. METHODS AND RESULTS: We sought to determine how c-myc protein affects glutamine metabolism and the proteins, glutamine transporter alanine-serine-cysteine 2 (ASCT2) and glutaminase (GLS1), in ß-Escin-treated MDA-MB-231 cells using glutamine uptake and western blot analysis. Cell viability, colony formation, migration and apoptosis were also evaluated in MDA-MB-231 cells in response to ß-Escin treatment using MTS, colony forming, wound healing, and Annexin-V assay. We determined that ß-Escin decreased glutamine uptake and reduced c-myc and GLS1 protein expressions and increased the expression of ASCT2. In addition, this inhibition of glutamine metabolism decreased cell proliferation, colony formation and migration, and induced apoptosis. CONCLUSIONS: In this study, it was suggested that ß-Escin inhibits glutamine metabolism via c-myc in MDA-MB-231 cells, and it is thought that as a result of interrupting the energy supply in these cells via c-myc, it results in a decrease in the carcinogenic properties of the cells. Consequently, ß-Escin may be promising as a therapeutic agent for glutamine-dependent cancers.


Assuntos
Glutamina , Neoplasias de Mama Triplo Negativas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Escina , Genes myc , Glutamina/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/genética
13.
Acta Pharmacol Sin ; 43(4): 963-976, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34267342

RESUMO

Bergenin is a natural PPARγ agonist that can prevent neutrophil aggregation, and often be used in clinics for treating respiratory diseases. Recent data show that Th17 cells are important for neutrophil aggregation and asthma through secreting IL-17A. In this study, we investigated the effects of bergenin on Th17 differentiation in vitro and subsequent neutrophilic asthma in mice. Naïve T cells isolated from mouse mesenteric lymph nodes were treated with IL-23, TGF-ß, and IL-6 to induce Th17 differentiation. We showed that in naïve T cells under Th17-polarizing condition, the addition of bergenin (3, 10, 30 µM) concentration-dependently decreased the percentage of CD4+ IL-17A+ T cells and mRNA expression of specific transcription factor RORγt, and function-related factors IL-17A/F, IL-21, and IL-22, but did not affect the cell vitality and apoptosis. Furthermore, bergenin treatment prevented GLS1-dependent glutaminolysis in the progress of Th17 differentiation, slightly affected the levels of SLC1A5, SLC38A1, GLUD1, GOT1, and GPT2. Glutamine deprivation, the addition of glutamate (1 mM), α-ketoglutarate (1 mM), or GLS1 plasmid all significantly attenuated the above-mentioned actions of bergenin. Besides, we demonstrated that bergenin (3, 10, and 30 µM) concentration-dependently activated PPARγ in naïve T cells, whereas PPARγ antagonist GW9662 and siPPARγ abolished bergenin-caused inhibition on glutaminolysis and Th17 differentiation. Furthermore, we revealed that bergenin inhibited glutaminolysis by regulating the level of CDK1, phosphorylation and degradation of Cdh1, and APC/C-Cdh1-mediated ubiquitin-proteasomal degradation of GLS1 after activating PPARγ. We demonstrated a correlation existing among bergenin-affected GLS1-dependent glutaminolysis, PPARγ, "CDK1-APC/C-Cdh1" signaling, and Th17 differentiation. Finally, the therapeutic effect and mechanisms for bergenin-inhibited Th17 responses and neutrophilic asthma were confirmed in a mouse model of neutrophilic asthma by administration of GW9662 or GLS1 overexpression plasmid in vivo. In conclusion, bergenin repressed Th17 differentiation and then alleviated neutrophilic asthma in mice by inhibiting GLS1-dependent glutaminolysis via regulating the "CDK1-APC/C-Cdh1" signaling after activating PPARγ.


Assuntos
Asma , Células Th17 , Animais , Asma/tratamento farmacológico , Asma/patologia , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Diferenciação Celular , Glutaminase , Camundongos , PPAR gama/metabolismo
14.
Biochem Biophys Res Commun ; 571: 118-124, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34325126

RESUMO

Activating mutations of the oncogenic KRAS in pancreatic ductal adenocarcinoma (PDAC) are associated with an aberrant metabolic phenotype that may be therapeutically exploited. Increased glutamine utilization via glutaminase-1 (GLS1) is one such feature of the activated KRAS signaling that is essential to cell survival and proliferation; however, metabolic plasticity of PDAC cells allow them to adapt to GLS1 inhibition via various mechanisms including activation of glycolysis, suggesting a requirement for combinatorial anti-metabolic approaches to combat PDAC. We investigated whether targeting the glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) in combination with GLS1 can selectively prevent the growth of KRAS-transformed cells. We show that KRAS-transformation of pancreatic duct cells robustly sensitizes them to the dual targeting of GLS1 and PFKFB3. We also report that this sensitivity is preserved in the PDAC cell line PANC-1 which harbors an activating KRAS mutation. We then demonstrate that GLS1 inhibition reduced fructose-2,6-bisphosphate levels, the product of PFKFB3, whereas PFKFB3 inhibition increased glutamine consumption, and these effects were augmented by the co-inhibition of GLS1 and PFKFB3, suggesting a reciprocal regulation between PFKFB3 and GLS1. In conclusion, this study identifies a novel mutant KRAS-induced metabolic vulnerability that may be targeted via combinatorial inhibition of GLS1 and PFKFB3 to suppress PDAC cell growth.


Assuntos
Antineoplásicos/farmacologia , Benzenoacetamidas/farmacologia , Glutaminase/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Fosfofrutoquinase-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Tiadiazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Mutação , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
15.
Arch Biochem Biophys ; 708: 108964, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119480

RESUMO

Cancer cells can metabolize glutamine to replenish TCA cycle intermediates for cell survival. Glutaminase (GLS1) is over-expressed in multiple cancers, including colorectal cancer (CRC). However, the role of GLS1 in colorectal cancer development has not yet fully elucidated. In this study, we found that GLS1 levels were significantly increased in CRC cells. Knockdown of GLS1 by shRNAs as well as GLS1 inhibitor BPTES decreased DLD1 and SW480 cell proliferation, colony formation and migration. Knockdown of GLS1 as well as BPTES induced reactive oxygen species (ROS) production, down-regulation of GSH/GSSG ratio, an decrease in Nrf2 protein expression and an increase in cytoplasmic Nrf2 protein expression in DLD1 and SW480 cells. Furthermore, Knockdown of GLS1 as well as BPTES inhibited autophagy pathway, antioxidant NAC and Nrf2 activator could reversed inhibition of GLS1-mediated an decrease in autophagic flux in DLD1 and SW480 cells. Depletion of GLS1-induced inhibition of DLD1 and SW480 CRC cell proliferation, colony formation and migration was reversed by autophagy inducer rapamycin. These results suggest that targeting GLS1 might be a new potential therapeutic target for the treatment of CRC.


Assuntos
Autofagia/genética , Movimento Celular/genética , Neoplasias Colorretais/patologia , Técnicas de Silenciamento de Genes , Glutaminase/deficiência , Glutaminase/genética , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Oxirredução
16.
FASEB J ; 34(7): 8920-8940, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519817

RESUMO

In the current work we show that the profibrotic actions of TGF-ß are mediated, at least in part, through a metabolic maladaptation in glutamine metabolism and how the inhibition of glutaminase 1 (GLS1) reverses pulmonary fibrosis. GLS1 was found to be highly expressed in fibrotic vs normal lung fibroblasts and the expression of profibrotic targets, cell migration, and soft agar colony formation stimulated by TGF-ß required GLS1 activity. Moreover, knockdown of SMAD2 or SMAD3 as well as inhibition of PI3K, mTORC2, and PDGFR abrogated the induction of GLS1 by TGF-ß. We further demonstrated that the NAD-dependent protein deacetylase, SIRT7, and the FOXO4 transcription factor acted as endogenous brakes for GLS1 expression, which are inhibited by TGF-ß. Lastly, administration of the GLS1 inhibitor CB-839 attenuated bleomycin-induced pulmonary fibrosis. Our study points to an exciting and unexplored connection between epigenetic and transcriptional processes that regulate glutamine metabolism and fibrotic development in a TGF-ß-dependent manner.


Assuntos
Fibroblastos/patologia , Regulação da Expressão Gênica , Glutaminase/metabolismo , Fibrose Pulmonar/patologia , Sirtuínas/metabolismo , Fator de Crescimento Transformador beta/toxicidade , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Movimento Celular , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Glutaminase/genética , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Sirtuínas/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo
17.
Biochem Biophys Res Commun ; 526(2): 431-438, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32228887

RESUMO

The mRNA precursor 3'-end modification factor NUDT21 is a major regulator of 3'UTR shortening and an important component of pre-mRNA cleavage and polyadenylation. However, its role in pathologic progress of small cell lung cancer (SCLC) remains unclear. In this study, we observed that NUDT21 expression is downregulated in SCLC tissues. Hypoxia-induced down-regulation of NUDT21 through HIF-1α. NUDT21 shRNA transduction promotes proliferation and inhibits apoptosis of A549 cells. NUDT21 inhibition also promotes tumor growth in a mouse xenograft model. Furthermore, we clarified that HIF-1α mediated NUDT21 downregulation which altered the expression patterns of two isoforms of GLS1, GAC and KGA. These results link the hypoxic tumor environments to aberrant glutamine metabolism which is important for cellular energy in SCLC cells. Therefore, NUDT21 could be considered as a potential target for the treatment of SCLC.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Glutaminase/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Splicing de RNA/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Células A549 , Proliferação de Células/genética , Células Cultivadas , Glutaminase/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Poliadenilação , Carcinoma de Pequenas Células do Pulmão/metabolismo
18.
Exp Cell Res ; 381(1): 1-9, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054856

RESUMO

Glutamine metabolism is an important metabolic pathway for cancer cell survival, and there is a critical connection between tumor growth and glutamine metabolism. However, the role of GLS1 in hepatocellular carcinoma (HCC) progression remains to be elucidated. In this study, we reported that GLS1 expression was significantly increased in HCC tissues and correlated with serum AFP, tumor differentiation, lymphatic metastasis, TNM stage, and poorer patient outcome. We further showed that GLS1 promoted colony formation and cell proliferation of HCC cells. Furthermore, our data showed that GLS1 inhibitor compound 968 inhibited the proliferation of HCC cells in a dose-dependent manner. Importantly, we found that GLS1 overexpression increased p-AKT, p-GSK3ß and cyclinD1 expression, and had no influence on total AKT and GSK3ß protein level, indicating that GLS1 was involved in AKT/GSK3ß/CyclinD1 pathway. It is suggested that GLS1 promotes proliferation in HCC cells probably via AKT/GSK3ß/CyclinD1 pathway and may be a potential target for anti-hepatocellular carcinoma cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glutaminase/metabolismo , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Animais , Benzofenantridinas/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Progressão da Doença , Sistemas de Liberação de Medicamentos , Feminino , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Oncogenes , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estudos Retrospectivos , Regulação para Cima
19.
Mol Carcinog ; 58(12): 2340-2352, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31556968

RESUMO

Mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) protease presents crucial antiapoptotic properties in activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL); however, the mechanism is unclear. Here, we reported that inhibition of MALT1 protease in ABC-DLBCL cells led to cell apoptosis, along with elevated mitochondrial reactive oxygen species production and a reduced oxygen consumption rate. These alterations induced by MALT1 protease inhibition were associated with reduced expression of glutaminase (GLS1) and glutathione levels. We further show that MALT1 protease was required for the activation and nuclear translocation of c-Jun, which functions as a transcription factor of the GLS1 gene by binding directly to its promoter region. Taken together, MALT1 protease maintained mitochondrial redox homeostasis and mitochondrial bioenergetics through the MALT1-c-Jun-GLS1-coupled metabolic pathway to defend against apoptosis in ABC-DLBCL cells, which raises exciting possibilities regarding targeting of the MALT1-c-Jun-GLS1 axis as a potential therapeutic strategy against ABC-DLBCL.


Assuntos
Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Glutaminase/genética , Linfoma Difuso de Grandes Células B/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteínas Proto-Oncogênicas c-jun/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular Tumoral , Glutaminase/metabolismo , Glutationa/metabolismo , Homeostase , Humanos , Ativação Linfocitária , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Mitocôndrias/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas c-jun/metabolismo
20.
Cell Biol Int ; 43(8): 921-930, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115975

RESUMO

miR-145 has been found to be a participant in cancer metastasis and glucose metabolism in ovarian cancer. However, the role of glutamine metabolism in ovarian cancer remains unclear. In this study, we aim to elucidate the molecular mechanism underlying the regulation of glutamine metabolism by miR-145 in ovarian cancer cells. The messenger RNA (mRNA) levels of miR-145 and glutaminase 1 (GLS1) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of c-myc and GLS1 were detected by western blot analysis. Luciferase reporter assays were used to validate c-myc was a target of miR-145. Glutamine metabolism was analyzed using assay kits. In addition, we performed luciferase reporter assays and chromatin immunoprecipitation assay to validate c-myc transcription activated GLS1 and promoted GLS1 expression. The qRT-PCR demonstrated that the mRNA level of miR-145 and GLS1 was negatively correlated in ovarian cancer tissues and cell lines. Kaplan-Meier survival analysis and the log-rank test showed that patients with high miR-145 expression had significantly increased the overall survival. The overexpression of miR-145 inhibited glutamine consumption, α-ketoglutarate production, and cellular ATP levels. Furthermore, we found miR-145 inhibited glutamine metabolism by targeting c-myc. Moreover, c-myc could promote GLS1 expression by transcription activated. Together, our results revealed that miR-145 inhibited glutamine metabolism through c-myc/GLS1 pathways in ovarian cancer cells, which may improve the current strategy of ovarian cancer diagnosis and therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , MicroRNAs/metabolismo , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/metabolismo , Feminino , Humanos , MicroRNAs/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA