Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chromosoma ; 127(2): 151-174, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29243212

RESUMO

To ensure that the genetic material is accurately passed down to daughter cells during mitosis, dividing cells must duplicate their chromosomes and centrosomes once and only once per cell cycle. The same key steps-licensing, duplication, and segregation-control both the chromosome and the centrosome cycle, which must occur in concert to safeguard genome integrity. Aberrations in genome content or centrosome numbers lead to genomic instability and are linked to tumorigenesis. Such aberrations, however, can also be part of the normal life cycle of specific cell types. Multiciliated cells best exemplify the deviation from a normal centrosome cycle. They are post-mitotic cells which massively amplify their centrioles, bypassing the rule for once-per-cell-cycle centriole duplication. Hundreds of centrioles dock to the apical cell surface and generate motile cilia, whose concerted movement ensures fluid flow across epithelia. The early steps that control the generation of multiciliated cells have lately started to be elucidated. Geminin and the vertebrate-specific GemC1 and McIdas are distantly related coiled-coil proteins, initially identified as cell cycle regulators associated with the chromosome cycle. Geminin is required to ensure once-per-cell-cycle genome replication, while McIdas and GemC1 bind to Geminin and are implicated in DNA replication control. Recent findings highlight Geminin family members as early regulators of multiciliogenesis. GemC1 and McIdas specify the multiciliate cell fate by forming complexes with the E2F4/5 transcription factors to switch on a gene expression program leading to centriole amplification and cilia formation. Positive and negative interactions among Geminin family members may link cell cycle control to centriole amplification and multiciliogenesis, acting close to the point of transition from proliferation to differentiation. We review key steps of centrosome duplication and amplification, present the role of Geminin family members in the centrosome and chromosome cycle, and discuss links with disease.


Assuntos
Centríolos/metabolismo , Cílios/metabolismo , Geminina/genética , Genoma , Mitose , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/ultraestrutura , Cílios/ultraestrutura , Replicação do DNA , Nanismo/genética , Nanismo/metabolismo , Nanismo/patologia , Fator de Transcrição E2F4/genética , Fator de Transcrição E2F4/metabolismo , Fator de Transcrição E2F5/genética , Fator de Transcrição E2F5/metabolismo , Geminina/metabolismo , Regulação da Expressão Gênica , Instabilidade Genômica , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição
2.
Eur J Med Res ; 27(1): 301, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539849

RESUMO

BACKGROUND: Adrenocortical carcinoma (ACC) is a rare endocrine neoplasm, which is characterized by poor prognosis and high recurrence rate. Novel and reliable prognostic and metastatic biomarkers are lacking for ACC patients. This study aims at screening potential prognostic biomarkers and therapeutic targets of ACC through bioinformatic methods and immunohistochemical (IHC) analysis. METHODS: In the present study, by using the Gene Expression Omnibus (GEO) database we identified differentially expressed genes (DEGs) in ACC and validated these DEGs in The Cancer Genome Atlas (TCGA) ACC cohort. A DEGs-based signature was additionally constructed and we assessed its prognosis and prescient worth for ACC by survival analysis and nomogram. Immunohistochemistry (IHC) was used to verify the relationship between hub gene-GMNN expressions and clinicopathologic outcomes in ACC patients. RESULTS: A total of 24 DEGs correlated with the prognosis of ACC were screened from the TCGA and GEO databases. Five DEGs were subsequently selected in a signature which was closely related to the survival rates of ACC patients and GMNN was identified as the core gene in this signature. Univariate and multivariate Cox regression showed that the GMNN was an independent prognostic factor for ACC patients (P < 0.05). Meanwhile, GMNN was closely related to the OS and PFI of ACC patients treated with mitotane (P < 0.001). IHC confirmed that GMNN protein was overexpressed in ACC tissues compared with normal adrenal tissues and significantly correlated with stage (P = 0.011), metastasis (P = 0.028) and Ki-67 index (P = 0.014). CONCLUSIONS: GMNN is a novel tumor marker for predicting the malignant progression, metastasis and prognosis of ACC, and may be a potential therapeutic target for ACC.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Prognóstico , Análise de Sobrevida , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/diagnóstico , Neoplasias do Córtex Suprarrenal/metabolismo , Geminina
3.
Cells ; 11(6)2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326512

RESUMO

Gene amplifications in amphibians and flies are known to occur during development and have been well characterized, unlike in mammalian cells, where they are predominantly investigated as an attribute of tumors. Recently, we first described gene amplifications in human and mouse neural stem cells, myoblasts, and mesenchymal stem cells during differentiation. The mechanism leading to gene amplifications in amphibians and flies depends on endocycles and multiple origin-firings. So far, there is no knowledge about a comparable mechanism in normal human cells. Here, we describe rereplication during the early myotube differentiation of human skeletal myoblast cells, using fiber combing and pulse-treatment with EdU (5'-Ethynyl-2'-deoxyuridine)/CldU (5-Chlor-2'-deoxyuridine) and IdU (5-Iodo-2'-deoxyuridine)/CldU. We found rereplication during a restricted time window between 2 h and 8 h after differentiation induction. Rereplication was detected in cells simultaneously with the amplification of the MDM2 gene. Our findings support rereplication as a mechanism enabling gene amplification in normal human cells.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Desoxiuridina , Amplificação de Genes , Humanos , Mamíferos/metabolismo , Camundongos
4.
Rep Biochem Mol Biol ; 10(2): 224-232, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34604412

RESUMO

BACKGROUND: Prostate cancer (PC) is one of the most abundant cancers among men, and In Iran, has been responsible for 6% of all deaths from cancer in men. NUF2 and GMNN genes are considered as loci of susceptibility to tumorigenesis in humans. Alterations in expression of these genes have been reported in various malignancies. The aim of our study was to test whether different NUF2 and GMNN expression levels are associated with PC incidence and hence, might be considered as new molecular tools for PC screening. METHODS: Biopsy samples from 40 PC patients and 41 healthy Iranian men were used to determine the relative gene expression. After RNA extraction and cDNA synthesis, samples were analyzed using TaqMan Quantitative Real time PCR. Patients' background information, included smoking habits and family histories of PC, were recorded. Stages and grades of their PC were classified by the TNM tumor, node, metastasis (TMN) staging system based on standard guidelines. RESULTS: NUF2 expression did not significantly differ between the groups, while GMNN expression was significantly greater in the PC specimens than in the controls. CONCLUSION: Regarding the significant role of GMNN in various tumor phenotypes, and its importance in PC progression, the alteration in GMNN expression in PC samples vs. controls indicate that the genetic profiling of this cancer might be considered to personalize therapy for each patient in the future.

5.
Virol Sin ; 32(5): 431-439, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29116593

RESUMO

Viruses commonly create favorable cellular conditions for their survival through multiple mechanisms. MicroRNAs (miRNAs), which function as post-transcriptional regulators, are utilized by human cytomegalovirus (HCMV) in its infection and pathogenesis. In the present study, the DNA replication inhibitor Geminin (GMNN) was identified to be a direct target of hcmv-miR-US5-1. Overexpression of hcmv-miR-US5-1 could block the accumulation of GMNN during HCMV infection, and the decrease of GMNN expression caused by hcmv-miR-US5-1 or GMNN specific siRNA reduced HCMV DNA copies in U373 cells. Meanwhile, ectopic expression of hcmv-miR-US5-1 and consequent lower expression of GMNN influenced host cell cycle and proliferation. These results imply that hcmv-miR-US5-1 may affect viral replication and host cellular environment by regulating expression kinetics of GMNN during HCMV infection.


Assuntos
Citomegalovirus/genética , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Citomegalovirus/fisiologia , Geminina/farmacologia , Células HEK293 , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Replicação Viral/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-24036207

RESUMO

Transcriptomics is increasingly used to assess biological responses to environmental stimuli and stressors such as aquatic pollutants. However, fundamental studies characterizing individual variability in mRNA levels are lacking, which currently limits the use of transcriptomics in environmental monitoring assessments. To address individual variability in transcript abundance, we performed a meta-analysis on 231 microarrays that were conducted in the fathead minnow (FHM), a widely used toxicological model. The mean variability for gene probes was ranked from most to least variable based upon the coefficient of variation. Transcripts that were the most variable in individual tissues included NADH dehydrogenase flavoprotein 1, GTPase IMAP family member 7-like and v-set domain-containing T-cell activation inhibitor 1-like while genes encoding ribosomal proteins (rpl24 and rpl36), basic transcription factor 3, and nascent polypeptide-associated complex alpha subunit were the least variable in individuals across a range of microarray experiments. Gene networks that showed high variability (based upon the variation in expression of individual members within the network) included cell proliferation, metabolism (steroid, lipids, and glucose), cell adhesion, vascularization, and regeneration while those that showed low variability (more stability) included mRNA and rRNA processing, regulation of translational fidelity, RNA splicing, and ribosome biogenesis. Real-time PCR was conducted on a subset of genes for comparison of variability collected from the microarrays. There was a significant positive relationship between the two methods when measuring individual variability, suggesting that variability detected in microarray data can be used to guide decisions on sample sizes for measuring transcripts in real-time PCR experiments. A power analysis revealed that measuring estrogen receptor ba (esrba) requires fewer biological replicates than that of estrogen receptor bb (esrbb) in the gonad and samples sizes required to detect a 50% change for reproductive-related transcripts is between 12 and 20. Characterizing individual variability at the molecular level will prove necessary as efforts are made toward integrating molecular tools into environmental risk assessments.


Assuntos
Cyprinidae/genética , Ecotoxicologia/métodos , Redes Reguladoras de Genes , Variação Genética/genética , Genômica/métodos , Análise Serial de Proteínas , Transcriptoma/genética , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
7.
J Breast Cancer ; 15(2): 162-71, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22807933

RESUMO

PURPOSE: Triple-negative breast cancer, has a significant clinical relevance being associated with a shorter median time to relapse and death and does not respond to endocrine therapy or other available targeted agents. For this reason, identifying the molecular pathways associated with increased aggressiveness, for example the presence of stem cell populations within the tumor and alteration of genes associated with cell cycle regulation represents an important objective in the clinical research into this neoplasm. METHODS: To investigate the role of cell cycle progression inhibitor Geminin in triple-negative breast cancers and its potential correlation with stem-like phenotype of this neoplasm, we used tissue microarray technology to build a specific triple-negative breast cancer tissue micro-array. Geminin and cancer stem cell marker CD133 expression was further investigated at the mRNA level for selected breast tumor samples through realtime polymerase chain reaction quantification. RESULTS: Our results showed that CD133 expression was significantly associated to high Geminin expression (p=0.017), a strong association between Ki-67 and tumor grade (p=0.020) and an inverse association between Geminin expression and lymphonode metastases (p=0.058), and a trend of statistically significance between Geminin marker expression and survival of triple-negative breast cancer patients (p=0.076). CONCLUSION: The strong association between the expression of CD133 and Geminin could be useful in molecular stratification of breast tumors and in particular of triple-negative breast cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA