RESUMO
The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Previous studies have suggested that the plastid translation elongation factor, elongation factor thermo unstable (EF-Tu), encoded by RAB GTPASE HOMOLOG 8D (RAB8D) is essential for plant growth. Here, through analyzing the root phenotypes of two knock-down alleles of RAB8D (rab8d-1 and rab8d-2), we further revealed a vital role for RAB8D in primary root development through the maintenance of both the stem cell niche (SCN) and the meristem. Our results showed that RAB8D deficiency affects the root auxin response and SCN maintenance signaling. RAB8D interacts with GENOMES UNCOUPLED 1 (GUN1) in vivo. Further analysis revealed that GUN1 is over-accumulated and is required for both stem cell death and maintenance of root architecture in rab8d Arabidopsis mutants. The ATAXIA-TELANGIECTASIA-MUTATED (ATM)-SUPPRESSOR OF GAMMA RESPONSE 1 pathway is involved in the regulation of root meristem size through upregulating SIAMESE-RELATED 5 expression in the rab8d-2 allele. Moreover, ETHYLENE RESPONSE FACTOR 115 is highly expressed in rab8d-2, which plays a role in further quiescent center division. Our observations not only characterized the role of RAB8D in root development, but also uncovered functions of GUN1 and ATM in response to plastid EF-Tu deficiency.
Assuntos
Meristema/citologia , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/metabolismo , Nicho de Células-Tronco/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The pentatricopeptide repeat protein GENOMES UNCOUPLED1 (GUN1) is required for chloroplast-to-nucleus signalling when plastid translation becomes inhibited during chloroplast development in Arabidopsis thaliana, but its exact molecular function remains unknown. We analysed GUN1 sequences in land plants and streptophyte algae. We tested functional conservation by complementation of the Arabidopsis gun1 mutant with GUN1 genes from the streptophyte alga Coleochate orbicularis or the liverwort Marchantia polymorpha. We also analysed the transcriptomes of M. polymorpha gun1 knockout mutant lines during chloroplast development. GUN1 evolved within the streptophyte algal ancestors of land plants and is highly conserved among land plants but missing from the Rafflesiaceae that lack chloroplast genomes. GUN1 genes from C. orbicularis and M. polymorpha suppress the cold-sensitive phenotype of the Arabidopsis gun1 mutant and restore typical retrograde responses to treatments with inhibitors of plastid translation, even though M. polymorpha responds very differently to such treatments. Our findings suggest that GUN1 is an ancient protein that evolved within the streptophyte algal ancestors of land plants before the first plants colonized land more than 470 million years ago. Its primary role is likely to be in chloroplast gene expression and its role in chloroplast retrograde signalling probably evolved more recently.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Embriófitas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embriófitas/metabolismo , Regulação da Expressão Gênica de Plantas , Plastídeos/genética , Plastídeos/metabolismoRESUMO
One of the most dramatic challenges in the life of a plant occurs when the seedling emerges from the soil and exposure to light triggers expression of genes required for establishment of photosynthesis. This process needs to be tightly regulated, as premature accumulation of light-harvesting proteins and photoreactive Chl precursors causes oxidative damage when the seedling is first exposed to light. Photosynthesis genes are encoded by both nuclear and plastid genomes, and to establish the required level of control, plastid-to-nucleus (retrograde) signalling is necessary to ensure correct gene expression. We herein show that a negative GENOMES UNCOUPLED1 (GUN1)-mediated retrograde signal restricts chloroplast development in darkness and during early light response by regulating the transcription of several critical transcription factors linked to light response, photomorphogenesis, and chloroplast development, and consequently their downstream target genes in Arabidopsis. Thus, the plastids play an essential role during skotomorphogenesis and the early light response, and GUN1 acts as a safeguard during the critical step of seedling emergence from darkness.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estiolamento , Regulação da Expressão Gênica de Plantas , Plastídeos/genética , Plastídeos/metabolismo , Plântula/genética , Plântula/metabolismoRESUMO
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , PlântulaRESUMO
During development or under stress, chloroplasts generate signals that regulate the expression of a large number of nuclear genes, a process called retrograde signaling. GENOMES UNCOUPLED 1 (GUN1) is an important regulator of this pathway. In this study, we have discovered an unexpected role for GUN1 in plastid RNA editing, as gun1 mutations affect RNA-editing efficiency at multiple sites in plastids during retrograde signaling. GUN1 plays a direct role in RNA editing by physically interacting with MULTIPLE ORGANELLAR RNA EDITING FACTOR 2 (MORF2). MORF2 overexpression causes widespread RNA-editing changes and a strong genomes uncoupled (gun) molecular phenotype similar to gun1 MORF2 further interacts with RNA-editing site-specificity factors: ORGANELLE TRANSCRIPT PROCESSING 81 (OTP81), ORGANELLE TRANSCRIPT PROCESSING 84 (OTP84), and YELLOW SEEDLINGS 1 (YS1). We further show that otp81, otp84, and ys1 single mutants each exhibit a very weak gun phenotype, but combining the three mutations enhances the phenotype. Our study uncovers a role for GUN1 in the regulation of RNA-editing efficiency in damaged chloroplasts and suggests that MORF2 is involved in retrograde signaling.
Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Plastídeos/metabolismo , Edição de RNA , Arabidopsis , Regulação da Expressão Gênica de PlantasRESUMO
Chloroplast perturbations activate retrograde signalling pathways, causing dynamic changes of gene expression. Besides transcriptional control of gene expression, different classes of small non-coding RNAs (sRNAs) act in gene expression control, but comprehensive analyses regarding their role in retrograde signalling are lacking. We performed sRNA profiling in response to norflurazon (NF), which provokes retrograde signals, in Arabidopsis thaliana wild type (WT) and the two retrograde signalling mutants gun1 and gun5. The RNA samples were also used for mRNA and long non-coding RNA profiling to link altered sRNA levels to changes in the expression of their cognate target RNAs. We identified 122 sRNAs from all known sRNA classes that were responsive to NF in the WT. Strikingly, 142 and 213 sRNAs were found to be differentially regulated in both mutants, indicating a retrograde control of these sRNAs. Concomitant with the changes in sRNA expression, we detected about 1500 differentially expressed mRNAs in the NF-treated WT and around 900 and 1400 mRNAs that were differentially regulated in the gun1 and gun5 mutants, with a high proportion (~30%) of genes encoding plastid proteins. Furthermore, around 20% of predicted miRNA targets code for plastid-localised proteins. Among the sRNA-target pairs, we identified pairs with an anticorrelated expression as well pairs showing other expressional relations, pointing to a role of sRNAs in balancing transcriptional changes upon retrograde signals. Based on the comprehensive changes in sRNA expression, we assume a considerable impact of sRNAs in retrograde-dependent transcriptional changes to adjust plastidic and nuclear gene expression.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/fisiologia , Liases/fisiologia , RNA de Plantas/genética , Pequeno RNA não Traduzido/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Liases/metabolismo , RNA de Plantas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Pequeno RNA não Traduzido/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Chloroplasts are semi-autonomous organelles governed by the precise coordination between the genomes of their own and the nucleus for functioning correctly in response to developmental and environmental cues. Under stressed conditions, various plastid-to-nucleus retrograde signals are generated to regulate the expression of a large number of nuclear genes for acclimation. Among these retrograde signaling pathways, the chloroplast protein GENOMES UNCOUPLED 1 (GUN1) is the first component identified. However, in addition to integrating aberrant physiological signals when chloroplasts are challenged by stresses such as photooxidative damage or the inhibition of plastid gene expression, GUN1 was also found to regulate other developmental processes such as flowering. Several partner proteins have been found to interact with GUN1 and facilitate its different regulatory functions. In this study, we report 15 possible interacting proteins identified through yeast two-hybrid (Y2H) screening, among which 11 showed positive interactions by pair-wise Y2H assay. Through the bimolecular fluorescence complementation assay in Arabidopsis protoplasts, two candidate proteins with chloroplast localization, DJC31 and HCF145, were confirmed to interact with GUN1 in planta. Genes for these GUN1-interacting proteins showed different fluctuations in the WT and gun1 mutant under norflurazon and lincomycin treatments. Our results provide novel clues for a better understanding of molecular mechanisms underlying GUN1-mediated regulations.
Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Comunicação Celular/genética , Núcleo Celular/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas de Ligação a DNA/genética , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Plastídeos/genética , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Transdução de Sinais/genéticaRESUMO
GUN1 integrates retrograde signals in chloroplasts but the underlying mechanism is elusive. FUG1, a chloroplast translation initiation factor, and GUN1 are co-expressed at the transcriptional level, and FUG1 co-immunoprecipitates with GUN1. We used mutants of GUN1 (gun1-103) and FUG1 (fug1-3) to analyse their functional relationship at the physiological and system-wide level, the latter including transcriptome and proteome analyses. Absence of GUN1 aggravates the effects of decreased FUG1 levels on chloroplast protein translation, resulting in transiently more pronounced phenotypes regarding photosynthesis, leaf colouration, growth and cold acclimation. The gun1-103 mutation also enhances variegation in the var2 mutant, increasing the fraction of white sectors, while fug1-3 suppresses the var2 phenotype. The transcriptomes of fug1-3 and gun1-103 plants are very similar, but absence of GUN1 alone has almost no effect on protein levels, whereas steady-state levels of chloroplast proteins are markedly decreased in fug1-3. In fug1 gun1 double mutants, effects on transcriptomes and particularly on proteomes are enhanced. Our results show that GUN1 function becomes critical when chloroplast proteostasis is perturbed by decreased rates of synthesis (fug1) or degradation (var2) of chloroplast proteins, or by low temperatures. The functions of FUG1 and GUN1 appear to be related, corroborating the view that GUN1 helps to maintain chloroplast protein homeostasis (proteostasis).
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Proteínas de Ligação a DNA/genética , Fator de Iniciação 2 em Eucariotos/genética , Proteostase/genética , Aclimatação/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Temperatura Baixa , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente ModificadasRESUMO
In order to withstand high light (HL) stress, plants have evolved both short-term defense and repair mechanisms and long-term acclimation responses. At present, however, the underlying signaling events and molecular mechanisms are still poorly understood. Analysis of the mutants coe1, coe1 gun1 double mutant and oeGUN1coe1 revealed increased sensitivity to HL stress as compared to wild type (WT), with oeGUN1 coe1 plants displaying the highest sensitivity. Accumulation of FTSH2 protein and degradation of D1 protein during the HL stress were shown to depend on both COE1 and GUN1. Overexpression of COE1 enhanced the induction of FTSH2 and the tolerance to HL stress. These results indicate that the COE1-GUN1 signaling pathway plays an important role in regulating the adaptation of plants to HL.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Luz , Estresse FisiológicoRESUMO
In Arabidopsis thaliana (Arabidopsis), Acetyl-CoA Carboxylase 2 (ACC2) is a nuclear DNA-encoded and plastid-targeted enzyme that catalyzes the conversion of acetyl-CoA to malonyl-CoA. ACC2 improves plant growth and development when chloroplast translation is impaired. However, little is known about the upstream signals that regulate ACC2. Here, through analyzing the transcriptome changes in brz-insensitive-pale green (bpg) 2-2, a pale-green mutant with impaired chloroplast gene expression resulting from loss of the BPG2 function, we found that the level of ACC2 was significantly up-regulated. Through performing genetic analysis, we further demonstrated that loss of the GENOMES UNCOUPLED 1 (GUN1) or GUN5 function partly perturbed the up-regulation of ACC2 in the bpg2-2 mutant, whereas ABA INSENSITIVE 4 (ABI4)-function-loss had no clear effect on the ACC2 expression. Furthermore, when plants were treated with plastid translation inhibitors, such as lincomycin and spectinomycin, the ACC2 transcriptional level was also markedly increased in a GUN-dependent manner. In conclusion, our results suggested that the GUN-involved plastid-to-nucleus retrograde communication played a role in regulating ACC2 in Arabidopsis.
Assuntos
Acetil-CoA Carboxilase/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Liases/genética , Transdução de Sinais/genética , Acetil-CoA Carboxilase/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Liases/metabolismo , Mutação , Plastídeos/genética , Plastídeos/metabolismoRESUMO
Plastid-to-nucleus retrograde signaling plays an important role in regulating the expression of photosynthesis-associated nuclear genes (PhANGs) in accordance with physiological demands on chloroplast biogenesis and function. Despite its fundamental importance, little is known about the molecular nature of the plastid gene expression (PGE)-dependent type of retrograde signaling. PGE is a multifaceted process, and several factors, including pentatricopeptide repeat (PPR) proteins, are involved in its regulation. The PPR protein GUN1 plays a central role in PGE-dependent retrograde signaling. In this study, we isolated a mutant exhibiting up-regulation of CHLOROPHYLL A/B-BINDING PROTEIN (CAB) under normal growth conditions (named coe1 for CAB overexpression 1). The coe1 mutant has a single-base mutation in the gene for mitochondrial transcription termination factor 4 (mTERF4)/BSM/RUG2, which plays a role in regulating the processing of certain plastid transcripts. Defects in GUN1 or mTERF4 de-repressed the expression of specific plastid mRNAs in the presence of lincomycin (LIN). In wild-type plants, treatment with LIN or spectinomycin (SPE) inhibited processing of plastid transcripts. Comparative analysis revealed that in gun1 and coe1/mterf4, but not in wild-type, gun4, or gun5 plants, the processing of plastid transcripts and expression levels of Lhcb1 mRNA were affected in opposite ways when plants were grown in the presence of LIN or SPE. In addition, the coe1 mutation affected the intracellular accumulation and distribution of GUN1, as well as its plastid signaling activity. Taken together, these results suggest that GUN1 and COE1 cooperate in PGE and retrograde signaling.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Complexos de Proteínas Captadores de Luz/genética , Complexo de Proteína do Fotossistema II/genética , Transdução de Sinais , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastídeos/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Retrograde signaling between plastids and the nucleus is vital for chloroplast biogenesis and environmental responses. GENOMES UNCOUPLED1 (GUN1) was proposed to be a central integrator of multiple retrograde signaling pathways in the model plant Arabidopsis thaliana (Arabidopsis). However, the function of GUN1 orthologs in other plant species has not been well studied. Here, we found that many GUN1 orthologs from the Solanaceae family have a short N-terminus before the first pentatricopeptide repeat (PPR) motif which is predicted as intrinsically disordered regions (IDRs). Functional analyses of tomato (Solanum lycopersicum L.) GUN1 (SlGUN1), which does not contain N-terminal IDRs, show that it can complement the GUN phenotype of the Arabidopsis gun1 mutant (Atgun1). However, in contrast to the AtGUN1 protein, which does contain the N-terminal IDRs, the SlGUN1 protein is highly accumulated even after chloroplast biogenesis is completed, suggesting that the N-terminal IDRs may determine the stability of the GUN1 protein. Furthermore, we generated tomato Slgun1 genome-edited mutants via the CRISPR-Cas9 system. The Slgun1 mutants exhibited a typical GUN phenotype under lincomycin (Lin) or norflurazon (NF) treatment. Moreover, Slgun1 mutants are hypersensitive to low concentrations of Lin or NF. Taken together, our results suggest that, although lacking the N-terminal IDRs, SlGUN1 plays conserved roles in plastid retrograde signaling in tomato plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Solanum lycopersicum/genética , Proteínas de Ligação a DNA/genética , Plastídeos/genética , Plastídeos/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Plastid biogenesis and the coordination of plastid and nuclear genome expression through anterograde and retrograde signaling are essential for plant development. GENOMES UNCOUPLED1 (GUN1) plays a central role in retrograde signaling during early plant development. The putative function of GUN1 has been extensively studied, but its molecular function remains controversial. Here, we evaluate published transcriptome data and generate our own data from gun1 mutants grown under signaling-relevant conditions to show that editing and splicing are not relevant for GUN1-dependent retrograde signaling. Our study of the plastid (post)transcriptome of gun1 seedlings with white and pale cotyledons demonstrates that GUN1 deficiency significantly alters the entire plastid transcriptome. By combining this result with a pentatricopeptide repeat code-based prediction and experimental validation by RNA immunoprecipitation experiments, we identified several putative targets of GUN1, including tRNAs and RNAs derived from ycf1.2, rpoC1, and rpoC2 and the ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD gene cluster. The absence of plastid rRNAs and the significant reduction of almost all plastid transcripts in white gun1 mutants account for the cotyledon phenotype. Our study provides evidence for RNA binding and maturation as the long-sought molecular function of GUN1 and resolves long-standing controversies. We anticipate that our findings will serve as a basis for subsequent studies on mechanisms of plastid gene expression and will help to elucidate the function of GUN1 in retrograde signaling.
RESUMO
Chloroplasts are semi-autonomous organelles, with more than 95% of their proteins encoded by the nuclear genome. The chloroplast-to-nucleus retrograde signals are critical for the nucleus to coordinate its gene expression for optimizing or repairing chloroplast functions in response to changing environments. In chloroplasts, the pentatricopeptide-repeat protein GENOMES UNCOUPLED 1 (GUN1) is a master switch that senses aberrant physiological states, such as the photooxidative stress induced by norflurazon (NF) treatment, and represses the expression of photosynthesis-associated nuclear genes (PhANGs). However, it is largely unknown how the retrograde signal is transmitted beyond GUN1. In this study, a protein GUN1-INTERACTING PROTEIN 1 (GIP1), encoded by At3g53630, was identified to interact with GUN1 by different approaches. We demonstrated that GIP1 has both cytosol and chloroplast localizations, and its abundance in chloroplasts is enhanced by NF treatment with the presence of GUN1. Our results suggest that GIP1 and GUN1 may function antagonistically in the retrograde signaling pathway.
Assuntos
Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Herbicidas/uso terapêutico , Piridazinas/uso terapêutico , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Herbicidas/farmacologia , Humanos , Piridazinas/farmacologiaRESUMO
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1's role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.
Assuntos
Proteínas de Plantas/metabolismo , Plastídeos/genética , RNA de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Ligação Proteica , Estresse Fisiológico/genéticaRESUMO
Defects in chloroplast development are 'retrograde-signalled' to the nucleus, reducing synthesis of photosynthetic or related proteins. The Arabidopsiscue8 mutant manifests virescence, a slow-greening phenotype, and is defective at an early stage in plastid development. Greening cotyledons or early leaf cells of cue8 exhibit immature chloroplasts which fail to fill the available cellular space. Such chloroplasts show reduced expression of genes of photosynthetic function, dependent on the plastid-encoded polymerase (PEP), while the expression of genes of housekeeping function driven by the nucleus-encoded polymerase (NEP) is elevated, a phenotype shared with mutants in plastid genetic functions. We attribute this phenotype to reduced expression of specific PEP-controlling sigma factors, elevated expression of RPOT (NEP) genes and maintained replication of plastid genomes (resulting in densely coalesced nucleoids in the mutant), i.e. it is due to an anterograde nucleus-to-chloroplast correction, analogous to retention of a juvenile plastid state. Mutants in plastid protein import components, particularly those involved in housekeeping protein import, also show this 'retro-anterograde' correction. Loss of CUE8 also causes changes in mRNA editing. The overall response has strong fitness value: loss of GUN1, an integrator of retrograde signalling, abolishes elements of it (albeit not others, including editing changes), causing bleaching and eventual seedling lethality upon cue8 gun1. This highlights the adaptive significance of virescence and retrograde signalling. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/fisiologia , Proteínas de Ligação a DNA/genética , Biogênese de Organelas , Transdução de Sinais , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , MutaçãoRESUMO
Genomes Uncoupled 1 (GUN1) plays a critical role in various retrograde signaling pathways. Despite numerous studies, the precise molecular mechanism underlying GUN1-mediated retrograde signaling remains elusive. Recently, MORF2 and cpHSC70 have been identified as GUN1-interacting proteins, linking retrograde signaling with plastid RNA editing and cytosolic folding stress, respectively.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , PlastídeosRESUMO
The GENOMES UNCOUPLED 1 (GUN1) gene has been reported to encode a chloroplast-localized pentatricopeptide-repeat protein, which acts to integrate multiple indicators of plastid developmental stage and altered plastid function, as part of chloroplast-to-nucleus retrograde communication. However, the molecular mechanisms underlying signal integration by GUN1 have remained elusive, up until the recent identification of a set of GUN1-interacting proteins, by co-immunoprecipitation and mass-spectrometric analyses, as well as protein-protein interaction assays. Here, we review the molecular functions of the different GUN1 partners and propose a major role for GUN1 as coordinator of chloroplast translation, protein import, and protein degradation. This regulatory role is implemented through proteins that, in most cases, are part of multimeric protein complexes and whose precise functions vary depending on their association states. Within this framework, GUN1 may act as a platform to promote specific functions by bringing the interacting enzymes into close proximity with their substrates, or may inhibit processes by sequestering particular pools of specific interactors. Furthermore, the interactions of GUN1 with enzymes of the tetrapyrrole biosynthesis (TPB) pathway support the involvement of tetrapyrroles as signaling molecules in retrograde communication.