Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Dev Pathol ; : 10935266241279073, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248342

RESUMO

Pediatric angiosarcoma of soft tissue, an extremely rare entity, remains poorly understood from a genetic standpoint. Herein, we present the case of a previously healthy 17-year-old girl with acute left hip pain. Subsequent magnetic resonance imaging revealed a 21.8 cm left pelvic sidewall mass with heterogeneous enhancement and multiple lung nodules. Biopsy of the tumor showed an infiltrative, hemorrhagic neoplasm composed primarily of atypical spindle to epithelioid cells. Focal vasoformative architecture was appreciated. Immunohistochemically, the tumor cells were strongly positive for CD31, ERG, and FLI-1, supporting the diagnosis of angiosarcoma. Genetic analysis identified a novel TEK::GAB2 gene fusion. TEK belongs to the angiopoietin receptor family, and its fusion with GAB2 is predicted to mediate tumorigenesis. This report expands the current knowledge on the spectrum of gene rearrangements of angiosarcoma.

2.
Bioorg Chem ; 138: 106607, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210829

RESUMO

Growth factor receptor bound protein 2 (Grb2) is an adaptor protein featured by a nSH3-SH2-cSH3 domains. Grb2 finely regulates important cellular pathways such as growth, proliferation and metabolism and a minor lapse of this tight control may totally change the entire pathway to the oncogenic. Indeed, Grb2 is found overexpressed in many tumours type. Consequently, Grb2 is an attractive therapeutic target for the development of new anticancer drug. Herein, we reported the synthesis and the biological evaluation of a series of Grb2 inhibitors, developed starting from a hit-compound already reported by this research unit. The newly synthesized compounds were evaluated by kinetic binding experiments, and the most promising derivatives were assayed in a short panel of cancer cells. Five of the newly synthesized derivatives proved to be able to bind the targeted protein with valuable inhibitory concentration in one-digit micromolar concentration. The most active compound of this series, derivative 12, showed an inhibitory concentration of about 6 µM for glioblastoma and ovarian cancer cells, and an IC50 of 1.67 for lung cancer cell. For derivative 12, the metabolic stability and the ROS production was also evaluated. The biological data together with the docking studies led to rationalize an early structure activity relationship.


Assuntos
Antineoplásicos , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Sequência de Aminoácidos , Ligação Proteica , Antineoplásicos/farmacologia , Relação Estrutura-Atividade
3.
Biochem Biophys Res Commun ; 626: 229-235, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36007472

RESUMO

Osteoarthritis is a chronic age-related degenerative disease associated with varying degrees of pain and joint mobility disorders. Grb2-associated-Binding protein-2 (GAB2) is an intermediate molecule that plays a role downstream in a variety of signaling pathways, such as inflammatory signaling pathways. The role of GAB2 in the pathogenesis of OA has not been fully studied. In this study, we found that GAB2 expression was elevated in chondrocytes after constructing in vivo and in vitro models of OA. Inhibition of GAB2 by siRNA decreased the expression of MMP3, MMP13, iNOS, COX2, p62, and increased the expression of COL2, SOX9, ATG7, Beclin-1 and LC3II/LC3I. Furthermore, inhibition of GAB2 expression inhibited interleukin-1ß (IL-1ß) -induced mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling. In vivo studies, we found that reduced GAB2 expression effectively delayed cartilage destruction in a mouse model of OA induced by destabilisation of the medial meniscus (DMM). In conclusion, our study demonstrates that GAB2 is a potential therapeutic target for OA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Osteoartrite , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Transdução de Sinais
4.
J Cutan Pathol ; 49(8): 727-730, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35332933

RESUMO

Several mutations and gene fusions involved in the mitogen-activated protein kinase (MAPK) pathway have been reported in histiocytic neoplasms including Langerhans cell histiocytosis and non-Langerhans-cell histiocytosis (NLCH). We identified a GAB2::BRAF fusion in a cutaneous lesion from a 22-year-old woman who presented with central diabetes insipidus and red/brown papules on her face, oral mucosa, axilla, and groin. Skin biopsy showed a CD68+, S100-, and CD1a- histiocytic proliferation consistent with NLCH, best clinically classified as xanthoma disseminatum. Next-generation sequencing identified a GAB2::BRAF fusion involving exon 2 of GAB and exon 10 of BRAF. This case implicates a novel fusion in the MAPK signaling pathway, not previously reported in histiocytic neoplasms, as a possible driver of NLCH. Our findings underscore the utility of performing molecular studies on skin biopsy specimens with NLCH to help identify potential targets for therapy.


Assuntos
Neoplasias Hematológicas , Histiocitose de Células de Langerhans , Histiocitose de Células não Langerhans , Neoplasias Cutâneas , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Feminino , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/patologia , Histiocitose de Células não Langerhans/patologia , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Pele/patologia , Neoplasias Cutâneas/genética , Adulto Jovem
5.
J Cell Mol Med ; 25(3): 1415-1424, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33369107

RESUMO

Metastasis is the primary cause of an unfavourable prognosis in patients with malignant cancer. Over the last decade, the role of proteinases in the tumour microenvironment has attracted increasing attention. As a sensor of proteinases, proteinase-activated receptor 2 (PAR2 ) plays crucial roles in the metastatic progression of cervical cancer. In the present study, the expression of PAR2 in multiple types of cancer was analysed by Gene Expression Profiling Interactive Analysis (GEPIA). Kaplan-Meier plotter was used to calculate the correlation between survival and the levels of PAR2 , Grb-associated binding protein 2(Gab2) and miR-125b. Immunohistochemistry (IHC) was performed to examine PAR2 expression in a tissue microarray (TMA) of CESCs. Empower Stats was used to assess the predictive value of PAR2 in the metastatic potential of CESC. We found that PAR2 up-regulation was observed in multiple types of cancer. Moreover, PAR2 expression was positively correlated with the clinicopathologic characteristics of CESC. miR-125b and its target Gab2, which are strongly associated with PAR2 -induced cell migration, are well-characterized as predictors of the prognostic value of CESC. Most importantly, the Cancer Genome Atlas (TCGA) data set analysis showed that the area under the curve (AUC) of the PAR2 model was significantly greater than that of the traditional model (0.833 vs 0.790, P < .05), demonstrating the predictive value of PAR2 in CESC metastasis. Our results suggest that PAR2 may serve as a prognostic factor for metastasis in CESC patients.


Assuntos
Biomarcadores Tumorais , Receptor PAR-2/genética , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Adulto , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Curva ROC , Receptor PAR-2/metabolismo , Transcriptoma , Microambiente Tumoral , Neoplasias do Colo do Útero/mortalidade
6.
Biochem Biophys Res Commun ; 567: 112-117, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34146905

RESUMO

Grb2-associated-binding protein-2 (Gab2) is a member of the Gab/DOS family and functions as an adapter protein downstream of several growth factor signaling pathways. Gab2 is considered an Alzheimer's disease susceptibility gene. However, the role of Gab2 in the brain is still largely unknown. Herein, we report that Gab2 is involved in the postnatal development of microglia in mice. The Gab2 expression in the brain was detected at postnatal day 1 (P1) and increased until P14 but decreased thereafter. The tyrosine phosphorylation of Gab2 (pGab2) was also detected at P1 and increased until P14. Next, we focused on microglial development in Gab2 knockout and heterozygous mice. Although differences were not detected in the cytoplasmic area of Iba1-labeled microglia between Gab2(±) and Gab2(-/-) mice, the analysis of CD68 and cathepsin D (indicators of microglial lysosomal activation) immunolabeling within Iba1+ cells revealed significant underdevelopment of microglial lysosomes in Gab2(-/-) mice at P60. In addition to the developmental abnormality of microglia in Gab2(-/-) mice, lipopolysaccharide-induced lysosomal activation was selectively suppressed in Gab2(-/-) mice compared to that in Gab2(±) mice. Our findings suggest that Gab2 is involved not only in postnatal development but also in lysosomal activation of microglia, therefore Gab2 dysfunction in microglia might potentially contribute to the development of neurodegenerative diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/crescimento & desenvolvimento , Lipopolissacarídeos/metabolismo , Microglia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Encéfalo/metabolismo , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Exp Cell Res ; 394(1): 112128, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32522441

RESUMO

Altered expression of microRNA (miRNA) is associated with the occurrence and metastasis of various tumors. We previously found that miR-218 inhibits tumor angiogenesis through the RICTOR/VEGFA axis in prostate cancer (PCa). In this study, we determined that miR-218 also had a negative effect on cell growth, migration, and invasion ability in PCa. Our data showed that miR-218 bound to the Grb2-associated binding protein 2 (GAB2) 3'-UTR region and inhibited GAB2 expression. As a novel downstream target of miR-218, GAB2 has been reported to be involved in the occurrence and development of various human tumors, but its role in the progression and metastasis of PCa has not been addressed. We demonstrated for the first time that the expression of GAB2 in the PCa cell lines was increased, while knocking down GAB2 significantly inhibited cell growth, metastatic ability and EMT process in PCa. In addition, the recovery of GAB2 could reverse the changes in the biological function of PCa cells caused by the ectopic expression of miR-218. Mechanistically, miR-218-mediated GAB2 transcriptional suppression significantly inhibited the activity of the PI3K/AKT/GSK-3ß pathway, whose abnormal activation was found to be related to the malignant progression of PCa. Taken together, our findings suggest that the miR-218/GAB2 axis may become a novel prognostic indicator and potential therapeutic target in PCa.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
8.
Exp Cell Res ; 382(1): 111462, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194976

RESUMO

Scaffolding adaptor Gab2 is overexpressed in a subset of high-grade ovarian cancer. Our published work shows that Gab2 via PI3K enhances migratory behaviors and epithelial to mesenchymal transition (EMT) features of ovarian cancer cells in vitro. However, it is still unclear how Gab2/PI3K pathway reuglates EMT characteristics and whether Gab2 promotes the growth of ovarian cancer stem cell (CSC)-like population and metastatic growth. In this study, we examined the effects of Gab2 expression on CSC-like cell growth using Aldefluor and tumorshpere assays commonly used for assessing ovarian cancer cells with CSC properties. Gab2 overexpression increased the number of ALDH+ cells and tumorsphere formation in two different ovarian cancer cell lines OVCAR5 and OVCAR8, whereas knockdown of Gab2 decreased the number of ALDH+ cells and tumorsphere formation in Caov-3 cells. Furthermore, Gab2 promoted metastatic tumor growth of OVCAR5 in nude mice. Mechanistically, we uncovered that Gab2 via PI3K specifically inhibited miR-200c expression. miR-200c downregulation contributed to the Gab2-enhanced cell migratory behaviors, EMT properties, and the expansion of ALDH+ cells and tumorspheres. Furthermore, Gab2 promoted CD44 expression and cell migration/invasion through miR-200c downregulation. Our findings support a model that Gab2-PI3K pathway via miR-200c downregulation promotes CD44 expression, EMT characteristics, and CSC-like cell growth. Therapies involving miR-200c or targeting CD44 should help treat ovarian cancer with high Gab2 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias Ovarianas/genética , RNA Neoplásico/fisiologia , Animais , Movimento Celular , Regulação para Baixo , Feminino , Xenoenxertos , Humanos , Receptores de Hialuronatos/antagonistas & inibidores , Receptores de Hialuronatos/biossíntese , Receptores de Hialuronatos/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/fisiologia , Interferência de RNA , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
9.
Gynecol Endocrinol ; 36(9): 813-818, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32619126

RESUMO

Aims: Protein tyrosine phosphatase Src-homology-2-domain-containing phosphatase 2 (SHP2) and adaptor protein Grb2-associated binding protein 2 (GAB2) can bind to each other in various signal transduction. However, the expression of SHP2 and GAB2 have not been investigated in endometriosis. The aim of the study was to evaluate the expressions of SHP2 and GAB2, and explore the correlation with Ki67 and VEGF in ovarian endometriosis.Materials and methods: The protein expressions and localizations were assessed immunohistochemically in ectopic, eutopic endometrium and normal endometrium from patients with (n = 30) and without (n = 30) ovarian endometriosis.Results: SHP2 was mainly present in the endometrial glandular epithelium, with increased expression in eutopic endometrium and even higher expression in ectopic endometrium compared to control endometrium (p < .05). GAB2 was immunolocalized in endometrial epithelium and stroma, increasing its expression from control endometrium to eutopic and ectopic endometrium (p < .05). Positive correlation was found between SHP2 and GAB2 in endometrium (p < .01). SHP2 and GAB2 both positively correlated with VEGF (p < .05), but not Ki67 in endometrium.Conclusions: We provide the first evidence that the protein expressions of SHP2 and GAB2 were elevated in ectopic and eutopic endometrium, suggesting GAB2-SHP2 axis regulating VEGF might contribute to the pathomechanism of endometriosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Doenças Ovarianas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Estudos de Casos e Controles , Endometriose/patologia , Endométrio/patologia , Epitélio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Doenças Ovarianas/patologia , Estudos Retrospectivos
10.
Genes Chromosomes Cancer ; 58(10): 723-730, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31102422

RESUMO

High hyperdiploidy (HD) is the most common cytogenetic subtype of childhood acute lymphoblastic leukemia (ALL), and a higher incidence of HD has been reported in ALL patients with congenital cancer syndromes. We assessed the frequency of predisposing germline mutations in 57 HD-ALL patients from the California Childhood Leukemia Study via targeted sequencing of cancer-relevant genes. Three out of 57 patients (5.3%) harbored confirmed germline mutations that were likely causal, in NBN, ETV6, and FLT3, with an additional six patients (10.5%) harboring putative predisposing mutations that were rare in unselected individuals (<0.01% allele frequency in the Exome Aggregation Consortium, ExAC) and predicted functional (scaled CADD score ≥ 20) in known or potential ALL predisposition genes (SH2B3, CREBBP, PMS2, MLL, ABL1, and MYH9). Three additional patients carried rare and predicted damaging germline mutations in GAB2, a known activator of the ERK/MAPK and PI3K/AKT pathways and binding partner of PTPN11-encoded SHP2. The frequency of rare and predicted functional germline GAB2 mutations was significantly higher in our patients (2.6%) than in ExAC (0.28%, P = 4.4 × 10-3 ), an observation that was replicated in ALL patients from the TARGET project (P = .034). We cloned patient GAB2 mutations and expressed mutant proteins in HEK293 cells and found that frameshift mutation P621fs led to reduced SHP2 binding and ERK1/2 phosphorylation but significantly increased AKT phosphorylation, suggesting possible RAS-independent leukemogenic effects. Our results support a significant contribution of rare, high penetrance germline mutations to HD-ALL etiology, and pinpoint GAB2 as a putative novel ALL predisposition gene.


Assuntos
Frequência do Gene , Mutação em Linhagem Germinativa , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Criança , Mutação da Fase de Leitura , Predisposição Genética para Doença , Células HEK293 , Humanos , Penetrância
11.
Cell Physiol Biochem ; 50(1): 52-65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30326469

RESUMO

BACKGROUND/AIMS: HER2 has been implicated in mammary tumorigenesis as well as aggressive tumor growth and metastasis. Its overexpression is related to a poor prognosis and chemoresistance in breast cancer patients. Although Grb2-associated binding protein 2 (Gab2) is important in the development and progression of human cancer, its effects and mechanisms in HER2-overexpressing breast cancer are unclear. METHODS: Clone formation and MTT assays were used to examine cell proliferation. To detect the effect of Gab2 on the stemness of breast cancer cells, we used flow cytometry, a sphere formation assay, real-time PCR, and western blot. An animal model was created to validate the effect of Gab2 on tumor growth in vivo. Tissue slides were analyzed by immunohistochemistry. RESULTS: Knockdown of Gab2 suppressed PI3K/AKT and MAPK/ERK pathway activity. Gab2 ablation also reduced the stemness of HER2-overexpressing breast cancer cells. In vivo, knockdown of Gab2 inhibited tumor growth. CONCLUSION: This study unveils a potential function of Gab2 in HER2-overexpressing breast cancer cells. Gab2 might be a potential target in the clinical therapy of HER2-overexpressing breast carcinoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Receptor ErbB-2/genética , Transdução de Sinais , Esferoides Celulares
12.
Cytokine ; 96: 234-237, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28477539

RESUMO

Th2 cell differentiation involves complex changes in expression of multiple genes, many of which have poorly characterized roles. In a gene expression microarray analysis of human primary CD4+ effector T subsets, we identified that an adaptor protein, GAB2, was preferentially expressed in human Th2 cells. The role of GAB2 in human Th2 cells is unknown. Through analysis of primary and in vitro differentiated human T effector subsets, we confirmed that human Th2 cells preferentially expressed GAB2. Further analysis of public gene expression microarray data of STAT6-knockdowned Th2 cells indicated that GAB2 expression was regulated by IL-4 and STAT6. Both siRNA knockdown and ectopic expression of GAB2 in activated T cells showed that GAB2 positively regulated IL-4 and IL-13 expression in human Th2 cells. We hence identified the adaptor protein, GAB2, as an important novel regulator of the human Th2 immune response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular , Células Th1/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Regulação da Expressão Gênica , Humanos , Interleucina-13/genética , Interleucina-4/genética , Ativação Linfocitária , Análise em Microsséries , Fator de Transcrição STAT6/deficiência , Fator de Transcrição STAT6/genética , Transdução de Sinais , Células Th1/imunologia , Células Th2/imunologia , Células Th2/fisiologia
13.
J Korean Med Sci ; 32(11): 1784-1791, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28960030

RESUMO

Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proto-Oncogene Mas , Fumantes , Regulação para Cima
14.
J Biol Chem ; 290(44): 26627-37, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26354435

RESUMO

Proteinase activated-receptor 2 (PAR2) participates in cancer metastasis promoted by serine proteinases. The current study aimed to test the molecular mechanism by which PAR2 promotes cancer cell migration. In different cancer cells, activation of PAR2 by activating peptide (PAR2-AP) dramatically increased cell migration, whereas knock down of PAR2 inhibited cellular motility. The PAR2 activation also repressed miR-125b expression while miR-125b mimic successfully blocked PAR2-induced cell migration. Moreover, Grb associated-binding protein 2 (Gab2) was identified as a novel target gene of miR-125b and it mediated PAR2-induced cell migration. The correlation of PAR2 with miR-125b and Gab2 was further supported by the findings obtained from human colorectal carcinoma specimens. Remarkably, knock down of NOP2/Sun domain family, member 2 (NSun2), a RNA methyltransferase, blocked the reduction in miR-125b induced by PAR2. Furthermore, PAR2 activation increased the level of N(6)-methyladenosine (m(6)A)-containing pre-miR-125b in NSun2-dependent manner. Taken together, our results demonstrated that miR-125b mediates PAR2-induced cancer cell migration by targeting Gab2 and that NSun2-dependent RNA methylation contributes to the down-regulation of miR-125b by PAR2 signaling. These findings suggest a novel epigenetic mechanism by which microenvironment regulates cancer cell migration by altering miRNA expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Neoplásico/metabolismo , Receptor PAR-2/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Epigênese Genética , Células HCT116 , Células HT29 , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Oligopeptídeos/farmacologia , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Ligação Proteica , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor PAR-2/metabolismo , Transdução de Sinais , Microambiente Tumoral/genética
15.
Tumour Biol ; 37(9): 11763-11773, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27026230

RESUMO

Grb2-associated binding protein 2 (GAB2), a key member of the family of Gab scaffolding adaptors, is important in the phospoinositide3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) signaling pathways, and is closely associated with cell proliferation, cell transformation, and tumor progression. But its role in hepatocellular carcinoma (HCC) is still unknown. In this study, we investigated the expression of GAB2 and its potential clinical and biological significances in HCC. Western bolt and immunohistochemistrical analyses revealed that GAB2 was obviously upregulated in HCC tissues. Meanwhile, GAB2 was significantly associated with histological grade, tumor size, and the proliferation marker Ki-67 through our further analysis. The Kaplan-Meier survival curves also showed that increased GAB2 expression was directly correlated with poor prognosis in HCC patients and served as an independent prognostic marker of overall survival. Moreover, serum starvation-refeeding, RNA interference, CCK-8, EDU, colony formation, and flow-cytometry analyses were all performed with the purpose of investigating GAB2's regulation of HCC cell proliferation. Our results indicated that GAB2 progressively accumulated when cells entered into S phase. Consistently, cell proliferation was distinctly hindered by small interfering RNA. More interestingly, we discovered that GAB2 promoted cell proliferation by enhancing ERK signaling and GAB2-induced cell proliferation was inhibited by the inhibition of ERK activation. Finally, GAB2 was verified to be able to confer doxorubicin resistance in HCC cells. In summary, these data demonstrated that GAB2 might promote HCC cell proliferation by enhancing ERK signaling, and all above findings provided a potential therapeutic strategy for the treatment of HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Carcinoma Hepatocelular/patologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Adulto , Idoso , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Masculino , Pessoa de Meia-Idade
16.
Int Psychogeriatr ; 27(10): 1687-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25853819

RESUMO

BACKGROUND: Evidences suggest that GAB2 and BDNF genes may be associated with Alzheimer's disease (AD). We aimed to investigate the GAB2 rs2373115 and BDNF rs6265 polymorphisms and the risk of AD in a Brazilian sample. METHODS: 269 AD patients and 114 controls were genotyped with Real-time PCR. Multifactor dimensionality reduction (MDR) was employed to explore the effects of gene-gene interactions. RESULTS: GAB2 and BDNF were not associated with AD in our sample. Nevertheless BDNF Val allele (rs6265) presented a synergic association with the APOE ε4 allele. A multiple logistic regression demonstrated that the APOE ε4 allele and years of education were the best predictors for AD. In ε4 non-carriers sex, education and hypertension were independently correlated with AD, while in ε4 carriers we did not observe any association. The findings were further confirmed by bootstrapping method. CONCLUSIONS: Our data suggest that the interaction of BDNF and APOE has significant effect on AD. Moreover in absence of ε4, female sex, low level of education and hypertension are independently associated with AD. Interventions aimed to prevent AD should focus on these factors and also taking into account the APOE alleles.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E4/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Brasil , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Fatores de Risco
17.
J Biol Chem ; 288(47): 33634-33641, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24081142

RESUMO

Phospholipase C γ2 (PLCγ2) is a critical regulator of innate immune cells and osteoclasts (OCs) during inflammatory arthritis. Both the catalytic domain and the adaptor motifs of PLCγ2 are required for OC formation and function. Due to the high homology between the catalytic domains of PLCγ2 and the ubiquitously expressed PLCγ1, molecules encompassing the adaptor motifs of PLCγ2 were designed to test the hypothesis that uncoupling the adaptor and catalytic functions of PLCγ2 could specifically inhibit osteoclastogenesis and bone erosion. Wild-type (WT) bone marrow macrophages (BMM) that overexpress the tandem Src homology 2 (SH2) domains of PLCγ2 (SH2(N+C)) failed to form mature OCs and resorb bone in vitro. Activation of the receptor activator of NF-κB (RANK) signaling pathway, which is critical for OC development, was impaired in cells expressing SH2(N+C). Arrest in OC differentiation was evidenced by a reduction of p38 and Iκ-Bα phosphorylation as well as decreased NFATc1 and c-Fos/c-Jun levels. Consistent with our hypothesis, SH2(N+C) abrogated formation of the RANK-Gab2 complex, which mediates NF-κB and AP-1 activation following RANK ligand (RANKL) stimulation. Furthermore, the ability of SH2(N+C) to prevent inflammatory osteolysis was examined in vivo following RANKL or LPS injections over the calvaria. Both models induced osteolysis in the control group, whereas the SH2(N+C)-treated cohort was largely protected from bone erosion. Collectively, these data indicate that inflammatory osteolysis can be abrogated by treatment with a molecule composed of the tandem SH2 domains of PLCγ2.


Assuntos
Células da Medula Óssea/enzimologia , Osteoclastos/enzimologia , Osteólise/enzimologia , Fosfolipase C gama/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células da Medula Óssea/patologia , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Inibidor de NF-kappaB alfa , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/patologia , Osteólise/tratamento farmacológico , Osteólise/genética , Osteólise/patologia , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Domínios de Homologia de src
18.
Synapse ; 68(4): 168-77, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24327320

RESUMO

Growth factor receptor bound protein-2 associated binding protein-2 (Gab2) is widely expressed in the central nervous system, and participates in multiple signaling pathways. Recent studies showed that Gab2 was involved in the pathogenesis of Alzheimer's disease (AD). Gab2 reduces tau phosphorylation levels and is associated with cellular apoptosis and differentiation. However, whether Gab2 was also involved in the pathogenesis of epilepsy, remains unknown. This study aimed to investigate the expression pattern of Gab2 protein in brains with temporal lobe epilepsy (TLE) and in pilocarpine-induced rat model of TLE. Western blot, immunohistochemistry, and immunofluorescence were used to assess the location and the expression level of Gab2 in the neocortex of the temporal lobe in patients with TLE and in rat model of epilepsy. Results showed that Gab2 protein was expressed mainly in the membranes and cytoplasm of neurons in the cortex and hippocampus. Gab2 protein expression was remarkably reduced in temporal neocortex of TLE patients. In hippocampus and adjacent cortex in rat epilepsy model, Gab2 expression was decreased at different time points after kindling compared with the controls, and the lowest level of Gab2 expression occurred at 1 week. Thus, significant reductions of Gab2 protein in both TLE patients and epilepsy rats suggest that Gab2 may play an important role in the pathogenesis of TLE.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Animais , Estudos de Casos e Controles , Criança , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neocórtex/metabolismo , Especificidade de Órgãos , Fosfoproteínas/genética , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Lobo Temporal/metabolismo
19.
J Allergy Clin Immunol ; 132(3): 729-736.e12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23587332

RESUMO

BACKGROUND: Aggregation of FcεRI activates a cascade of signaling events leading to mast cell activation, followed by inhibitory signals that turn off the activating signals. However, the overall view of negative signals in mast cells is still incomplete. Although AMP-activated protein kinase (AMPK), which is generally known as a regulator of energy metabolism, is also associated with anti-inflammation, little is known about the role of AMPK in mast cells. OBJECTIVES: We investigated the role of AMPK and its regulatory mechanism in mast cells. METHOD: The roles of AMPK in FcεRI-dependent activation of bone marrow-derived mast cells (BMMCs) were evaluated by using chemical agents, small interfering RNAs (siRNAs), or adenovirus that modulated the activity or expression of AMPK signaling components. In addition, AMPKα2(-/-) mice were used to verify the role of AMPK in anaphylactic models. RESULTS: FcεRI signaling and associated effector functions in BMMCs were suppressed by the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-4-ribofuranoside (AICAR) and were conversely augmented by siRNA knockdown of AMPKα2 or liver kinase B1 (LKB1), an upstream kinase of AMPK. Furthermore, AMPKα2 deficiency led to increased FcεRI-mediated BMMC activation and anaphylaxis that were insensitive to AICAR, whereas enforced expression of AMPKα2 in AMPKα2(-/-) BMMCs reversed the hypersensitive FcεRI signaling to normal levels. Pharmacologic inhibition or siRNA knockdown of Fyn mimicked AMPK activation, suggesting that Fyn counterregulates the LKB1-AMPK axis. Mechanistically, Fyn controlled AMPK activity by regulating LKB1 localization. CONCLUSIONS: The Fyn-regulated LKB1-AMPK axis acts as a novel inhibitory module for mast cell activation, which points to AMPK activators as therapeutic drugs for allergic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Anafilaxia/imunologia , Mastócitos/imunologia , Receptores de IgE/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/imunologia
20.
Life Sci ; 350: 122672, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705456

RESUMO

Non-esterified fatty acids (NEFAs), key to energy metabolism, may become pathogenic at elevated levels, potentially eliciting immune reactions. Our laboratory's findings of reduced L-histidine in ketotic states, induced by heightened NEFA concentrations, suggest an interrelation with NEFA metabolism. This observation necessitates further investigation into the mitigating role of L-histidine on the deleterious effects of NEFAs. Our study unveiled that elevated NEFA concentrations hinder the proliferation of Bovine Mammary Epithelial Cells (BMECs) and provoke inflammation in a dose-responsive manner. Delving into L-histidine's influence on BMECs, RNA sequencing revealed 2124 genes differentially expressed between control and L-histidine-treated cells, with notable enrichment in pathways linked to proliferation and immunity, such as cell cycle and TNF signaling pathways. Further analysis showed that L-histidine treatment positively correlated with an increase in EdU-555-positive cell rate and significantly suppressed IL-6 and IL-8 levels (p < 0.05) compared to controls. Crucially, concurrent treatment with high NEFA and L-histidine normalized the number of EdU-555-positive cells and cytokine expression to control levels. Investigating the underlying mechanisms, Gab2 (Grb2-associated binder 2) emerged as a central player; L-histidine notably reduced Gab2 expression, while NEFA had the opposite effect (p < 0.05). Gab2 overexpression escalated nitric oxide (NO) production and IL6 and IL8 expression. However, L-histidine addition to Gab2-overexpressing cells resulted in NO concentrations indistinguishable from controls. Our findings collectively indicate that L-histidine can counteract NEFA-induced inflammation in BMECs by inhibiting Gab2 expression, highlighting its therapeutic potential against NEFA-related metabolic disturbances.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ácidos Graxos não Esterificados , Histidina , Inflamação , Animais , Ácidos Graxos não Esterificados/metabolismo , Bovinos , Inflamação/metabolismo , Histidina/farmacologia , Histidina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Feminino , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA